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Abstract. This paper investigates acceptance conditions for finite au-
tomata recognizing w-regular languages. Their expressive power and their
position w.r.t. the Borel hierarchy is also studied. The full characteriza-
tion for the conditions (ninf,M), (ninf, C) and (ninf,=) is given. The
final section provides a partial characterization of (fin,=).

Keywords: finite automata, acceptance conditions, w-regular languages.

1 Introduction

Infinite words are widely used in formal specification and verification of non-
terminating processes (e.g. web-servers, OS daemons, etc.) [4J3I13]. The overall
state of the system is represented by an element of some finite alphabet. Hence
runs of the systems can be conveniently represented as w-words. Finite automata
are often used to model the transitions of the system and their accepted language
represents the set of admissible runs of the system under observation. Acceptance
conditions on finite automata are therefore selectors of admissible runs. Main
results and overall exposition about w-languages can be found in [T2J1T9].

Seminal studies about acceptance of infinite words by finite automata (FA)
have been performed by Biichi while studying monadic second order theories [I].
According to Biichi an infinite word is accepted by an FA A if there exists a run
of A which passes infinitely often through a set of accepting states. Later, Muller
studied runs that pass through all elements of a given set of accepting states and
visit them infinitely often [8]. Afterwards, several acceptance conditions appeared
in a series of papers [2J57/10/6].

Clearly, the selection on runs operated by accepting conditions is also influ-
enced by the structural properties of the FA under consideration: deterministic
vs. non-deterministic, complete vs. non complete (see for instance [6]).

* This work has been partially supported by the French National Research Agency
project EMC (ANR-09-BLAN-0164) and by PRIN/MIUR project “Mathematical
aspects and forthcoming applications of automata and formal languages”.

** Corresponding author.
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In this work, we review the main acceptance conditions and we couple them
with structural properties like determinism or completeness in the purpose of
characterizing the relationships between the class of languages they induce. The
Borel hierarchy is another important characterization of w-rational languages
and it is the basic skeleton of our study which helped to argue the placement
of the other classes. Figure [1] illustrates the current state of art whilst Figure
summarizes the results provided by the present paper.

For lack of space, several proofs of lemmata will appear only in a journal
version of this paper.

2 Notations and background

For any set A, Card (A) denotes the cardinality of A. Given a finite alphabet X,
X* and X denote the set of all finite words and the set of all (mono) infinite
words on XY, respectively. As usual, ¢ € X* is the empty word. For any pair
u, v € X*, uv is the concatenation of u with v.

A language is any set L C X*. For any pair of languages Li, Lo, LiLs =
{uv € X* :w € L1,v € Ly} is the concatenation of Ly and L. For a language
L, denote L° = {e}, L™ = L"L and L* = J,,cy L™ the Kleene star of L. The
collection of rational languages is the smallest class of languages containing 0,
all sets {a} (for a € X') and which is closed by union, concatenation and Kleene
star.

An w-language is any subset £ of X*. For a language L, the infinite extension
of L is the w-language

LY = {z € 2% : 3(w;)ien € (L~ A{e)Y, 2 = wouqus ...}

An w-language L is w-rational if there exist two families {L;} and {L}} of rational
languages such that £ = (J_, L;L;”. Denote by RAT the set of all w-rational
languages.

A finite state automaton (FA) is a tuple (X, Q,T,qo, F) where ¥ is a fi-
nite alphabet, @ a finite set of states, T' C Q x X x @ is the set of transi-
tions, qo € Q is the initial state and F C P (Q) collects the accepting sets
of (accepting) states. A FA is a deterministic finite state automaton (DFA)
if Card({g € Q: (p,a,q) €T}) < 1forall p e @, ae X.1tis a complete fi-
nite state automaton (CFA) if Card ({¢ € Q : (p,a,q) € T}) > 1 for all p € Q,
a € X. We write CDF' A for a F'A which is both deterministic and complete. An
(infinite) path in A = (X,Q,T,qo,F) is a sequence (p;, x;,pit+1)ien such that
(pi, i, pit1) € T for all i € N. The (infinite) word (z;);en is the label of the path
p. A path is said to be initial if pg = qo.

Definition 1. Let A= (X,Q,T,qo,F) and p = (p;, Ti, Gi)ien be an automaton
and an infinite path in A. The sets

—runa(p) :={¢eQ:3i>0,p, =q}
— infa(p) :={qgeQ:Vi>0,3j >ip; =q}
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— fina(p) := run(p) ~inf(p)
— ninfa(p) = Q \ inf(p)

contain the states appearing at least one time, infinitely many times, finitely
many times but at least once, and finitely many times or never in p, respectively.

An acceptance condition is a subset of all the initial infinite paths. The paths
inside such a subset are called accepting paths. Let A and cond 4 be a FFA and
an acceptance condition for A, respectively. A word w is accepted by A if and
only if it is the label of some accepting path. We denote by Li{’”d*‘ the language
accepted by A under the acceptance condition condy, i.e., the set of all words
accepted by A under the acceptance condition cond 4.

Let M be the relation such that for all sets A and B, AN B if and only if
AN B # 0.

In the sequel, we will consider acceptance conditions derived by pairs (¢,R) €
{run,inf, fin,ninf} x {N,C,=}. A pair cond = (¢,R) defines an acceptance
condition cond4 = (c4,R) on an automaton A = (X, Q,T, i, F) as follows: an
initial path p = (p;, a;, Pi+1)ien is accepting if and only if there exists a set F' € F
such that c4(p) R F. Moreover, when not explicitly indicated, all automata will
be defined over the same finite alphabet X.

Definition 2. For any pair cond = (¢, R) € {run,inf, fin,ninf} x {N, <, =},
the following sets

— FA(cond) = {Ei{md““, Aisa FA}

— DFA(cond) = {ﬁi{md““, Aisa DFA}
CFA(cond) = {£5""4, Ais a CFA}
CDFA(cond) = {£54, Ais « CDF A}

are the classes of languages accepted by FA, DFA, CFA, and CDF A, respec-
tively, under the acceptance condition derived by cond.

Some of the acceptance conditions derived by pairs (¢, R) have been studied in
the literature as summarized in the following table.

M - =
rUn Landweber [3] Hartmanis and Stearns [2][Staiger and Wagner [10]
nf Biichi [I] Landweber [5] Muller [8]
fin |Litovski and Staiger [6] THIS PAPER™"
ninf THIS PAPER” THIS PAPER” THIS PAPER

* These conditions have been already investigated in [7] but only in the case of
complete automata with a unique set of accepting states.

** Only FFA and C'F A are considered here. For DFA and CDF A the question
is still open.
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For X' equipped with discrete topology and X“ with the induced product
topology, let F', G, F, and Gs be the collections of all closed sets, open sets,
countable unions of closed set and countable intersections of open sets, respec-
tively. For any pair A, B of collections of sets, denote by B(A4), A A B, and AT
the boolean closure of A, the set {UNV :U € A,V € B} and the set ANRAT,
respectively. These, indeed, are the lower classes of the Borel hierarchy, for more
on this subject we refer the reader to [14] or [9], for instance.

Figure [1] illustrates the known hierarchy of languages classes (arrows repre-
sents strict inclusions).

Let X and Y be two sets, pr; : (X x Y)* — X“ denotes the projection of
words in (X X Y)“ on the first set, i.e. pri((x;, ¥:i)ien) = (Ti)ien-

Lemma 3 (Staiger |11, Projection lemmal).
Let cond € {run,inf, fin,ninf} x {1, C,=}.

1. Let X, Y be two finite alphabets and L C (X xY)¥. L € FA(cond) implies
pri(L) € FA(cond)H.

2. Let X be a finite alphabet and L C X*. L € FA(cond)® implies there exist a
finite alphabet Y and a language L' C (X x Y)“ such that L' € DF A(cond)®
and pri(L') = L.

3 The accepting conditions A and A’ and the Borel
hierarchy

In [7], Moriya and Yamasaki introduced two more acceptance conditions, namely
A and A’, and they compared them to the Borel hierarchy for the case of CFA
and CDFA having a unique set of accepting states. In this section, those results
are generalized to FA and DFA and to any set of sets of accepting states.

Definition 4. Given an FA A = (X,Q,T,qo,F), the acceptance condition A
(resp., A') on A is defined as follows: an initial path p is accepting under A
(resp., A’) if and only if there exists a set F' € F such that F C run4(p) (resp.,
F & runa(p))-

Lemma 5.

1. FA(A) C FA(run,n) ,

2. DFA(A) C DF A(run,mn)

3. CFA(A) CCFA(run,n)

4. CDFA(A) CCDFA(run,n) .

§ Remark that in the case 1. the languages belonging to F'A(cond) are defined over
the alphabet X and not X x Y. Similarly, in the case 2. the languages belonging to
F A(cond) are defined over X and those belonging to DF A(cond) are defined over
X xY.
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FA(inf,n) CFA(inf, M)
FA(inf,=) DFA(inf,=) CFA(inf, =) CDFA(inf, =)

RN

G
DFA(inf, M) CDFA(inf, M)

T

FA(inf, C) DFA(inf, C) CFA(inf, C) CDFA(inf, C)

FA(TU.TL mn
FA(run,=) CFA(run, =)

FA(fin,n)

d

FEncl
DFA(run,=) CDFA(run, =)

/

| DFA(fin, n) | | CNFA(fin,n)

7

FE A gl
DFA(run, )

CDFA(fin, )

FR

FA(run,C) DFA(run, C) CFA(run, C) CDFA(run, C)

\GR

CFA(run,n) CDFA(run,n)

FRAGgR

Fig.1. Currently known relations between classes of w-languages recognized by FA
according to the considered acceptance conditions and structural properties like de-
terminism or completeness. Classes of the Borel hierarchy are typeset in bold. Arrows
mean strict inclusion. Classes in the same box coincide.

Lemma 6.

1. FA(run,M) C FA(A) ,
2. DFA(run,n) C D (
3. CFA(run,n) C CFA(A
4. CDFA(run,n) C CDFA(A).

)
)

Lemma 7.

1. FA(A") C FA(run,C) ,

2. DFA(A") C DF A(run, Q)
3. CFA(A") CCFA(run,Q) ,

4. CDFA(A"Y CCDFA(run,Q) .

Lemma 8.

1. FA(run,C) C FA(A) ,

2. DFA(run,C) C DFA(A)
3. CFA(run,C) CCFA(A)

4. CDFA(run,C) CCDFA(A) .
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Proof. Let cond = (run,C). We are going to show that for any FA A =
(X,Q,T,qo, F) there exists an automaton A’ under the accepting condition A’
such that L4, = Efj\md““ and A’ is deterministic (resp. complete) if A is de-
terministic (resp. complete). Define the automaton A" = (X,Q’',T’, (q0,0), F')

where Q' = (Q x P(Q))U{L}, F/ ={{L}}, and
T'={((p,5),a, (¢ SU{a}) : (p,a,q) €T, S € P(Q),3IF € F,SU{q} C F}
U, 9),a,1): S€P(Q),3q€Q,(p,a,q) € T,VF € F,SU{q} L F}
U{(L e, 1) ae 5}

Then, A’ is deterministic (resp. complete) if A is deterministic (resp. com-
plete). Moreover, = € Ei‘o”d“‘ if and only if there exists an initial path p in A
with label = and a set F' € F such that run4(p) C F' iff there exists an initial
path p’ in A’ with label z such that p/, # L for all n € N, i.e.,iff z € £4,. O

The following result places the classes of langages characterized by A and A’
w.r.t. the Borel hierarchy.

Theorem 9.

1. CDFA(A) =CFA(A) = Gt

2. DFA(A) = Ff A Gf

3. FA(A) = Ff

4. CDFA(A") = DFA(A") =CFAA") = FAA') = FE

Proof. It is a consequence of Lemmata[5] [6] []and[8] and the known results (see
Figure [1) on the classes of languages accepted by FA, DFA, CFA, and CDF A
under the acceptance conditions derived by (run,M) and (run, C). O

Remark 10. Languages in CDF A(A) (resp. CDF A(A’) are unions of languages
in the class A (resp. A’) of [7]. This class equals G (resp. F'f*) and is closed under
union operation. These facts already prove CDFA(A) = G (resp. CDF A(A') =
FR),

4 The accepting conditions (ninf,MN) and (ninf, C).

In [6], Litovsky and Staiger studied the class of languages accepted by FA under
the acceptance condition (fin, M) w.r.t. which a path is successful if it visits an
accepting state finitely many times but at least once. It is natural to study the
expressivity of the similar accepting condition for which a path is successful if it
visits an accepting state finitely many times or never: (nin f,M). The expressivity
of (ninf, C) is also analized and compared with the previous ones to complete the
picture in Figure [I] As a first step, we analyze two more acceptance conditions

proposed by Moriya and Yamasaki [7]: L which represents the situation of a non-
terminating process forced to pass through a finite set of “safe” states infinitely
often and I” which is the negation of L. Lemma [12| proves that L is equivalent
to (ninf,M) and L’ to (ninf, C). Moreover, the results of [7] are extended to any
type of FA with any number of sets of accepting states.
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Definition 11. Given an FA A= (X,Q,T, qo,F), the acceptance condition 1L
(resp., L) on A is defined as follows: an initial path p is accepting under 1L
(resp., L) if and only if there exists a set F' € F such that F C infa(p) (resp.,

F Zinfa(p))-

Lemma 12. L and (ninf,C) (resp., L' and (ninf,M)) define the same classes
of languages.

Remark that any F'A can be completed with a sink state without changing
the language accepted under L. Therefore, the following claim is true.

Lemma 13. FA(L) = CFA(L) and DFA(L) = CDFA(L).
Proposition 14. CDFA(inf,M) C CDFA(L) and CFA(inf,) C CFA(L).
Proof. For any CDFA (resp., CFA) A = (X,Q,T,qo,F), define the CDF A

(resp., CFA) A" = (X,Q,T,q, F') where F/ = {{q} : IF € F,q € F}. Then, it
follows that sznf M4 = L:]E;\, and this concludes the proof. a0

Proposition 15. CDFA(L) C CDFA(inf,N)

Proof. For any CDFA A = (X,Q,T,qo,F) and any ¢ € Q, define the CDF A
Ay = (2,Q,T,q,{{q}})- By determinism of A, it holds that

ch=U N
FeF qeF
Since CDF A(inf, M) is stable by finite union and finite intersection [I], there ex-
istsa CDFA A’ such that £ = E%lj’m)““’. Hence, CDFA(L) C CDFA(inf,N).
O

Proposition 16. CFA(L) C CFA(inf,=).

Proof. For any CFA A = (X,Q,T,qo,F) define A’ = (X,Q, T, qo,F'), where
F' ={S€P(Q):3F € F,F CS}.Then, A is complete and L = L’%lf’:)*".
Hence, the thesis is true. a

Theorem 17. The following equalities hold.

(1) CDFA(ninf,C) = DFA(ninf,C) = GE
(2) CFA(ninf,C) = FA(ninf,C) = RAT

Proof. Equality (1) follows from Lemmata [12] and Proposition [15] and
and the known fact that DFA(inf,M) = CDFA(inf,M) = GE, while equality
(2) from Lemmata [12| and Proposition |14] and [16| and the known fact that
CFA(inf,M) = CFA(inf,=) = RAT. O

Lemma 18. For any automaton A = (X,Q,T,qo, F) there exists an automaton
A= (2,Q, T, g4, F') such that F' = {{q'}} for some ¢’ € Q', LY = LY, and
A’ is deterministic (resp. complete) if A is deterministic (resp. complete).
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Proof. If either F = {} or F = {0} then the automaton A’ defined by X' = X,
Q ={L}, T ={(L,a,1):a€ X}, ¢, = g, and F' = {{L}}) verifies the
statement of the Lemma. Otherwise, set ' = Jy.r X, choose any f € F,
and define the automaton A’ by X' = ¥, Q' = Q x P (F), ¢}, = (q0,0), F' =
{{(f,F)}}, and

T'={((p,S):a,(¢: (SU{g}) N F)) : (p,a,q) € T, (p,S) # (f, F)}
U{((faF),Ch (,9)) : (f,a,q) €T}

Then, A’ is deterministic (resp., complete) if A is deterministic (resp., com-
plete). Moreover, EH;( C E%. Indeed, if x € EH, there exist an initial path
p = (pi, Ti, Pi+1)ien in A with label z, a set X € F, and a state s € X such that
s & inf(p). Consider the path p' = ((p;, S;), Ti, (Pit1,Si+1))ieny Where So = 0
and S;y1 = (S;U{q:}) N Fif (p;, S;) # (f, F), O otherwise. Then, p’ is an initial
path in A’ with label x in which the state (f, F') appears finitely often in p’ since
s appears finitely often in p. Hence, z € E%. Finally, the implication EH;{, C EE{
is also true.

The following series of Lemmata is useful to prove strict inclusions between
the the considered language classes.

Lemma 19 (Moriya and Yamasaki [7]). £ = (a + b)*a* € CDFA(L’).
Lemma 20. ab*a(a + b)* € DFA(L') ~ CFA(L).

Lemma 21. b*ab*a(a + b)*¥ ¢ FA(L').

Lemma 22. (a+ b)*ba®” € CFA(L') \ DFA(L’).

Proposition 23. FA(L') ¢ FE

Proof. For any FA A= (X,Q,T,q,F), by Lemmawe can assume that F =
{f}}. Define the FA A’ = (£,Q,T,q0,{Q~ {f}}). Then, £ = "<
and, so, FA(L') C FA(inf, C). Moreover, by the know fact FA(inf,C) = FF,
we obtain that L’%Lf ©)a’ ¢ FR. Lemma 21 gives the strict inclusion. O
Proposition 24. DFA(L') and CFA(L’) are incomparable.

Proof. It is an immediate consequence of Lemmata [20] and 22}

Proposition 25. The following statements are true.

(1) FA(L') and Gg are incomparable.
(2) FA(L') and G** are incomparable.
Proof. By Lemma (19, (a + b)*a® € CDFA(L) ~ GE and, by Lemma
b*ab*a(a + b)* € G* \ FA(L'). To conclude, recall that G¥ C GE. O

Proposition 26. CDFA(L') and DF A(fin,N) are incomparable.

Proof. By Proposition [25and by the known fact G C DF A(fin,), it follows
that DFA(fin,M) € CDFA(L'). Furthermore, it has been shown in [6] that
CDFA(L') £ DFA(fin,N). O
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RAT
FA(inf,N) CFA(inf, M)
FA(inf,=) DFA(inf, =) CFA(inf,=) CDFA(inf, =)
FA(ninf, C) CFA(ninf, C)
FA(ninf,=) DFA(ninf, =) CFA(ninf,=) CDFA(ninf, =)

FA(fin,=) CFA(fin, =)
/ Ff’
7 Alrum, S SR A )
F run, = F run, =
DFA(inf,N) CDFA(inf, M) ) rumn, (run, )
Pyt A iy S AN FA(inf, C) DFA(znf,FgA)(?iifQ’_(‘z)nf, C) CDFA(inf, C)
FA(A)
/
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e
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CDFA(ninf, M) DFA(run, M) CDFA(fin, )
DFA(A)
FR GR
FA(run,C) DFA(run, C) CFA(run, C) CDFA(run, C) CFA(run,n) CDFA(run, M)
FA(A') DFA(A) CFA(A") CDFA(A) CFA(A) CDFA(A)

Fig. 2. The completion of Figure [I] with the results in the paper. Classes of the Borel
hierarchy are typeset in bold. Arrows mean strict inclusion. Classes in the same box
coincide.

5 Towards a characterization of (fin,=) and (fin, C).

In this section we start studying the conditions (fin,=) and (fin, C). Concerning
(fin,=), Theorem tells us that, in the non-deterministic case, the class of
recognized languages coincides with RAT. In the deterministic case, either it
again coincides with RAT or it defines a completely new class (Proposition .

Intuitively, any class of w-languages defined using a MSO definable accept-
ing condition should be included in RAT. A formal proof for this statement is
still unknown. Anyway, we now prove this statement for the particular cases
investigated so far.

Proposition 27. The following equality holds for (ninf,=):
CDFA(ninf,=) = DFA(ninf,=) = CFA(ninf,=) = FA(ninf,=) = RAT

Proof. For any FA A= (X,Q,T,q, F),let A =(X,Q,T,q0,{Q~F : F € F}).
Clearly, A’ is deterministic (resp. complete) if A is deterministic (resp. complete).
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It is not difficult to see that E%mf’:)*‘ = EEZJ”C’:)A/ and Eﬁ"f’:)*‘ = E%mf’:)*".
Hence, it holds that FA(ninf,=) = FA(inf,=), DFA(ninf,=) = DFA(inf,=
), CFA(ninf,=) = CFA(inf,=), and CDFA(ninf,=) = CDFA(inf,=). The
known results on the language classes regarding (in f, =) conclude the proofs. O

Proposition 28. The following equalities hold for (fin,C) and (fin,=):

DFA(fin,C) = CDFA(fin,C) and FA(fin,C) = CFA(fin,C),
DFA(fin,=) = CDFA(fin,=) and FA(fin,=) = CFA(fin,=).

Proof. For any FA A = (X,Q,T,q0,F), let A = (X, QU {L, 1"}, T, q0,F)

where

T"=TU{(p,a,Ll):peQ,ac X,YgeQ,(pa,q) ¢TIU{(L,a,L"):ae X}
u{(l,a,L):ae X}

The FA A’ is complete. Moreover, A’ is a DF A if and only if A is a DFA.
Furthermore, under both the conditions (fin,C) and (fin,=), every accepting
path in A is still an accepting path in A’, and if p is an initial path in A" which
is not a path in A, then L € fin(p). Since VF € F, L ¢ F, the path p is non
accepting in A’. Therefore, E%m’g*‘ = E%,m’g““/ and E%m’:)"‘ = Ei{,m’:)*‘/
and this concludes the proof.

Proposition 29 (Staiger [11]).
CDFA(fin,C) C CDFA(fin,=) and CFA(fin,C) C CFA(fin,=).

Proposition 30 (Staiger [11]).
FA(fin,M) C FA(fin,=) and DF A(fin,N) C DFA(fin,=).

Lemma 31. RAT C FA(fin,=).

Proof. We are going to show that FA(inf,M) C FA(fin,=), i.e., for any F'A
A= (X,Q,T,qo,F) there exists a FA A’ such that Lfinf’m)““ = L'%m’:)*". The
known fact that RAT = F A(inf,M) concludes the proof.

Let A= (X,QuUQ x Q,T',qo, F') where

T/ =T U {(pvaa (Q7p)) : (p7 a, Q) € T} u {((pl,pQ)aa:Q) : (p15a7Q) € T7p2 S Q}

and ' = {F ~{p2} U{(p1,p2)} : ;1 € Q, F € P(Q),3X € F,pr € X}

We prove that £Ez"f’m)““ - E%m’:)“". Let x € ﬁf}lnf’n)““. There exists a path
p = (Pi, iy Pit1)ien In A, a state ¢ € @ and a set F' € F such that ¢ € F
and ¢ = p; for infinitely many ¢ € N. Let n > 0 be such that p, = ¢q and let
P = (P}, i, P41 )ien be the initial path in A" defined by Vi # n + 1, p; = p; and

i1 = (Pny1,9)- As g & fin(p'), fin(p') = (fin(p")NQ)~{¢}U{(Pnt1,9)} € F".

Hence, z € £Ef/m’:)““'.

We now show that £E{,m’:)“" C Efi"f’m“‘. Let z € E%m’:)““'. There exists
a path p = (p;, i, pit1)ien in A, two states ¢1,q2 € @ and a set F € P(Q)
such that 3X € F with ¢ € X and fin(p) = F ~ {g2} U {(q1,¢2)}. Let p’' =
(P}, i, Pip 1 )ien be the initial path in A defined by Vi € N,p] = p; if p; € Q,
pi = a; with p; = (a;,b;) € Q x Q, otherwise. As (q1,q2) € fin(p), ¢2 € run(p)
but ga & fin(p), then g2 € inf(p) Cinf(p’). Hence, z € L’Eflnf’n)*‘. O
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Lemma 32. DFA(fin,=) C RAT.

Proof. For any DFA A= (X,Q,T,qo,F), let As = (X,Q, T, qo,{S}) for any set
S C Q. Then,

Y= = U G\ D e Rar
SCQ.8'CQ,5S'eF
O
Corollary 33. FA(fin,=) C RAT.
Proof. Combine Lemmata [3 and O
Theorem 34. FA(fin,=) = RAT.
Proof. Combine Lemmata [31] and Corollary o

Proposition 35. a(a*b)* + b(a + b)*a® € CDFA(fin,=) \ (FFUGE).

6 Conclusions

In this paper we have studied the expressivity power of acceptance condition for
finite automata. Three new classes have been fully characterized. For a fourth
one, partial results are given. In particular, (ninf, M) provides four distinct new
classes of languages (see the diamond in the left part of Figure , all other
acceptance conditions considered tend to give (classes of) languages populating
known classes.

Remark that some well-known acceptance conditions like Rabin, Strett or
Parity conditions have not been taken in consideration in this work since it is
known that they are equivalent to Muller’s condition.

A first research direction, of course, consists in completing the characterisa-
tion of (fin,=). The characterization of (fin, C) is still open.

A further interesting research direction consists in studying the closure prop-
erties of the above new classes of languages and see if they cram the known
classes or if they add new elements to Figure [2]
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