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Abstract. Most state of the art SAT solvers for industrial problems
are based on the Conflict Driven Clause Learning (CDCL) paradigm.
Although this paradigm evolved from the systematic DPLL search algo-
rithm, modern techniques of far backtracking and restarts make CDCL
solvers non-systematic. CDCL solvers do not systematically examine all
possible truth assignments as does DPLL.

Local search solvers are also non-systematic and in this paper we show
that CDCL can be reformulated as a local search algorithm: a local search
algorithm that through clause learning is able to prove UNSAT. We
show that the standard formulation of CDCL as a backtracking search
algorithm and our new formulation of CDCL as a local search algorithm
are equivalent, up to tie breaking.

In the new formulation of CDCL as local search, the trail no longer
plays a central role in the algorithm. Instead, the ordering of the literals
on the trail is only a mechanism for efficiently controlling clause learning.
This changes the paradigm and opens up avenues for further research and
algorithm design. For example, in QBF the quantifier places restrictions
on the ordering of variables on the trail. By making the trail less impor-
tant, an extension of our local search algorithm to QBF may provide a
way of reducing the impact of these variable ordering restrictions.

1 Introduction

The modern CDCL algorithm has evolved from DPLL, which is a systematic
search through variable assignments [4]. CDCL algorithms have evolved through
the years, various features and techniques have been added [10] that have demon-
strated empirical success. These features have moved CDCL away from exhaus-
tive search, and, for example, [9] has argued that modern CDCL algorithms are
better thought of as guided resolution rather than as exhaustive backtracking
search.

New features have been added as we have gained a better understanding of
CDCL both through theoretical developments and via empirical testing. For
example, the important technique of restarts was originally motivated by theo-
retical and empirical studies of the effect of heavy-tailed run-time distributions
[7] on solver run-times.
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Combinations of features, however, can sometimes interact in complex ways
that can undermine the original motivation of individual features. For exam-
ple, phase saving, also called light-weight component caching, was conceived
as a progress saving technique, so that backtracking would not retract already
discovered solutions of disjoint subproblems [12] and then have to spend time
rediscovering these solutions. However, when we add phase saving to restarts,
we reduce some of the randomization introduced by restarts, potentially limit-
ing the ability of restarts to short-circuit heavy-tailed run-times. Nevertheless,
even when combined, restarts and phase saving both continue to provide a useful
performance boost in practice and are both commonly used in CDCL solvers.

When combined with a strong activity-based heuristic, phase saving further
changes the behavior of restarts. In this context it is no longer obvious that
restarts serve to move the solver to a different part of the search space. Instead,
it can be shown empirically that after a restart a large percentage of the trail
is re-created exactly as it was prior to the restart, indicating that the solver
typically returns to the same part of the search space. In fact, there is evidence to
support the conclusion that the main effect of restarts in current solvers is simply
to update the trail with respect to the changed heuristic scores. For example, [14]
show that often a large part of the trail can be reused after backtracking. With
the appropriate implementation techniques reusing rather than reconstructing
the trail can speed up the search by reducing the computational costs of restarts.

In this paper we examine another feature of modern SAT solvers that ties
them with the historical paradigm of DPLL: the trail used to keep track of the
current set of variable assignments. We show that modern SAT solvers, in which
phase savings causes an extensive recreation of the trail after backtracking, can
actually be reformulated as local search algorithms.

Local search solvers work with complete truth assignments [15], and a single
step usually consists of picking a variable and flipping its value. Local search
algorithms have borrowed techniques from CDCL. For example, unit propagation
has been employed [6,8,2], and clause learning as also been used [1]. However,
such solvers are usually limited to demonstrating satisfiability, and often cannot
be used to reliably prove UNSAT. Our reformulation of the CDCL algorithm
yields a local search algorithm that is able to derive UNSAT since it can perform
exactly the same steps as CDCL would. It also gives a different perspective on
the role of the trail in CDCL solvers. In particular, we show that the trail can be
viewed as providing an ordering of the literals in the current truth assignment, an
ordering that can be used to guide clause learning. This view allows more flexible
clause learning techniques to be developed, and different types of heuristics to be
supported. It also opens the door for potentially reformulating QBF algorithms,
which suffer from strong restrictions on the ordering of the variables on the trail.

Section 2 examines the existing CDCL algorithm and describes our intuition
in more detail. Section 3 presents a local search formulation of the modern CDCL
algorithm and proves that the two formulations are equivalent. Section 4 presents
some simple experiments which suggest further directions for research. Section
5 concludes the paper.
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Algorithm 1: Modern CDCL algorithm

Data: φ—a formula in CNF
Result: true if φ is SAT, false if φ is UNSAT

1 π ← ∅ ; C ← ∅ while true do
2 π ← unitPropagate(φ ∪C, π)
3 if reduce(φ ∪C, π) contains an empty clause then
4 c′ ← clauseLearn(π,φ ∪C)
5 if c′ = ∅ then return false
6 C = C ∪ {c′}
7 π = backtrack(c′)
8 else if φ is true under π then return true
9 else

10 v ← unassigned variable with largest heuristic value
11 v ← phase[v]
12 π.append(v)

13 end
14 if timeToRestart() then backtrack(0)

15 end

2 Examining the CDCL Algorithm

A modern CDCL algorithm is outlined in Algorithm 1. Each iteration starts
by adding literals implied by unit propagation to the trail π. If a conflict is
discovered clause learning is performed to obtain a new clause c′ = (α → y).
The new clause is guaranteed to be empowering, which means that it is able
to produce unit implications in situations when none of the old clauses can [13].
In this case, c′ generates a new implication y earlier in the trail, and the solver
backtracks to the point where the new implication would have been made if the
clause had previously been known. Backtracking removes part of the trail in
order to add the new implication in the right place. On the next iteration unit
propagation will continue adding implications, starting with the newly implied
literal y. If all variables are assigned without a conflict, the formula is satisfied.
Otherwise, the algorithm picks a decision variable to add to the trail. It picks
an unassigned variable with the largest heuristic value, and restores its value
to the value it had when it was last assigned. The technique of restoring the
variable’s value is called phase saving. We will say that the phase of a variable
v, phase[v], is the most recent value it had; if v has never been assigned, phase[v]
will be an arbitrary value set at the beginning of the algorithm; if v is assigned,
phase[v] will be its current value.

Lastly, sometimes the solver restarts: it removes everything from the trail
except for literals unit propagated at the top level. This might be done according
to a set schedule, or some heuristic [3].

As already mentioned, after backtracking or restarting, the solver often recre-
ates much of the trail. For example, we found that the overwhelming majority
of assignments Minisat makes simply restore a variable’s previous value. We
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Fig. 1. Assignments and flips on both solved and unsolved (after a 1000s timeout)
instances of SAT11 dataset. Sorted by the number of assignments.

have ran Minisat on the 150 problems from the SAT11 dataset of the SAT com-
petition, with a timeout of 1000 seconds. Figure 1 shows the distribution of
assignments Minisat made, and the number of “flips” it made, where flips are
when a variable is assigned a different value than it had before. On average, the
solver performed 165.08 flips per conflict, and 3530.4 assignments per conflict.
It has already been noted that flips can be correlated with the progress that the
solver is making [3].

Whenever the solver with phase saving backtracks, it removes variable as-
signments, but unless something forces the variable to get a different value, it
would restore the old value when it gets to it. So, we can imagine that the solver
is working with a complete assignment, which is the phase settings for all the
variables phase[v], and performing a flip from ¬l to l only in one of the following
cases. (1) l is implied by a new conflict clause. (2) l is implied by a variable
that was moved up in the trail because its heuristic value was upgraded. Or (3)
l is implied by another “flipped” variable. Phase saving ensures that unforced
literals, i.e., decisions, cannot be flipped.

In all of these cases l is part of some clause c that is falsified by the current
“complete” assignment (consisting of the phase set variables); c would then be-
come its reason clause; at the point when l is flipped, c is the earliest encountered
false clause; and l is the single unassigned variable in c (i.e., without c, l would
have been assigned later in the search). As we will see below, we can use these
conditions to determine which variable to flip in a local search algorithm.

Note that we will not consider the randomization of decision variables in this
paper, although this could be accommodated by making random flips in the
local search algorithm. The benefits of randomizing the decision variables are
still poorly understood. In our experiments we found that turning off random-
ization does not noticeably harm performance of Minisat. Among ten runs with
different seeds, Minisat solved between 51 and 59 instances, on average 55. With
randomization turned off, it solved 56.
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Algorithm 2: Local Search

Data: φ - a formula in CNF
Result: true if φ is SAT, false if φ is UNSAT

1 while true do
2 I ← initValues()
3 while φ|I contains false clauses do
4 if timeToRestart() then break
5 v ← pickVar(I)
6 flip(v)

7 end

8 end
9 return true

3 Local Search

Algorithm 2 presents a generic local search algorithm. A local search solver works
with a complete assignment I. At each stage in the search, it picks a variable
and flips its value. There are different techniques for choosing which variable to
flip, from simple heuristics such as minimizing the number of falsified clauses
[15], to complicated multi-stage filtering procedures [16].

Typically, the algorithm tries to flip a variable that will reduce the distance
between the current complete assignment and a satisfying assignment. However,
estimating the distance to a solution is difficult and unreliable, and local search
solvers often get stuck in local minima. It was noted that it is possible to escape
the local minimum by generating new clauses that would steer the search. Also,
if new non-duplicated clauses are being generated at every local minimum, the
resulting algorithm can be shown to be complete. An approach exploiting this
fact was proposed, using a single resolution step to generate one new clause at
each such point [5]. The approach was then extended to utilize an implication
graph, and incorporate more powerful clause learning into a local search solver,
resulting in the CDLS algorithm [1]. However, as we will see below, CDLS cannot
ensure completeness because the clause learning scheme it employs can generate
redundant clauses.

The main difficulty for such an approach is the generation of an implication
graph from the complete assignment I. The first step consists of identifying
once-satisfied clauses. A clause c is considered to be once-satisfied by a literal
x and a complete assignment I if there is exactly one literal x ∈ c that is true
in I (c ∩ I = {x}).

Theoretically, any clause cf with ¬x ∈ cf that is false under I can be resolved
with any clause co that is once-satisfied by literal x. This resolution would pro-
duce a non-tautological clause cR which is false under I and which can potentially
be further resolved with other once-satisfied clauses. However, in order to be use-
ful, the algorithm performing such resolutions needs to ensure that it does not
follow a cycle or produce a subsumed clause.
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In order to avoid cycles, it is sufficient to define some ordering ψ on variables
in I, and only allow the resolution of falsified clauses cf and once-satisfied clauses
co when all of the false literals in co precede the satisfying literal in the ordering
ψ. However, a simple ordering does not ensure that the new clauses are useful.

Clause learning can be guided more effectively by considering the effects of
unit propagation. We define an ordering ψ on the complete assignment I to be
a sequence of literals ψ = {x1, x2, . . . , xk} from I (∀i.xi ∈ I). A literal xi ∈ ψ is
implied in ψ if there is some clause (¬xj1 , . . . ,¬xjn , xi) with j1 < j2 < · · · <
jn < i. In this case jn is called an implication point for xi (the implication
point is 0 if the clause is unit). xi is said to be implied at k if k is the smallest
implication point for xi.

Finally, an ordering ψ will be said to be UP-compatible if for any xi ∈ ψ, if
xi is implied at jn, then it must appear in the ordering ψ as soon after jn as pos-
sible. In particular, UP-compatibility requires that any literals between xi and
its smallest implication point jn, i.e., the literals xjn+1 , . . . , xi−1, also be implied
in ψ. For example, for a set of clauses (a), (¬a,¬b,¬c), (¬c, d), the orderings
{a, c, d, b} and {c, d, b,¬a} are UP-compatible, but {c, d, b, a} or {c, b, d,¬a} are
not. In the first case, a is implied by the clause (a), but follows non-implied c.
In the second, d is implied by c with (¬c, d), but follows non-implied b.

A CDCL solver that ignores all conflicts would produce a UP-compatible or-
dering. However, not every UP-compatible ordering can be produced by a CDCL
solver. This is because the definition considers only the given assignment, and
does not take into account falsified clauses. So, it is possible that for some literal
xi, ¬xi is implied by a smaller prefix of the assignment, but this implication is
ignored because it disagrees with the current assignment.

Given a complete assignment I and a UP-compatible ordering ψ we can define
a decision literal to be any literal in ψ that is not implied. For each xi ∈ ψ,
we can define the decision level of xi to be the number of decision literals in
{x1, x2, . . . , xi}. For each implied literal, we can say that its reason is the clause
that implied it. Note that the reason clauses are always once-satisfied by I. So,
the ordering ψ gives us an implication graph over which clause learning can be
performed as in a standard CDCL solver.

Consider a false clause c = (¬xc1 ,¬xc2 , . . . ,¬xcn) with c1 < c2 < . . . < cn.
If ¬xcn had been in I, it would have been implied at the same decision level
as xcn−1 . We will call such ¬xcn a failed implication. We will say that xcn is
f-implied at a decision level i if it is a failed implication at the decision level i
but not earlier.

The scheme used by CDLS [1] is to construct a derived partial interpre-
tation I ′. Let i be the first decision at which a failed implication ¬xf occurs
due to some clause (β,¬xf ). I ′ is then the prefix of ψ up to and including all
variables with decision level i. If xf ∈ I ′, then xf and ¬xf are implied at the
same decision level, and clause learning can be performed as usual. We will call
this kind of failed implication conflicting. In this case the execution is identi-
cal to a corresponding run of a CDCL solver, so the resulting clause is subject
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to all the guarantees a CDCL solver provides. In particular, the new clause is
guaranteed to be empowering [13].

If xf /∈ I ′ then ¬xf does not cause a conflict. It is a failed implication sim-
ply because it is incompatible with the current assignment. We shall call this
kind of failed implication a non-conflicting implication. In CDLS the learning
scheme is only applied when no variable flip is able to reduce the number of
falsified clauses. So, there must be some clause (α, xf ) that is once-satisfied by
xi. CDLS then extends I ′ by including decisions {α− I ′} as assumptions. In the
new I ′, both α and β are falsified, so both xf and ¬xf are implied, which causes
a conflict that can be used as a starting point for clause learning. However, no
guarantees apply to the new clause in this case. Because the added assumptions
are not propagated, it is possible that the newly generated clause is not only not
empowering, but is actually subsumed by existing clauses. For example, suppose
the formula contains clauses (x1, x2, c), (x1, x2,¬x3) and (¬x3,¬c). Suppose that
the current assignment contains (¬x1,¬x2, x3, c). If x3 is chosen as the first deci-
sion, the conflict immediately occurs because ¬c is a failed implication at the first
level. The implication graph, after adding the necessary assumptions, contains
only two clauses, (¬x3,¬c) and (x1, x2, c). The resulting clause, (x1, x2,¬x3),
repeats a clause already in the database.

Instead of stopping at the first failed implication, we could use a larger prefix
of ψ. Namely, we could apply learning to the first conflicting failed implication.
However, this would not guarantee an unsubsumed new clause. It is possible
that clause learning generates a clause (α, x) implying x that is the same as one
of the previously ignored clauses causing a (non-conflicting) failed implication.

The problem arises because, from the point of view of CDCL, xf is not a
conflict. Instead of doing clause learning, a CDCL algorithm would have flipped
xf and continued with the search. Picking a correct ordering ψ would not help
either. The problem here is with objective functions used to guide local search.

The following example is for the objective function that minimizes the number
of satisfied clauses. Suppose we have the following clauses: (a, b), (c, d), (¬a, c),
(¬b, d), (¬c, a), (¬d, b). An assignment π = (¬a,¬b,¬c,¬d) is a local minimum:
it falsifies two clauses. No literal flip falsifies less, and no ordering of π produces
a conflicting implication. If we initially set ¬a, the two implications are b and
¬c. The first is a failed implication because it disagrees with π. The two possible
implications from ¬c are d and ¬a. The first is a failed implication, and the
second is already set. All the other variables are completely symmetrical.

To avoid this problem, the flips need to be guided using some notion of unit
propagation. Intuitively, a non-conflicting failed implication does not give enough
information to clause learning, and thus would not produce a useful conflict. So,
it should be resolved using a flip rather than clause learning, and should not
constitute a local minimum.

Algorithm 3 demonstrates a strategy to guide the local search outlined in
Algorithm 2. It selects a UP-compatible ordering ψ on I (of course, this could be
updated incrementally and not generated from scratch every time). It then picks
the first failed implication on ψ. If it is conflicting, clause learning is performed.
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Algorithm 3: pickVar(I)

Data: I - a complete assignment
Result: y - next variable to flip

1 ψ ← UP-compatible ordering on I
2 y ← first failed implication in ψ
3 if ¬y is conflicting then
4 c← firstUIP (ψ)
5 if c = ∅ then EXIT(FALSE)
6 attachClause(c); y ← c.implicate

7 end
8 return y

Note that the resultant clause c is guaranteed to be false under I, and it would
produce a failed implication at an earlier level. If an empty clause is derived, the
formula is proven unsatisfiable. Otherwise, the new failed implication is now the
earliest, and is non-conflicting, so the new implicate needs to be flipped.

One detail that is left out of the above algorithm is how to pick the ordering
ψ. Note that if we are given some base ordering ψb, we can construct a UP-
compatible ordering ψ in which decision literals respect ψb. In this case ψb plays
the role of the variable selection heuristic. Of course, the heuristic must be chosen
carefully so as not to lead the algorithm in cycles. An easy sufficient condition
is when ψb is only updated after clause learning, as VSIDS is.

3.1 Connection to CDCL

In this section, we will focus on Algorithm 2 guided by the variable selection and
clause learning technique presented in Algorithm 3 and with no restarts. We will
refer to this as A2. We will refer to Algorithm 1 as A1.

Define a trace of an algorithm A to be a sequence of flips performed and
clauses learned by A. Note that this definition applies to both A2 and A1: recall
that for A1 a flip is an assignment where the variable’s new value is different
from its phase setting.

Theorem 1. For any heuristic h there is a heuristic h′ such that for any input
formula φ, A1 with h would produce the same trace as A2 with h′ (provided they
make the same decisions in the presence of ties).

Proof. We will say that a heuristic h is stable for (a version of) CDCL algorithm
A if during any execution of A with h we have h(v1) ≥ h(v2) for some decision
variable v2 only if h(v1) ≥ h(v2) also held just before v2 was last assigned.

Intuitively, a heuristic is stable if the ordering of decision variables is always
correct with respect to the heuristic, and is not simply historical. One way to
ensure that a heuristic is stable is to restart after every change to the heuristic.
For example, the VSIDS heuristic is stable for a version of A1 which restarts
after every conflict.
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We will first prove the claim for a heuristic h that is stable for A1. Then, we
will show that for any h, we can find an equivalent h′ that is stable for A1 and
such that A1 with h′ produces the same trace as with h.

Let the initial assignment of A1 be the same as the initial phase setting of
A2, and let both algorithms use the same heuristic h. It is easy to verify that if
a partial execution of A1 has the same trace as a partial execution of A2, that
means that the phase setting of any variable in A1 matches its value in A2.

To show that A1 and A2 would produce the same trace when run on the same
formula φ, we will consider partial executions. By induction on n, we can show
that if we stop each algorithm just after it has produced a trace of length n, the
traces will be identical.

If n = 0, the claim trivially holds. Also note that if one algorithm halts after
producing trace T , so will the other, and their returned values will match. Both
algorithms will return false iff T ends with an empty clause. If A2 has no failed
implications, then A1 will restore all variables to their phase values and obtain
a solution, and vice versa. Suppose the algorithms have produced a trace T .

Let S be the Next Flip or Learned Clause of A1. Let π be the trail of A1
just before it produced S.

Because h is stable for A1, then the heuristic values of the decision variables in
π are non-increasing. That is because if h(v1) > h(v2) for two decision variables,
then the same must have held when v2 was assigned. If v1 had been unassigned
at that point, it would have been chosen as the decision variable instead. So, v1
must have been assigned before v2.

So, π is a UP-compatible ordering respecting h over the partial assignment:
any implication is placed as early as possible in π, and non-implied (decision)
literals have non-increasing heuristic value. Because unit propagation was per-
formed to completion (except for possibly the last decision level), and because
the heuristic value of all unassigned literals is less than that of the last decision
literal, π can always be extended to a UP-compatible ordering ψ on I.

Let C = {α, v} be the clause that caused v to be flipped to true if S is a
flip; otherwise, let it be the conflicting clause that started clause learning, with
v being the trail-deepest of its literals. In both cases, C is false at P1, so v is a
failed implication in ψ. This is the first conflict encountered by A1, so there are
no false clauses that consist entirely of literals with earlier decision levels. So, v
is the first failed implication in ψ.

If S is a flip, then v is non-conflicting, and A2 would match the flip. Oth-
erwise, v is a conflicting failed implication, and will cause clause learning. For
the ψ which matches π, clause learning would produce a clause identical to that
produced by A1. So, the next entry in the trace of A2 will also be S.

Let S be the Next Flip or Learned Clause of A2. Let v be the first failed
implication just before S was performed, and let ψ be the corresponding UP-
compatible ordering. Let π be the trail of A1 just before it produces its next
flip or a learned clause. We will show that whenever π differs from ψ, A1 could
have broken ties differently to make them match. Let v1 ∈ π and v2 ∈ ψ be the
first pair of literals that are different between π and ψ. Suppose v1 is implied.
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Then, because ψ is UP-compatible, v2 must also be implied by preceding literals.
So, A1 could have propagated v2 before v1. If v1 is a decision literal, then so
is v2. Otherwise, v2 should have been unit propagated before v1 was assigned.
If h(v2) < h(v1), this would break the fact that ψ respects the heuristic. So,
h(v2) ≥ h(v1). Then the same must have been true at the time v1 was assigned.
So, v2 was at worst an equal candidate for the decision variable, and could have
been picked instead.

So, provided A1 breaks ties accordingly, it would have the trail π that is a
prefix of ψ. It can continue assigning variables until the trail includes all the
variables at the decision level at which v is f-implied. Because v is the first failed
implication in ψ, no conflicts or flip would be performed up to that point. At
this point, there will be some clause C = (α, v). If S is a flip, then v is not
conflicting, C will be unit, and a flip will be performed. If S is a learned clause,
then v is conflicting, which means that v was among the implied literals at this
level. So, clause learning will be performed. Either way, the next entry in the
trace of A1 will also be S.

So, we have shown that A2 and A1 would produce the same trace given the
same heuristic h′ which is stable for A1. Now we will sketch a proof that given
any variable heuristic h, we can construct a heuristic h′ which is stable for A1
and such that A1 with h would produce the same trace as with h′.

We will define h′(v) = h(v) whenever v is unassigned. Otherwise, we will set
h′(v) = M + V −D + 0.5d, where M is some value greater than the maximum
h(v) of all non-frozen variables, V is the number of variables in the problem,
and D is the decision level at which v was assigned when it became frozen, and
d is 1 if v is decision and 0 otherwise.

Because a heuristic is only considered for unassigned variables, then the be-
havior of the algorithm is unaffected, and it will produce the same traces. Also,
unassigned values always have a smaller heuristic value than those that are as-
signed; those assigned later always have a smaller heuristic value than earlier
decision literals. So, the heuristic is stable for A1.

As a corollary: because Algorithm 1 is complete, so is Algorithm 2.

3.2 Other Failed Implications

In Algorithm 3 we always choose the first failed implication. However, it is not
a necessary condition to generate empowering clauses.

Theorem 2. Suppose that ψ is UP-compatible ordering on I. Let c be a clause
generated by 1UIP on some failed implication x. Suppose c = (α, y) where y is
the new implicant. If no failed implication that is earlier than x can be derived
by unit propagation from α, then c is empowering.

Proof. Suppose that c is not empowering. Then y can be derived by unit prop-
agation from α. Because y was not implied by α at that level, then the unit
propagation chain contains at least one literal that contradicts the current as-
signment. Let p be such a literal which occurs first during unit propagation.
Then p is a failed implication that can be derived from α.



40 A. Goultiaeva and F. Bacchus

Note that this is sufficient, but not a necessary condition. It is possible that
an earlier failed implication x can be derived from α, but α∩x still do not allow
the derivation of y.

3.3 Potential Extension to QBF Solving

The trail has always played a central role in the formalization of the SAT algo-
rithm. It added semantic meaning to the the chronological sequence of assign-
ments by linking it to the way clause learning is performed.

In SAT, this restriction has no major consequences, since the variables can
be assigned in any order. However, in an extension of SAT, Quantified Boolean
Formula (QBF) solving, this restriction becomes important.

In QBF variables are either existentially or universally quantified, and the
inner variables can depend on the preceding ones. Clause learning utilizes a
special universal reduction step, which allows a universal to be dropped from
a clause if there are no existential variables that depend on it. In order to work,
clause learning requires the implication graph to be of a particular form, with
deeper variables having larger decision levels. Because of the tight link between
the trail and clause learning, the same restriction is applied to the order in which
the algorithm was permitted to consider variables. Only outermost variables were
allowed to be picked as decision literals.

This restriction is a big impediment to performance in QBF. One illustration
of this fact is that there is still a big discrepancy between search-based and
expansion based solvers in QBF. The former are constrained to consider variables
according to the quantifier prefix, while the latter are constrained to consider the
variables in reverse of the quantifier prefix. The fact that the two approaches are
incomparable, and that there are sets of benchmarks challenging for one but not
the other, suggests that the ordering restriction plays a big role in QBF. Another
indication of this is the success of dependency schemes, which are attempts to
partially relax this restriction [11].

The reformulation presented here is a step towards relaxing this restriction.
We show that the chronological sequence of assignments does not have any se-
mantic meaning, and thus should not impose constraints on the solver. Extend-
ing the present approach to QBF should allow one to get an algorithm with the
freedom to choose the order in which the search is performed.

To extend to QBF, the definition of UP-compatible ordering would need to
be augmented to allow for universal reduction. One way to do this would be to
constrain the ordering by quantifier level, to ensure that universal reduction is
possible and any false clause would have an implicate. However, this ordering
is no longer linked to the chronological sequence of variables considered by the
solver, and will be well-defined after any variable flip. At each step, the solver
will be able to choose which of the failed implications to consider, according to
some heuristic not necessarily linked to its UP-compatible ordering.

So, decoupling the chronological variable assignments from clause learning
would allow one to construct a solver that would be free to consider variables in
any order, and would still have well-defined clause learning procedure when it
encounters a conflict.
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Table 1. Problems from SAT11 solved within a 1000s timeout by Minisat with phase
saving, and by the modified versions C n, where n is the number of full runs the solver
performs at each restart. C All is the version that performs exclusively full runs. The
number of problems solved is shown for All, True and False instances.

Family Minisat C 1 C 5 C 10 C 100 C 1000 C All
A T F A T F A T F A T F A T F A T F A T F

fuhs (34) 10 9 1 10 8 2 9 8 1 9 8 1 10 7 3 10 8 2 7 7 0

manthey (9) 3 3 0 2 2 0 2 2 0 3 3 0 3 3 0 1 1 0 0 0 0

jarvisalo (47) 24 8 16 24 8 16 24 9 15 24 10 14 25 9 16 17 6 11 15 6 9

leberre (17) 11 4 7 13 6 7 14 6 8 13 6 7 13 6 7 12 5 7 7 1 6

rintanen (30) 9 7 2 8 5 3 7 4 3 8 5 3 8 5 3 2 1 1 1 0 1

kullmann (13) 2 2 0 3 3 0 3 3 0 2 2 0 4 4 0 3 3 0 3 3 0

Total (150) 59 33 26 60 32 28 59 32 27 59 34 25 63 34 29 45 24 21 33 17 16

4 Experiments

We have investigated whether subsequent failed implications, mentioned in Sec-
tion 3.2, can be useful in practice. To evaluate this, we have equipped Minisat
with the ability to continue the search ignoring conflict clauses. Note: here we
use a version of Minisat with phase saving turned on.

This is equivalent to building a UP-compatible assignment with no non-
conflicting failed implications.

For each decision level, it would only store the first conflict clause encoun-
tered, because learning multiple clauses from the same decision level is likely to
produce redundant clauses. After all the variables are assigned, it would back-
track, performing clause learning on each stored conflict, and adding the new
clauses to the database. We will say that one iteration of this cycle is a full run.

Obviously, not yet having any method of guiding the selection, the algorithm
could end up producing many unhelpful clauses. To offset this problem, and to
evaluate whether the other clauses are sometimes helpful, we constructed an
algorithm that performs a full run only some of the time.

We have added a parameter n so that at every restart, the next n runs of the
solver would be full runs. We experimented with n ∈ {1, 5, 10, 100, 1000} and
with a version which only performs full runs.

We ran the modified version on the 150 benchmarks from SAT11 set of the
Sat Competition, with timeout of 1000 seconds. The tests were run on a 2.8GHz
machine with 12GB of RAM.

Table 1 summarizes the results. As expected with an untuned method, some
families show improvement, while for others the performance is reduced. How-
ever, we see that the addition of the new clauses can improve the results for
both satisfiable instances (as in benchmarks sets leberre and kullmann), and
unsatisfiable ones (as in fuhs and rintanen).

Figure 2 compares the number of conflicts learned while solving the problems
in Minisat and C 100. For instances which only one solver solved, the other
solver’s value is set to the number of conflicts it learned within the 1000s timeout.
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Fig. 2. The number of conflicts needed to solve the problem. Below the line are in-
stances on which C 100 encountered fewer conflicts than Minisat.

We note that in the conflict count for C 100 we include all the conflicts it
ever learned, so a single full run might add many conflicts at once. These are
unfiltered, so we expect that good heuristics and pruning methods can greatly
reduce this number. However, even with all the extra conflicts C 100 encounters,
there is a fair number of cases where it needs fewer conflicts to solve the problem
than Minisat.

5 Conclusion

We have presented a reformulation of the CDCL algorithm as local search. The
trail is shown to be simply an efficient way to control clause learning. By de-
coupling clause learning from the chronological sequence in which variables are
considered, we introduce new flexibility to be studied.

One potential application of this flexibility would be to produce QBF solvers
whose search space is not so heavily constrained by the variable ordering. An-
other is to find good heuristics to choose which conflict clauses are considered
during search.

Current CDCL solvers effectively maintain a UP-compatible ordering on the
trail by removing the order up to the place affected by a flip, and recomputing
it again. An interesting question worth investigating is whether it is possible to
develop algorithms to update the order more efficiently.
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