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Abstract. In 1964 Černý conjectured that each n-state synchronizing
automaton posesses a reset word of length at most (n − 1)2. From the
other side the best known upper bound on the reset length (minimum
length of reset words) is cubic in n. Thus the main problem here is to
prove quadratic (in n) upper bounds. Since 1964, this problem has been
solved for few special classes of synchronizing automata. One of this re-
sult is due to Kari [8] for automata with Eulerian digraphs. In this paper
we introduce a new approach to prove quadratic upper bounds and ex-
plain it in terms of Markov chains and Perron-Frobenius theories. Using
this approach we obtain a quadratic upper bound for a generalization of
Eulerian automata.

1 Synchronizing automata and the Černý conjecture

Suppose A is a complete deterministic finite automaton whose input alphabet
is Σ and whose state set is Q. The automaton A is called synchronizing if there
exists a word w ∈ Σ∗ whose action resets A , that is, w leaves the automaton in
one particular state no matter at which state in Q it is applied: q.w = q′.w for all
q, q′ ∈ Q. Any such word w is called reset (or synchronizing) for the automaton.
The minimum length of reset words is called reset length and can be denoted by
C(A ).

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applications (coding theory, robotics, testing of reac-
tive systems) and also reveal interesting connections with symbolic dynamics and
other parts of mathematics. For a brief introduction to the theory of synchroniz-
ing automata we refer the reader to the recent survey [14]. Here we discuss one of
the main problems in this theory: proving an upper bound of magnitude O(n2)
for the minimum length of reset words for n-state synchronizing automata.

In 1964 Černý [4] constructed for each n > 1 a synchronizing automaton Cn

with n states whose shortest reset word has length (n−1)2, i.e. C(Cn) = (n−1)2.
The automaton C4 is drawn on figure 1. Soon after that he conjectured that
those automata represent the worst possible case, thus formulating the following
hypothesis:
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Conjecture 1 (Černý) Each synchronizing automaton A with n states has a

reset word of length at most (n− 1)2, i.e. C(A ) ≤ (n− 1)2.

By now this simply looking conjecture is arguably the most longstanding open
problem in the combinatorial theory of finite automata. Moreover, the best up-
per bound known so far is due to Pin [10]1 (it is based upon a combinatorial
theorem conjectured by Pin and then proved by Frankl [6]): for each synchroniz-

ing automaton with n states, there exists a reset word of length n3−n
6 . Since this

bound is cubic and the Černý conjecture claims a quadratic value, it is of certain
importance to prove quadratic (upper) bounds for some classes of synchronizing
automata.
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Fig. 1. Automaton C4 and its underlying graph

2 Exponents of primitive matrices vs reset thresholds

In the rest of the paper, we assume that A is a synchronizing n-state automaton
with k-letter input alphabet Σ = {a1, a2, . . . , ak} and whose state set is Q. We
also assume n > 1, k > 1 and A is strongly connected because finding reset
words of length O(n2) can be easily reduced to this case (see [9] for example).
Now let us consider relations between primitive matrices and synchronizing au-
tomata. In order to do this we determine a natural linear structure associated
with automata. We mean the states of A as numbers 1, 2, . . . , n and then assign
to each subset T ⊆ Q its characteristic vector [T ] in the linear space Rn defined
as follows: the i-th entry of [T ] is 1 if i ∈ T , otherwise it is equal to 0. As usually,
for any two vectors g1, g2 ∈ R

n we denote the inner product of these vectors by
(g1, g2).

A matrix M is primitive if it is non-negative and its m-th power is positive
for some natural numberm. The minimum numberm with this property is called
an exponent of the matrix M and can be denoted by exp(M). Let us also define
a weak exponent of matrix M as a minimum number m such that Mm has a

1 An upper bound of order Ω( 7n
3

48
) has been proved in [13]. But we know about one

unclear place in the proof of this result.



positive row and denote it by wexp(M). Note that a (weak) exponent depends
only on the set of indices with positive elements Supp(M) = {(i, j) | Mi,j > 0}
and doesn’t depend on their values. So when we consider exponents of some
matrix M we can assume it is a 1-0 matrix and there is a corresponding graph
with the adjacency matrix M . Moreover, M t

i,j is equal to the number of directed
paths of length exactly t from state i to j in the corresponding graph. The
following proposition shows the basic properties of primitive matrices.

Proposition 1. Let M be n× n primitive matrix. Then

1. wexp(M) ≤ exp(M) ≤ wexp(M) + n− 1;
2. exp(M) ≤ (n− 1)2 + 1 and equality holds only for Wielandt matrices;

3. wexp(M) ≤ (n− 1)2.

Proof. The left part of the inequality in item follows immediately from the def-
initions. The right part can be easily proved in terms of graph theory. Indeed,
let i be the index of a positive row in Mwexp(M). Then there is a path (in the
corresponding graph) of length d(i, t) ≤ n − 1 from the state i to each state t.
Further, for each state s there is a path to some state q of length n− 1− d(i, t)
and a path of length wexp(M) from q to i. Thus there is a path s → q → i → t

of length

n− 1− d(i, t) + wexp(M) + d(i, t) = wexp(M) + n− 1

and the item is proved.
Item 2 has been proven by Wielandt [15]. Item 3 follows from the fact that

exp(W ) = (n−1)2+1 only for the Wielandt matrix W (item 2) but wexp(W ) =
n2 − 3n+ 3 ≤ (n− 1)2.

The proof of the following proposition can be found in [1] but we introduce
it here to be self-contained.

Proposition 2. Let UG(A ) denotes the underlying graph of the automaton A

and M = M(UG(A )) denotes its adjacency matrix. Then

1. M =
∑k

i=1 [ai];
2. M is a primitive matrix;

3. wexp(M) ≤ C(A ).

Proof. Item 1 follows immediately from definitions. Since A is a synchronizing
automaton there exists a reset word w of length C(A ) which takes all the states
of the automaton to some state i. This means that i-th row of M |w| is positive,
so item 3 is proved. Since A is strongly connected item 2 is true also.

It follows from above propositions that weak exponent of the underlying
graph of A is at most (n − 1)2. This means that there are (unlabeled) paths
of equal length l ≤ (n − 1)2 from every state of the automaton A into some
particular state. The Černý conjecture asserts additionally that such paths can
be chosen to be labeled by some fixed (reset) word. It seems that this additional



demand should increase significantly the minimum length of such paths. Indeed,
for a lot of synchronizing automata the reset length is much more than the weak
exponent of its underlying graph. For instance, if synchronizing automata con-
tains a loop then its weak exponent is at most n− 1 but its reset length can be
equal (n − 1)2 (for Černý series). However, in order to prove the Černý conjec-
ture we only need such bound in the worst case and in [1] a strong connection
between distribution of reset lengths of synchronizing automata and exponents
of primitive graphs is considered.

3 Markov chains and an extension method

The aim of this paper is to obtain upper bounds on reset lengths by utiliz-
ing its connection with exponents of primitive graphs. Let we have probabil-

ity vector p ∈ Rk
+ on Σ naturally extended on words as p(v) =

∏|v|
i=1 p(v(i)).

Now consider a random process of walking some agent in the underlying graph
G = UG(A ) walking by arrow labeled by ai with probability p(ai). Then the

matrix S(A , p) =
∑k

i=1 p(ai) ∗ ai is a probability matrix of this Markov process.
Let us note that Supp(S(A , p)) = Supp(M(UG(A ))) and S(A , p) is also col-
umn stochastic. To simplify our notations denote by 1n a vector in Rn with all
components equals 1

n
. The following proposition summarize properties of Markov

chains that we need.

Proposition 3. Let S be a column stochastic n × n primitive matrix of some

Markov process. Then

1. 1n is a left eigenvector of S, i.e. St1n = 1n;
2. there exists a steady state distribution α = α(S) ∈ Rn

+ of this Markov process,

i.e. Sα = α and (α, n1n) = 1;
3. 1 is a unique modulo-maximal eigenvalue of S and the corresponding eigenspace

is one dimension;

Proof. Since S is a column stochastic matrix then St1n = 1n. Thus 1 is an eigen-
value of S and corresponding eigenvector [Q] is positive. Since S also is primitive
then by Perron-Frobenius theorem 1 is a unique modulo-maximal eigenvalue of
S and there is also a unique (right) positive eigenvector α, i.e. Sα = α. Note
that α can be chosen to be stochastic. Also by Perron-Frobenius right and left
eigenspaces corresponding to the eigenvalue 1 are one dimension and equals to
< 1n >,< α > respectively.

For K ⊆ Q and v ∈ Σ∗ we denote by K.v and K.v−1 the image and respec-
tively the preimage of the subset K under the action of the word v, i.e.

K.v = {q.v | q ∈ K} and K.v−1 = {q | q.v ∈ K}.

One can easily check that [K.v] = [v][K], [K.v−1] = [vt][K] and ([K], 1n) =
|K|
n
.

In order to simplify our notations we further omit square brackets. Recall that a
word w is reset if and only if q.w−1 for some state q or equivalently wtq = [Q]. Let



P be any positive stochastic vector. Then w is reset if and only if ([q.w−1], P ) =
(wtq, P ) = 1. It follows from wtq is a 1-0 vector and P is positive.

Remark that one of the most fruitful method for finding quadratic upper
bounds on the reset length is an extension method. In this method we choose
some state q and construct a finite sequence of words w1, w2, . . . , wd such that

1

n
= (q, 1n) = (w1

tq, 1n) < (w2w1
tq, 1n) < · · · < (wd . . . w2w1

tq, 1n) = 1.

It is clear that such sequence can be constructed for any synchronizing automa-
ton and its length d is at most n− 1 because each inner product in the sequence
exceeds previous for at least 1

n
. Thus a quadratic upper bound will be proved as

soon as one proves that the lengths of wi can be bounded by linear (in n) func-
tion. For instance, if |wi| ≤ n for A then it can be easily shown that the Černý
conjecture holds true for A . Using this fact the Černý conjecture has been ap-
proved for circular [5], eulerian [8] and one-cluster automata with prime length
cycle [11]. However, it is shown in [2] (see also the journal version [3]) that there
is a series of synchronizing automata where lengths of wi can not be bounded by
cn for any 1 < c < 2. This means that for some proper subset x ⊂ Q inequality
(vtx, 1n) ≤ (x, 1n) holds true for each word v of length at most cn. Therefore the
Černý conjecture can not be always achieved on this way. This suggests an idea
to find a stochastic positive vector P such that for each proper subset x ⊂ Q

there exists a word v of length at most n such that (vtx, P ) > (x, P ). It turns
out that the vector α = α(S(A , p)) (the steady state distribution of Markov
chain associated with A and probability vector p) satisfies this property.

Theorem 1. Let x ∈ Rn such that (x, α) = 0 and v ∈ Σ∗ be a word of minimum

length such that (vtx, α) > 0. Then

1.
∑

u∈Σr p(u)(utx, α) = 0 for any r ∈ N;

2. if |u| < |v| then (utx, α) = 0;

3. |v| ≤ dim(Σ≤n−1α)− 1 ≤ n− 1.

Proof. Items 1,2 immediately follow from Srα = α for any r ∈ N. If
|v| ≥ dim(Σ≤n−1α) then from item 2 (utx, α) = (x, uα) = 0 for every u, |u| <
dim(Σ≤n−1α). For i ∈ {1, 2, . . . , n} define a subspace Ui =< uα | |u| ≤ i− 1 >.
Then a chain

< α >= U1 ≤ U2 ≤ · · · ≤ Un = Σ≤n−1α.

becomes constant since some j ≤ dim(Un) ≤ |v|, i.e.

U1 < U2 < · · · < Uj = Uj+1 = · · · = Un.

Thus (x, uα) = 0 for every u, |u| ≤ dim(Un) = dim(Uj) whence (x, g) = 0 for
each g ∈ Udim(Uj). Since j has been chosen minimal dim(Uj) ≥ j then Uj ⊇
Udim(Uj). So (x, g) = 0 for each g ∈ Uj = Uj+1 = . . . and j ≤ dim(Un) ≤ |v|.
Since vα ∈ U|v| = Uj then (x, vα) = 0 and this contradicts with (vtx, α) > 0.



It is worth to mention that similar view to synchronization process as a
probability process were early studied by Jungers [7] but in contrast of linear
programming techniques by Jungers we use techniques from Perron-Frobenius
theory. Moreover, the main result of [7] is a similar proposition like in above
theorem. But in contrast with Jungers result we have a fixed vector α here and
thus obtain quadratic upper bound for a new class of automata in the next
section.

4 Quasi Eulerian Automata

In view of theorem 1 the lengths of extension words (for α = α(S(A , p)) instead
1n) are bounded by n− 1. Unfortunately we have here a conjugate problem that
the lengths of such sequences is hard to bound in general, because if (K1, α) <
(K2, α) for 1-0 vectors K1,K2 then its difference (K2 −K1, α) can be less than
1
n
. However, for some classes of synchronizing automata we can directly use this

theorem. At first prove an auxiliary statement.

Corollary 1. Let α = α(S(A , p)) ∈ Qn for some probability vector p on Σ and

L ∈ N denotes the least common multiple of denominators of α components.

Then C(A ) ≤ 1 + (n− 1)(L− 2).

Proof. At first note that if x1, x2 are 1-0 vectors and (x2, α) > (x1, α) then
(x2, α) ≥ (x1, α)+

1
L
. Since A is synchronizing there exists a state q and a letter

a such that |a−1q| > 1. Set w1 = a then (wt
1q, α) ≥ (q, α) + 1

L
≥ 2

L
. Suppose

(wt
1q, α) < 1. Let x1 = wt

1q−|wt
1q|1n and w2 be a word of minimum length with

(w2
tx1, α) > 0. Such word exists because

(utx1, α) = (Q− |wt
1q|1n, α) = 1− (wt

1q, α) > 0

for any reset word u. In view of theorem 1 |w2| ≤ n − 1 and (wt
2w

t
1q, α) ≥

(|wt
1q|1n, α)+

1
L
≥ 3

L
. Continue in this way we construct a reset wordwdwd−1 . . . w1

where |w1| = 1 and |w2| ≤ n. Since we start from 2
L
and each step adds to inner

product at least 1
L

then d ≤
(1− 2

L
)

1
L

≤ L − 2. Thus C(A ) ≤ 1 + (n − 1)d ≤

1 + (n− 1)(L− 2) and the corollary is proved.

An automaton is Eulerian if its underlying graph admits an Eulerian directed
path, or equivalently, it is strongly connected and the in-degree of every vertex
is the same as the out-degree (and hence is the alphabet size). It is clear that A

is Eulerian if and only if S(A , 1n) is doubly stochastic. Due to [12] A is pseudo-
Eulerian if we can find a probability p such that S(A , p) is doubly stochastic.

Corollary 2. If A is Eulerian or pseudo-Eulerian then C(A ) ≤ 1+(n−1)(n−
2).

Proof. By condition we can choose a probability vector p onΣ to provide S(A , p)
is row stochastic. Then α = α(S(A , p)) = 1n and in view of corollary 1 we obtain
the desired result.



Remark that the same bounds for Eulerian and have been proved early by
Kari [8] and later generalized for pseudo-Eulerian automata by Steinberg [12]
using another techniques. However, we now show that techniques suggested in
this paper is more powerful in some sense.

Proposition 4. Let α = α(S(A , p)) for some probability vector p on Σ and

for some c > 0 there are n − c equal numbers in a set of α components. Then

C(A ) ≤ 2c(n− c+ 1)(n− 1).

Proof. Without loss of generality let α = (r1, r2, . . . , rc, r, r, . . . , r)
t and K ⊂ Q.

Let fi determine that Ki = 1 for i ∈ {1, 2, . . . , c} and fc+ be a number of 1’s in
K with index more than c. Then (K,α) =

∑c

i=1 firi + fc+r whence this value
is determined by a vector f(K) = (f1, f2, . . . , fc, fc+) where fc+ ∈ {0 . . . n− c}
and fi ∈ {0, 1}. Hence there are at most 2c(n− c+1) possible different values of
(K,α) and the length of any extension chain (for α) can not exceed 2c(n−c+1).
In view of theorem 1 we can choose words of length at most n− 1 and thus we
obtain a desired bound.

As a corollary of this proposition we can prove a quadratic upper bound on
the reset length for a new class of synchronizing automata. We call automaton A

quasi-Eulerian with respect to c ∈ N if there is an Eulerian or pseudo-Eulerian
“component” Ec with enter state s which contains n− c states, i.e. only state s

can have incoming arrows from Q \ Ec and rows of S(A , p) which corresponds
to vertices from Ec − s are row stochastic for some p.

Theorem 2. if C(A ) is quasi-Eulerian with respect to c ∈ N then C(A ) ≤
2c(n− c+ 1)(n− 1).

Proof. By condition for appropriate probability vector p on Σ we can provide
that rows of matrix S = S(A , p) corresponding to states in Ec−s are stochastic.
In view of theorem 1 α is a single positive solution of equation (S − E)x = 0.
It is easy to show that all entries of α which corresponds to states from Ec will
have the same value whence we can apply proposition 4 to α, c and obtain the
desired result.

As an example of quasi-Eulerian we can consider automata Cn from Černý
series. One can easily check that Cn is quasi-Eulerian for c = 1 and thus upper
bound C(Cn) ≤ 2n(n − 1) follows from theorem 2. Finally, let us express our
hope that ideas suggested in this paper could be useful for the general case.
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10. Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann.
Discrete Math. 17, 535–548 (1983)
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C.; Otto, F.; Fernau, H. (eds.) Languages and Automata: Theory and Applications.
Lect. Notes Comput. Sci., v. 5196, pp. 11–27. Springer, Heidelberg (2008)

15. Wielandt, H.: Unzerlegbare, nicht negative Matrizen. Math. Z. 52, 642648 (1950)
(in German)


	Synchronizing Automata on Quasi Eulerian Digraph

