
State complexity of star and square of union of k
regular languages⋆

Yuan Gao and Lila Kari

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A 5B7
E-mail: {ygao72,lila}@csd.uwo.ca

Abstract. In this paper, we study the state complexities of (
k∪

i=1

Li)
∗

and (
k∪

i=1

Li)
2, where Li, 1 ≤ i ≤ k, k ≥ 2 are regular languages. We

obtain exact bounds for both of these multiple combined operations and
show that they are much lower than the mathematical compositions of
the state complexities of their basic individual component operations,
but have similar forms with the state complexities of some participating
combined operations.

In Memory of Dr. Sheng Yu

1 Introduction

State complexity is a fundamental topic in automata theory and its study dates
back to the 1950’s [16]. State complexity is a type of descriptional complexity for
regular languages based on the number of states in their minimal finite automata.
The state complexity of a language operation gives an upper bound for both the
time and space complexity of the operation [20]. The study of state complexity
is motivated by the use of automata of very large sizes in multiple areas, e.g.
programming languages, natural language and speech processing, and so on.

Many papers on state complexity appeared in the literature, see, e.g., [4–6,
10, 12, 14, 15, 20, 21]. The state complexities of almost all the individual standard
regular language operations, e.g., union, intersection, catenation, star, reversal,
shuffle, orthogonal catenation, proportional removal, and cyclic shift, etc., have
been obtained.

In practice, not only a single operation, but also a sequence of operations
can be applied in some specific order. For example, primer extension, which is
a basic biological operation, can be formalized as a combination of catenation
and antimorphic involution [1]. Therefore, in the mid of 2000s, the study of state

⋆ This research was supported by Natural Science and Engineering Council of Canada
Discovery Grant R2824A01, Canada Research Chair Award to L. K.

complexity of combined operations was initiated [18, 22]. Following that, many
results on this topic were obtained, e.g., [2, 3, 7–9, 13].

A theoretical reason for studying the state complexity of combined operations
is that, given an arbitrary combined operation, we cannot use the mathematical
composition of the state complexities of its individual component operations as
its state complexity. The state complexity of a combined operation can be much
lower than the aforementioned composition, because the resulting languages of
one individual operation may not be among the worst case inputs of the next op-
eration [13, 18]. An often used example for this phenomenon is (L1∪L2)

∗, where
L1 and L2 are regular languages accepted by n1- and n2-state DFAs, respectively.
In [18], the state complexity of the combined operation (L1 ∪ L2)

∗ was proved
to be 2n1+n2−1 − 2n1−1 − 2n1−1 + 1, whereas the mathematical composition of
the state complexities of union and star is 3

42
n1n2 .

It has been proved that there does not exist a general algorithm that, for an
arbitrarily given combined operation and a class of regular languages, computes
the state complexity of the operation on this class of languages [19]. It seems
that every combined operation must be investigated separately. However, the
number of combined operations is obviously unlimited, and it is impossible to
investigate all of them. Thus, the combined operations with arbitrarily many
individual operations should be the emphasis of theoretical studies because they
are more general than the basic combined operations which are composed of
only a limited number of individual operations. The latter can indeed be viewed
as the special cases of the former.

In this paper, we study such two general combined operations: (
k∪

i=1

Li)
∗ and

(
k∪

i=1

Li)
2, where Li, 1 ≤ i ≤ k, k ≥ 2 are regular languages. Clearly, the com-

bined operation (L1 ∪ L2)
∗ is an instance of (

k∪
i=1

Li)
∗. We show that the state

complexity of star of union on k regular languages is not only much lower than
the mathematical composition of the state complexities of union and star, but
also in a similar form with the state complexity of (L1 ∪ L2)

∗.

We obtain tight bounds for (
k∪

i=1

Li)
2 as well. One interesting thing is, when

we investigated this combined operation, we found that it could be considered as
a combination of (1) union and square, or (2) union-catenation ((L1∪L2)L3) and
union, or (3) union and catenation-union (L1(L2 ∪L3)). Finally, the tight upper
bound was obtained with the last combination which has a similar form with the
state complexity of L1(L2∪L3). It seems that decomposing a combined operation
into its participating combined operations can give better upper bounds than the
mathematical composition of the state complexities of its individual component
operations.

In the next section, we introduce the basic notation and definitions used in

this paper. In Sections 3 and 4, we investigate the state complexities of (
k∪

i=1

Li)
∗

and (
k∪

i=1

Li)
2, respectively.

2 Preliminaries

A DFA is denoted by a 5-tuple A = (Q,Σ, δ, s, F), where Q is the finite set of
states, Σ is the finite input alphabet, δ : Q × Σ → Q is the state transition
function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. A DFA is
said to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the DFAs we
mention in this paper are assumed to be complete. We extend δ to Q×Σ∗ → Q
in the usual way.

In this paper, the state transition function δ of a DFA is often extended to
δ̂ : 2Q × Σ → 2Q. The function δ̂ is defined by δ̂(R, a) = {δ(r, a) | r ∈ R}, for
R ⊆ Q and a ∈ Σ. We just write δ instead of δ̂ if there is no confusion.

A string w ∈ Σ∗ is accepted by a DFA if δ(s, w) ∈ F . Two states in a DFA
A are said to be equivalent if and only if for every string w ∈ Σ∗, if A is started
in either state with w as input, it either accepts in both cases or rejects in both
cases. A language accepted by a DFA is said to be regular. The language accepted
by a DFA A is denoted by L(A). The reader may refer to [11] for more details
about regular languages and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number
of states of the minimal complete DFA that accepts L. The state complexity of
a class S of regular languages, denoted by sc(S), is the supremum among all
sc(L), L ∈ S. The state complexity of an operation on regular languages is the
state complexity of the resulting languages from the operation as a function of
the state complexity of the operand languages. Thus, in a certain sense, the state
complexity of an operation is a worst-case complexity.

3 State complexity of (
k∪

i=1

Li)
∗

We first consider the state complexity of (
k∪

i=1

Li)
∗, where Li, 1 ≤ i ≤ k, k ≥ 2

are regular languages accepted by ni-state DFAs. It has been proved that the
state complexity of L∗

i is 3
42

ni and the state complexity of Li∪Lj is ninj [14, 21].

Their mathematical composition for the combined operation (
k∪

i=1

Li)
∗ is 3

42

k∏
i=1

ni

.

As we mentioned in Section 1, this upper bound is too high to be reached even
when k = 2, that is, (L1 ∪L2)

∗ [18]. The combined operation (L1 ∪L2)
∗ can be

viewed as not only a base case of (
k∪

i=1

Li)
∗ when k = 2, but also its participating

combined operation.

In the following, we show that the state complexity of (
k∪

i=1

Li)
∗ has a similar

form with that of (L1 ∪ L2)
∗. Note that although these two state complexities

look similar, the proofs for the general case k ≥ 2 is very different from those for
k = 2, especially the proof for the highest lower bound. This is because, when k
is arbitrarily many, a lot more questions need to be considered which are easy
to solve or do not exist for the case with only two operand languages, e.g., how
to update the ith component of a state of the resulting DFA without interfering
with the other k − 1 components, and so on.

Theorem 1. Let Li, 1 ≤ i ≤ k, k ≥ 2 be regular languages accepted by ni-state

DFAs. Then (
k∪

i=1

Li)
∗ is accepted by a DFA of no more than

k∏
i=1

(2ni−1 − 1) + 2

k∑
j=1

nj−k

states.

Proof. For 1 ≤ i ≤ k, let Li = L(Ai) and Ai = (Qi, Σ, δi, si, Fi) be a DFA of
ni states. Without loss of generality, we assume that the state sets of A1, A2, . . .,
Ak are disjoint. We construct a DFA A = (Q,Σ, δ, s, F) to accept the language

(
k∪

i=1

Li)
∗ similarly with [18]. We define Q to be Q = {s} ∪ P ∪R where

P = {⟨P1, P2, . . . , Pk⟩ | Pi ⊆ Qi − Fi, Pi ̸= ∅, 1 ≤ i ≤ k},

R = {⟨R1, R2, . . . , Rk⟩ | (
k∪

j=1

Rj) ∩ (
k∪

h=1

Fh) ̸= ∅, si ∈ Ri ⊆ Qi, 1 ≤ i ≤ k}.

If si /∈ Fi for every DFA Ai, 1 ≤ i ≤ k, the initial state s of the DFA A is then

a new symbol, because the empty word is not in the language
k∪

i=1

Li. If there

exists an i such that si ∈ Fi, we choose s = ⟨s1, s2, . . . , sk⟩ to be the initial state
of A. In this case, s is clearly contained in the set R. Note that the sets P and
R are always disjoint.

We define the set of final states F to be R ∪ {s}. The transition function δ
of the DFA A is defined as follows.

For each letter a ∈ Σ,

δ(s, a) =

{
⟨{δ1(s1, a)}, . . . , {δk(sk, a)}⟩, if δi(si, a) /∈ Fi for all 1 ≤ i ≤ k;
⟨{δ1(s1, a)} ∪ {s1}, . . . , {δk(sk, a)} ∪ {sk}⟩, otherwise,

and for each state p = ⟨P1, P2, . . . , Pk⟩ ∈ Q− {s},

δ(p, a) =

{
⟨δ1(P1, a), . . . , δk(Pk, a)⟩, if δi(Pi, a) ∩ Fi = ∅ for all 1 ≤ i ≤ k;
⟨δ1(P1, a) ∪ {s1}, . . . , δk(Pk, a) ∪ {sk}⟩, otherwise.

The DFA A can simulate the computation of the DFAs A1, A2, . . ., Ak and when
one of them enter a final state, the initial states s1, s2, . . ., sk are added. It is

easy to see that L(A) = (
k∪

i=1

L(Ai))
∗.

Now let us count the number of states of A which is an upper bound of the

state complexity of the combined operation (
k∪

i=1

Li)
∗.

For the DFAs A1, A2, . . ., Ak, denote |Fi| by ti. The resulting language

(
k∪

i=1

Li)
∗ =

{
Σ∗, if ti = ni;
(L1 ∪ L2 ∪ . . . ∪ Li−1 ∪ Li+1 . . . ∪ Lk)

∗, if ti = 0.

Both of the above cases are trivial. Therefore, we only need to consider the case

when 0 < ti < ni. There are
k∏

i=1

(2ni−ti − 1) states in the set P . The cardinality

of the set R is

|R| =

2

k∑
j=1

nj−k

, if ∃p(sp ∈ Fp), 1 ≤ p ≤ k;

2

k∑
j=1

nj−k

− 2

k∑
j=1

nj−
k∑

r=1
tr−k

, otherwise.

There are 2

k∑
j=1

nj−k

states ⟨R1, R2, . . . , Rk⟩ in A such that si ∈ Ri for all 1 ≤
i ≤ k. When sp /∈ Fp for all 1 ≤ p ≤ k, the number of states ⟨R′

1, R
′
2, . . . , R

′
k⟩

such that sp ∈ Rp and Fp ∩ Rp = ∅ is 2

k∑
j=1

nj−
k∑

r=1
tr−k

. In this case, these states
are contained in the set P rather than R according to the definition.

Since Q = {s} ∪ P ∪R, the size of the state set Q is

|Q| =


k∏

i=1

(2ni−ti − 1) + 2

k∑
j=1

nj−k

, if ∃p(sp ∈ Fp), 1 ≤ p ≤ k;

k∏
i=1

(2ni−ti − 1) + 2

k∑
j=1

nj−k

− 2

k∑
j=1

nj−
k∑

r=1
tr−k

+ 1, otherwise.

As we mentioned before, a new symbol is needed to be the initial state only when
si /∈ Fi for all 1 ≤ i ≤ k. Thus, the upper bound of the number of states in A
reaches the worst case when Ai has only one final state (ti = 1) for all 1 ≤ i ≤ k
and at least one of the initial states of these DFAs is final. 2

Next, we show that this upper bound is reachable.

Theorem 2. For any integer ni ≥ 3, 1 ≤ i ≤ k, there exist a DFA Ai of ni

states such that any DFA accepting (
k∪

i=1

L(Ai))
∗ needs at least

k∏
i=1

(2ni−1 − 1) + 2

k∑
j=1

nj−k

states.

Proof. For 1 ≤ i ≤ k, let Ai = (Qi, Σ, δi, 0, {0}) be a DFA, where Q1 =
{0, 1, . . . , ni − 1}, Σ = {ai | 1 ≤ i ≤ k} ∪ {bj | 1 ≤ j ≤ k} ∪ {c} and the
transitions of Ai are

δi(q, ai) = q + 1 mod ni, q = 0, 1, . . . , ni − 1,

δi(q, aj) = q, j ̸= i, q = 0, 1, . . . , ni − 1,

δi(q, bi) = 0, q = 0, 1, . . . , ni − 1,

δi(q, bj) = q, j ̸= i, q = 0, 1, . . . , ni − 1,

δi(0, c) = 1, δi(q, c) = q, q = 1, . . . , ni − 1.

The transition diagram of Ai is shown in Figure 1.

Fig. 1. Witness DFA Ai for Theorems 2

Then we construct the DFA A = (Q,Σ, δ, s, F) exactly as described in the
proof of Theorem 1, where

Q = P ∪R,

P = {⟨P1, P2, . . . , Pk⟩ | Pi ⊆ Qi − {0}, Pi ̸= ∅, 1 ≤ i ≤ k},
R = {⟨R1, R2, . . . , Rk⟩ | 0 ∈ Ri ⊆ Qi, 1 ≤ i ≤ k},
s = ⟨{0}, {0}, . . . , {0}⟩,
F = {⟨{0}, {0}, . . . , {0}⟩},

and for each state p = ⟨P1, P2, . . . , Pk⟩ ∈ Q,

δ(p, a) =

{
⟨δ1(P1, a), δ2(P2, a), . . . , δk(Pk, a)⟩, if 0 /∈ δi(Pi, a) for all 1 ≤ i ≤ k;
⟨δ1(P1, a) ∪ {0}, δ2(P2, a) ∪ {0}, . . . , δk(Pk, a) ∪ {0}⟩, otherwise.

It is easy to see that A accepts (
k∪

i=1

L(Ai))
∗ and it has

k∏
i=1

(2ni−1−1)+2

k∑
j=1

nj−k

states. Now we need to show that A is a minimal DFA.

(I) We first show that every state p = ⟨P1, P2, . . . , Pk⟩ ∈ Q is reachable from
the initial state s = ⟨{0}, {0}, . . . , {0}⟩.

1. |P1| ≥ 1, |P2| = |P3| = . . . = |Pk| = 1. According to the nature of the
combined operation of star of union, the order of |P1|, |P2|, . . ., |Pk| does
not matter. Thus, in this case, we just let |P1| ≥ 1 and |P2|, . . ., |Pk| be
1 without loss of generality. Let us use induction on the cardinality of
P1 to prove this.
Base: We show that, when |P1| = |P2| = |P3| = . . . = |Pk| = 1, the
state p is reachable from the initial state. Assume that Pi = {qi} ⊆ Qi,
1 ≤ i ≤ k. Then

⟨P1, P2, . . . , Pk⟩ =
{
s, if q1 = 0;

δ(s, caq1−1
1 aq2−1

2 · · · aqk−1
k), if q1 > 0.

Note that when q1 = 0, q2, . . . , qk must also be 0 according to the con-
struction of the DFA A. Similarly, when q1 > 0, all of q2, . . . , qk must be
greater than 0.
Induction step: Assume that all states in A such that |P1| = m1 ≥ 1,
|P2| = |P3| = . . . = |Pk| = 1 are reachable from s. Then we prove any
state p such that |P1| = m1 + 1, |P2| = |P3| = . . . = |Pk| = 1 is also
reachable.
Assume P1 = {q11, q12, . . . , q1m1

, q1(m1+1)} ⊆ Q1, q11 < q12 < . . . <
q1m1 < q1(m1+1), Pj = {qj1} ⊆ Qj , 2 ≤ j ≤ k. Then

p =

{
δ(p′, b2b3 · · · bk), if q11 = 0;

δ(p′′, caq11−1
1 aq2−1

2 aq3−1
3 · · · aqk−1

k), if q11 > 0,

where

p′ = ⟨{q12, q13, q14, . . . , q1(m1+1)}, {1}, . . . , {1}⟩,
p′′ = ⟨{0, q12 − q11 + 1, . . . , q1(m1+1) − q11 + 1}, {0}, . . . , {0}⟩.

Since the state p′ is reachable according to the induction hypothesis and
p′′ has been proved to be reachable in the case when q11 = 0, the state
p can also be reached.

2. |P1| ≥ 1, |P2| ≥ 1, . . ., |Pt| ≥ 1, |Pt+1| = |Pt+2| . . . = |Pk| = 1, 2 ≤ t ≤ k.
We use induction on t to prove that p is reachable in this case. Case 1
can be used as the base of the induction.
Induction step: Assume all states in A such that |P1| = m1 ≥ 1,
|P2| = m2 ≥ 1, . . ., |Pt−1| = mt−1 ≥ 1, |Pt| = |Pt+1| . . . = |Pk| = 1,
2 ≤ t ≤ k, can be reached from the initial state s. Let us prove any
state p such that |P1| = m1 ≥ 1, |P2| = m2 ≥ 1, . . ., |Pt| = mt ≥ 1,
|Pt+1| = |Pt+2| . . . = |Pk| = 1 can also be reached.
Assume Pi = {qi1, qi2, . . . , qimi} ⊆ Qi, qi1 < qi2 < . . . < qimi , 2 ≤ mi ≤
ni Pj = {qj1} ⊆ Qj , 1 ≤ i ≤ t, t + 1 ≤ j ≤ k. In the following, let us
first consider the case when q11 > 0 this time.
(2.1) q11 > 0. If q11 > 0, then q21 > 0, q31 > 0, . . ., qk1 > 0 and Pi ̸= Qi

for all 1 ≤ i ≤ t. According to the induction hypothesis, the state

p′ = ⟨P1, P2, . . . , Pt−1, {1}, {1}, . . . , {1}⟩

is reachable from s. We begin the computation from p′ by reading qtmt −
qt(mt−1) − 1 symbols at.

δ(p′, a
qtmt−qt(mt−1)−1
t) = ⟨P1, . . . , Pt−1, {qtmt − qt(mt−1)}, {1}, . . . , {1}⟩.

Denote the resulting state by r. Next, we apply n1 − q1m1 symbols a1
and the DFA A reaches the state

r′ = ⟨P ′
1, P2 ∪ {0}, . . . , Pt−1 ∪ {0}, {0, qtmt − qt(mt−1)}, {0, 1}, . . . , {0, 1}⟩

where

P ′
1 = {0, q11 + n1 − q1m1 , q12 + n1 − q1m1 , . . . , q1(m1−1) + n1 − q1m1}.

Now we apply an at-transition and the resulting state r′′ is

⟨P ′
1, P2∪{0}, . . . , Pt−1∪{0}, {0, 1, qtmt −qt(mt−1)+1}, {0, 1}, . . . , {0, 1}⟩.

We cycle using a1-transitions as long as elements of P ′
1 are consecutively

passing by 0. The last a1-transition increases the cardinality of P ′
1 by 1

and after that we apply a c-transition which removes the 0 in every com-
ponent of the state. We continue to apply a1-transitions until a sequence
of consecutive elements of P ′

1 passed by 0 and the cardinality of P ′
1 is

increased by 1. Then a c-transition is applied to eliminate 0. Clearly, we
can cyclicly shift the set P ′

1 back into P1 by repeating these two steps.
Now the DFA A reaches the state

p′′ = ⟨P1, P2, . . . , Pt−1, {1, qtmt − qt(mt−1) + 1}, {1}, . . . , {1}⟩.

The state p′′ is the same as p except that qtmt − qt(mt−1) + 1 is added
into the tth set. Therefore, we can continue in the same way to add more
elements to it. After the next loop, the state reached will be

⟨P1, . . . , Pt−1, {1, qt(mt−1)−qt(mt−2)+1, qtmt−qt(mt−2)+1}, {1}, . . . , {1}⟩.

In this way, we add all the mt elements of Pt but keep them in a position
that is shifted backwards qt1 − 1 steps so that qt1 is in the position 1,
qt2 is in the position qt2 − qt1 +1, and so on. Now we use an input word
aqt1−1
t to shift all the elements of Pt into correct positions, which does

not change the other elements of the state, and the state is

p′′′ = ⟨P1, P2, . . . , Pt−1, Pt, {1}, . . . , {1}⟩.

Finally, by reading a word a
q(t+1)1−1
t+1 a

q(t+2)1−1
t+2 · · · aqk1−1

k , the DFA A
reaches the state p = ⟨P1, P2, . . . , Pk⟩.
(2.2) q11 = 0. When q11 = 0, we know that q21 = q31 = . . . = qk1 = 0.
Then the state p is

⟨{0, q12, . . . , q1m1}, . . . , {0, qt2, . . . , qtmt}, {0}, . . . , {0}⟩.

To prove p is reachable, we start from a state

p′ = ⟨{q12, . . . , q1m1}, . . . , {qt2, . . . , qtmt}, {1}, . . . , {1}⟩.

The state p′ has been proved to be reachable in the case (2.1). It is easy
to see that δ(p′, bt+1bt+2 · · · bk) = p. Thus, the state p can be reached
from the initial state s when q11 = 0.

Now we have proved that all the states in A are reachable.
(II) Any two different states p1 and p2 in Q are distinguishable.

Let p1 and p2 be ⟨P1, P2, . . . , Pk⟩ and ⟨P ′
1, P

′
2, . . . , P

′
k⟩, respectively. Since

p1 and p2 are different, without loss of generality we can assume that there
exists an integer 1 ≤ t ≤ k such that Pt ̸= P ′

t and x ∈ Pt − P ′
t .

1. x = 0. If x = 0, then 0 ∈ Pi for all 1 ≤ i ≤ k and the state p1 is a final
state of A. Oppositely, since x /∈ P ′

t , none of P ′
i contains 0, which makes

the state p2 a nonfinal state. Therefore, p1 and p2 are distinguishable.
2. x > 0. For this case, we claim that δ(p1, a

mt−1−x
t ca) ∈ F . In the DFA

At, the transition function δt on the input word amt−1−x
t takes the state

x to mt− 1. The input letter c does not change the state mt− 1 and the
letter a takes from mt − 1 to 0. The last a-transition also adds 0 into
the other components in p1 according to the definition of A. Thus, the
resulting state is final.
Next, we show that δ(p2, a

mt−1−x
t ca) /∈ F . Since x /∈ P ′

t , it is easy to
see that mt − 1 /∈ δ(P ′

t , a
mt−1−x
t). Note that 0 may be added into the

other components in p2 if the state 0 in At is passed by when processing
the input word amt−1−x

t . However, since x > 0, it is impossible for a
computation from the newly added 0’s to reach mt − 1 on amt−1−x

t .
Then the input letter c removes the 0 in P ′

i for all 1 ≤ i ≤ k. The last
input letter a shifts the states in δ(P ′

t , a
mt−1−x
t c) by 1 but none of its

elements can reach 0 because it does not contain mt−1. The a-transition
does not change the other elements in P2. Clearly, the resulting state is
nonfinal. Thus, the states p1 and p2 are distinguishable.

Since all states in A are reachable and distinguishable, A is a minimal DFA. 2

This lower bound coincides with the upper bound in Theorem 1. Thus, it is

the state complexity of (
k∪

i=1

L(Ai))
∗.

4 State complexity of (
k∪

i=1

Li)
2

In this section, we consider the state complexity of (
k∪

i=1

Li)
2, where Li, 1 ≤ i ≤ k,

k ≥ 2 are regular languages accepted by ni-state DFAs. As we mentioned in
Section 1, this combined operation can be viewed as a combination of (1) union
and square, or (2) union-catenation ((L1 ∪ L2)L3) and union, or (3) union and

catenation-union (L1(L2 ∪L3)). It was shown that the state complexity of L2
1 is

n12
n1 −2n1−1 [17] and the state complexity of L1∪L2 is n1n2 [14, 21]. Thus, for

combination (1), we can get an upper bound through mathematical composition

k∏
h=1

nh · 2
k∏

i=1

ni

− 2

k∏
j=1

nj−1

Next, we consider (
k∪

i=1

Li)
2 as the second combination. The state complexity

of (L1 ∪ L2)L3 was proved to be n1n22
n3 − (n1 + n2 − 1)2n3−1 in [2]. Then its

naive mathematical composition with the state complexity of union is

k∏
h=1

nh · 2
k∏

i=1
ni

− (n1 +
k∏

j=2

nj − 1)2

k∏
l=1

nl−1

which is better than the first upper bound.
Now, let us consider the last combination. In [3], the state complexity of

L1(L2 ∪ L3) is shown to be

(n1 − 1)[(2n2 − 1)(2n3 − 1) + 1] + 2n2+n3−2

and its naive mathematical composition with the state complexity of union is

k∏
h=1

(nh − 1)[(2n2 − 1)(2
n1

k∏
i=3

ni

− 1) + 1] + 2

k∑
j=1

nj−2

which is the best among the three upper bounds.

In the following, we will show that the state complexity of (
k∪

i=1

Li)
2 has a

similar form with the third bound. Again, although the two state complexities
look similar, the proofs vary a lot because one is a general combined operation
for k ≥ 2 and the other is a specific combined operation. Besides, the base case of
the combined operation when k = 2, that is, (L1 ∪L2)

2, has never been studied.
Its state complexity is obtained in this paper as a case of the general operation.

Theorem 3. Let Li, 1 ≤ i ≤ k, k ≥ 2 be regular languages accepted by DFAs

of ni states and fi final states. Then (
k∪

i=1

Li)
2 is accepted by a DFA of no more

than

k∏
h=1

(nh − fh)[
k∏

i=1

(2ni − 1) + 1] + [
k∏

j=1

nj −
k∏

l=1

(nl − fl)]2

k∑
m=1

nm−k
.

states.

Proof. For 1 ≤ i ≤ k, let Li = L(Ai) and Ai = (Qi, Σ, δi, si, Fi) be a DFA of
ni states and fi final states. We construct a DFA A = (Q,Σ, δ, s, F) to accept

the language (
k∪

i=1

Li)
2. We define the state set Q to be Q = P ∪R ∪ T , where

P = {⟨p1, p2, . . . , pk, P1, P2, . . . , Pk⟩ | pi ∈ Qi − Fi, Pi ∈ 2Qi − {∅}, 1 ≤ i ≤ k},
R = {⟨p1, p2, . . . , pk, ∅, . . . , ∅⟩ | pi ∈ Qi − Fi, 1 ≤ i ≤ k},
T = {⟨p1, p2, . . . , pk, {s1} ∪ P1, . . . , {sk} ∪ Pk⟩ | pi ∈ Fi, Pi ∈ 2Qi−{si}, 1 ≤ i ≤ k}.

The initial state s is

s =

{
⟨s1, s2, . . . , sk, ∅, ∅, . . . , ∅⟩, if si /∈ Fi, 1 ≤ i ≤ k;
⟨s1, s2, . . . , sk, {s1}, {s2}, . . . , {sk}⟩, otherwise.

We define the set of final states F to be

F = {⟨p1, p2, . . . , pk, P1, P2, . . . , Pk⟩ ∈ Q | ∃i(Pi ∩ Fi ̸= ∅), 1 ≤ i ≤ k}.

For any p ∈ Q and a ∈ Σ, the transition function δ is defined as:

δ(p, a) =

{
⟨p′1, p′2, . . . , p′k, P ′

1, P
′
2 . . . , P

′
k⟩, if p′i ∩ Fi = ∅ for all 1 ≤ i ≤ k;

⟨p′1, p′2, . . . , p′k, P ′
1 ∪ {s1}, P ′

2 ∪ {s2}, . . . , P ′
k ∪ {sk}⟩, otherwise,

where p′i = δi(pi, a) and P ′
i = δi(Pi, a), 1 ≤ i ≤ k.

An arbitrary state in A is a 2k-tuple whose first k components can be viewed

as a state in the DFA accepting
k∪

i=1

Li constructed through cross-product and

last k components components are subsets of Q1, Q2, . . ., Qk, respectively.
If the first k components of a state are non-final states in A1, A2, . . ., Ak,

respectively, then the last k components are either all empty sets or all nonempty
sets, because the last k components always change from the empty set to a non-
empty set at the same time. This is why P and R are subsets of Q.

Also, we notice that if at least one of the first k components of a state in
A is final in the corresponding DFA, then the last k components of the state
must contain the initial states of A1, A2, . . ., Ak, respectively. Such states are
contained in the set T .

It is easy to see that A accepts (
k∪

i=1

Li)
2. Now let us count the number of

states in A. The cardinalities of P , R and T are respectively

|P | =
k∏

h=1

(nh − fh)[

k∏
i=1

(2ni − 1)], |R| =
k∏

h=1

(nh − fh),

|T | = [

k∏
j=1

nj −
k∏

l=1

(nl − fl)]2

k∑
m=1

nm−k
.

Thus, the total number of states in A is |P |+ |R|+ |T | which is the same as the
upper bound shown in Theorem 3. 2

Next, we show this upper bound can be reached.

Theorem 4. For any integer ni ≥ 3, 1 ≤ i ≤ k, there exist a DFA Ai of ni

states such that any DFA accepting (
k∪

i=1

L(Ai))
2 needs at least

k∏
h=1

(nh − 1)[
k∏

i=1

(2ni − 1) + 1] + [
k∏

j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k

states.

Proof. For 1 ≤ i ≤ k, let Ai = (Qi, Σ, δi, 0, {ni − 1}) be a DFA, where
Q1 = {0, 1, . . . , ni − 1}, Σ = {ai | 1 ≤ i ≤ k} ∪ {bj | 1 ≤ j ≤ k} ∪ {c} and the
transitions of Ai are

δi(q, ai) = q + 1 mod ni, q = 0, 1, . . . , ni − 1,

δi(q, aj) = q, j ̸= i, q = 0, 1, . . . , ni − 1,

δi(1, bi) = 0, δi(q, bi) = q, q = 0, 2, 3 . . . , ni − 1,

δi(q, bj) = q, j ̸= i, q = 0, 1, . . . , ni − 1,

δi(q, c) = q + 1 mod ni, q = 0, 1, . . . , ni − 1.

The transition diagram of Ai is shown in Figure 2.

Fig. 2. Witness DFA Ai for Theorems 4

Now we construct the DFA A = (Q,Σ, δ, s, F) accepting (
k∪

i=1

L(Ai))
2 exactly

as described in the proof of Theorem 3. The number of states in A is clearly

k∏
h=1

(nh − 1)[
k∏

i=1

(2ni − 1) + 1] + [
k∏

j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k
.

Next, we will prove that A is a minimal DFA.

(I) We first need to show that every state

p = ⟨p1, p2, . . . , pk, P1, P2, . . . , Pk⟩ ∈ Q

is reachable from the initial state s = ⟨0, 0, . . . , 0, ∅, ∅, . . . , ∅⟩. The reachabil-
ity of p can be proved by considering the following three cases.

1. pi /∈ Fi, Pi = ∅, 1 ≤ i ≤ k.
2. |P1| ≥ 1, |P2| = |P3| = . . . = |Pk| = 1.
3. |P1| ≥ 1, |P2| ≥ 1, . . . , |Pt| ≥ 1, |Pt+1| = . . . = |Pk| = 1, 2 ≤ t ≤ k.
Due to the page limitation, we omit the proof for the three cases above.

(II) Any two different states p and p′ in Q are distinguishable.
Assume that

p = ⟨p1, p2, . . . , pk, P1, P2, . . . , Pk⟩,
p′ = ⟨p′1, p′2, . . . , p′k, P ′

1, P
′
2, . . . , P

′
k⟩.

1. ∃t(Pt ̸= P ′
t), 1 ≤ t ≤ k.

Let x ∈ Pt − P ′
t without loss of generality. Then there exists a word w

such that

δ(p, w) = ⟨0, . . . , 0, rt, 0, . . . , 0, {0}, . . . , {0}, Rt, {0}, . . . , {0}⟩ ∈ F,

δ(p′, w) = ⟨0, . . . , 0, r′t, 0, . . . , 0, {0}, . . . , {0}, R′
t, {0}, . . . , {0}⟩ /∈ F,

where

w = ant−1−xw1w2 · · ·wt−1wt+1wt+2 · · ·wk,

wj = (ajbj)
nj , 1 ≤ j ≤ k, j ̸= t.

It is easy see that Rt ∩ Ft ̸= ∅ whereas R′
t ∩ Ft = ∅.

2. ∃t(pt ̸= p′t), 1 ≤ t ≤ k and Pi = P ′
i for all 1 ≤ i ≤ k.

For this case, there exists a word w′ such that

δ(p, w′) = ⟨0, . . . , 0, R1, {0}, . . . , {0}⟩ ∈ F,

δ(p′, w′) = ⟨0, . . . , 0, R′
1, {0}, . . . , {0}⟩ /∈ F,

where

w′ = w1w2 · · ·wt−1wt+1wt+2 · · ·wkwt,

wj = (ajbj)
nj , 1 ≤ j ≤ k, j ̸= t,

wt = ant+1−pt

t (atbt)
nt−2an1

1 atbt.

We can see that R1 ∩ F1 ̸= ∅ whereas R′
1 ∩ F1 = ∅.

Since all the states in A are reachable and pairwise distinguishable, A is a

minimal DFA. Therefore, any DFA that accepts (
k∪

i=1

L(Ai))
2 needs at least

k∏
h=1

(nh − 1)[

k∏
i=1

(2ni − 1) + 1] + [

k∏
j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k

states. 2

Since this lower bound coincides with the upper bound in Theorem 3, it is

the state complexity of the combined operation (
k∪

i=1

Li)
2.

References

1. B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined operations:
catenation-star and catenation-reversal, International Journal of Foundations of
Computer Science, 23 (1) (2012) 51-56

2. B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of combined operations with two
basic operations, Theoretical Computer Science, accepted, 2011

3. B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined operations:
catenation-union and catenation-intersection, International Journal of Foundations
of Computer Science, 22 (8) (2011) 1797-1812

4. C. Campeanu, K. Culik, K. Salomaa, S. Yu: State complexity of basic operations
on finite language, in: Proceedings of WIA 99, VIII 1-11, LNCS 2214, 1999, 60–70

5. C. Campeanu, K. Salomaa, S. Yu: Tight lower bound for the state complexity of
shuffle of regular languages, Journal of Automata, Languages and Combinatorics
7 (3) (2002) 303–310

6. M. Daley, M. Domaratzki, K. Salomaa: State complexity of orthogonal catenation,
in: Proceedings of DCFS 08, Charlottetown, 2008, 134–144

7. M. Domaratzki, A. Okhotin: State complexity of power, Theoretical Computer
Science 410 (24-25) (2009) 2377–2392

8. Z. Ésik, Y. Gao, G. Liu, S. Yu: Estimation of State Complexity of Combined
Operations, Theoretical Computer Science 410 (35) (2008) 3272–3280.

9. Y. Gao, K. Salomaa, S. Yu: The state complexity of two combined operations: star
of catenation and star of Reversal, Fundamenta Informaticae 83 (1-2) (2008) 75–89

10. M. Holzer, M. Kutrib: State complexity of basic operations on nondeterministic
finite automata, in: Proceedings of CIAA 02, LNCS 2608, 2002, 148–157

11. J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory,
Languages, and Computation (2nd Edition), Addison Wesley, 2001

12. J. Jirásek, G. Jirásková, A. Szabari: State complexity of concatenation and comple-
mentation of regular languages, International Journal of Foundations of Computer
Science 16 (2005) 511–529

13. G. Jirásková, A. Okhotin: On the state complexity of star of union and star of
intersection, TUCS Technical Report No. 825, 2007

14. A. N. Maslov: Estimates of the number of states of finite automata, Soviet Math-
ematics Doklady 11 (1970) 1373–1375

15. G. Pighizzini, J. O. Shallit: Unary language operations, state complexity and Ja-
cobsthal’s function, IJFCS 13 (2002) 145–159

16. M. Rabin, D. Scott: Finite automata and their decision problems, IBM Journal of
Research and Development, 3 (2) (1959) 114–125

17. N. Rampersad: The state complexity of L2 and Lk, Information Processing Letters
98 (2006) 231-234.

18. A. Salomaa, K. Salomaa, S. Yu: State complexity of combined operations, Theo-
retical Computer Science 383 (2007) 140–152

19. A. Salomaa, K. Salomaa, S. Yu: Undecidability of the state complexity of composed
regular operations, in: Proceedings of LATA 2011, LNCS 6638 (2011) 489-498

20. S. Yu: State complexity of regular languages, Journal of Automata, Languages and
Combinatorics 6 (2) (2001) 221–234

21. S. Yu, Q. Zhuang, K. Salomaa: The state complexity of some basic operations on
regular languages, Theoretical Computer Science 125 (1994) 315–328

22. S. Yu: On the state complexity of combined operations, in: Proceedings of 11th In-
ternational Conference on Implementation and Application of Automata, Springer
LNCS 4094, 2006, 11–22

