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Abstract. We propose a new method for constructing small-bias spaces
through a combination of Hermitian codes. For a class of parameters
our multisets are much faster to construct than what can be achieved
by use of the traditional algebraic geometric code construction. So, if
speed is important, our construction is competitive with all other known
constructions in that region. And if speed is not a matter of interest the
small-bias spaces of the present paper still perform better than the ones
related to norm-trace codes reported in [12].
Keywords. Small-bias space, balanced code, Gröbner basis, Hermitian
code.

1 Introduction

Let X = (X1, . . . ,Xk) be a random vector that takes on values in F
k
2 .

As shown by Vazirani [17] the variables X1, . . . ,Xk are independent and
uniformly distributed if and only if

Prob

(
∑

i∈T
Xi = 0

)
= Prob

(
∑

i∈T
Xi = 1

)
=

1

2
(1)

holds for every non-empty set of indexes T ⊆ {1, . . . , k}. In particular,
if (1) is to hold for a space X ⊆ F

k
2 then necessarily X must be equal

to F
k
2 . There is a need for much smaller spaces X ⊆ F

k
2 with statistical

properties close to that of (1). In the following by a space we will mean a
multiset X with elements from F

k
2 (this we write X ⊆ F

k
2). The multiset

X is made into a probability space by adjoining to each element x ∈ X
the probability p(x) = i(x)/|X | where i(x) denotes the number of times
x appears in X . As a measure for describing how close a given space X
is to the above situation with respect to randomization, Naor and Naor
[15], and Alon et. al. [1] introduced the concept of ǫ-biasness [15, Def. 3].
(See also [14]).
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Definition 1. A multiset X ⊆ F
k
2 is called an ǫ-bias space if

1

|X |

∣∣∣∣∣
∑

x∈X
(−1)

∑
i∈T xi

∣∣∣∣∣ ≤ ǫ (2)

holds for every non-empty index set T ⊆ {1, . . . , k}.
Clearly, the ǫ in Definition 1 can be taken to be a number between 0 and 1.
Good randomization properties are achieved when ǫ is close to 0 as (2) be-
comes (1) when ǫ = 0. Multisets with ǫ small are called small-bias spaces.
They are useful as sample spaces in applications such as automated the-
orem proving, derandomization of algorithms, program verification, and
testing of combinatorial circuits. Rather than saying that a multiset is an
ǫ-bias space we will often just say that it is ǫ-biased. Another name for
ǫ-bias space is ǫ-bias set [2, Def. 1] and [12, Def. 1.1]. This notion may be
a little misleading as the item under consideration is actually a multiset.
One way of constructing small-bias spaces is through the use of error-
correcting codes.

Definition 2. A binary [n, k] code is said to be ǫ-balanced if every non-
zero code word c satisfies

1− ǫ

2
≤ wH(c)

n
≤ 1 + ǫ

2
.

Here [n, k] means that the code is linear, of dimension k and length n.
Further, wH denotes the Hamming weight.

There is a simple direct translation [1] between the concepts described in
Definition 1 and Definition 2:

Theorem 1. Let G be a generator matrix for an ǫ-balanced binary [n, k]
code. The columns of G constitute an ǫ-bias space X ⊆ F

k
2 of size n. Sim-

ilarly, using the elements of an ǫ-bias space X as columns of a generator
matrix an ǫ-balanced code is derived.

The following example illustrates the above theorem. It also shows why
it is important in Definition 1 to work with multisets rather than sets.

Example 1. Consider the matrix

G =



0 1 0 1 0 1 0 1 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0


 .
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The code having G as a generator matrix is ǫ-balanced with ǫ = 1/3
and indeed the multiset made from the columns of G is ǫ = 1/3 biased.
Treating the columns as a set (rather than a multiset) we derive

X ′ = {(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 0, 0)}.

The smallest value of ǫ for which X ′ is ǫ-biased is ǫ = 3/5.

A standard construction from [1] tells us how to make small-balanced
codes (meaning ǫ-biased codes with ǫ small):

Theorem 2. Let q = 2s for some integer s and consider a q-ary [N,K,D]
code C. Let Cs be the (binary) [2s, s]2 Walsh-Hadamard code, s ≥ 1. The
concatenated code derived by using C as outer code and Cs as inner code is
an ǫ = (N−D)/N -balanced binary code of length n = N2s and dimension
k = Ks.

Proof. The result relies on the fact that every non-zero codeword of Cs

contains exactly as many 0s as 1s.

The literature contains various examples of small-bias spaces that cannot
all be compared to each other. We refer to [2, Sec. 1] for more details.
In the following we will concentrate on important families of multisets
for which comparison can be made. We remind the reader of how bigO
notation works when given functions of multiple variables. In our situation
we have real valued positive functions fi(x, y), i = 1, 2 where x can take
on any value in Z

+ but for every fixed choice of x the variable y can only
take on values in an interval I(x) ⊆ R

+. By f1(x, y) = O (f2(x, y)) we
mean that a witness (C, κ) exists such that for all x with κ < x and all
y ∈ I(x) it holds that f1(x, y) ≤ Cf2(x, y). We are interested in upper
bounding the size of X which will be done in terms of bigO estimates as
above. At the same time we are interested in lower bounding the length of
the words in the multiset X . Such estimates are described using bigOmega
notation. We remind the reader that by definition f(x) = Ω(g(x)) if and
only if g(x) = O (f(x)). As we are only interested in bigOmega estimates
the meaning of k changes accordingly. We have the following results:

– Using Reed-Solomon codes as outer codes in Theorem 2 one achieves
[1,2] for all possible choices of ǫ and k

X ⊆ F
Ω(k)
2 , |X | = O

(
k2

ǫ2 log2(k/ǫ)

)
.

This is called the RS-bound.

3



– Let P1, . . . , PN−1, Q be rational places of an algebraic function field
over Fq and denote by g the genus. Assume N = (

√
q − 1)g. That is,

we assume that the function field attains the Drinfeld-Vladut bound.
Using codes CL(U = P1+ · · ·+PN−1,mQ) with g < m as outer codes
one gets for all ǫ and k (see Section 2 for a discussion)

X ⊆ F
Ω(k)
2 , |X | = O

(
k

ǫ3 log(1/ǫ)

)
.

This result which is in the folklore is known as the AG-bound.
– Using Hermitian codes with m < g as outer codes one achieves [2] for

ǫ ≥ k−
1
2

X ⊆ F
Ω(k)
2 , |X | = O

((
k

ǫ2 log(1/ǫ)

) 5
4

)
. (3)

This we call the BT-bound after the authors of [2], Ben-Aroya and
Ta-Shma.

– Using in larger generality Norm-Trace codes of low dimension as outer

codes one achieves [12] for l = 4, 5, . . . and ǫ ≥ k
− 1√

l (see Section 5)

X ⊆ F
Ω(k)
2 , |X | = O



(

k

ǫl−
√
l log(1/ǫ)

) l+1
l


 .

Here, l = 4 corresponds to the Hermitian case described in [2].
– The Gilbert-Varshamov bound also applies to the small-bias spaces

(as usual in a non-constructive way). It is derived by plugging into
the Gilbert-Varshamov bound for binary codes d = n/2 and to make
a Taylor approximation on the resulting formula. The construction
uses Theorem 1 directly. It guarantees for all ǫ and k the existence of
multisets with

X ⊆ F
Ω(k)
2 , |X | = O

(
k

ǫ2

)
.

– The linear programming bound tells us that we cannot hope to pro-
duce ǫ-bias spaces with

X ⊆ F
Ω(k)
2 , |X | = O

(
k

ǫ2 log(1/ǫ)

)
.

One way of comparing the above results is to choose ǫ = k−α, α ∈ R
+ and

then to take the logarithm with base k. The bigO notation suggests that
we then let k go to infinity. The origin of this point of view is [2, Sec. 1].
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When making the above operation we must be careful to specify which
choices of α are allowed. We remind the reader of the little-o notation.
Given functions fi(x) : Z

+ → R
+, i = 1, 2 by f1(x) = o(f2(x)) we mean

that for every choice of c ∈ R
+ there exists a κ(c) ∈ Z

+ such that when
κ(c) < x then necessarily f1(x) ≤ cf2(x). We have:

– RS-bound: The family of concatenated codes from Theorem 2 with
Reed-Solomon codes as outer codes gives

logk(|X |) = 2 + 2α+ o(1)

for all choices of α ∈ R
+.

– AG-bound: The family of concatenated codes from Theorem 2 with
algebraic geometric codes as outer codes and g < m gives

logk(|X |) = 1 + 3α+ o(1)

for all choices of α ∈ R
+.

– BT-bound: The family of concatenated codes from Theorem 2 with
Hermitian codes as outer codes and m < g gives

logk(|X |) = 5

4
+

5

2
α+ o(1)

for all choices of α ∈]1/2,∞[.

– The family of concatenated codes from norm-trace codes of low di-
mension gives

logk(|X |) = l + 1

l
(1 + α(l −

√
l)) + o(1)

for l = 4, 5, . . ., and for all α ∈ [1/
√
l,∞[ (see Section 5).

– The Gilbert-Varshamov bound and the Linear Programming bound
in combination tell us that we can achieve

logk(|X |) = 1 + 2α+ o(1)

for all choices of α ∈ R
+ but no better than this.

In the present paper we shall introduce a new family of small-bias spaces
using a combination of Hermitian codes as outer code. This family gives

logk(|X |) = 4

3
+

8

3
α+ o(1)
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for all choices of α ∈ R
+. We allow 2g < m and it is therefore surprising

that for α ∈]1,∞[ the achievements are better than those of the Hermitian
codes with g < m. Our small-bias spaces perform better than the ones
derived from norm-trace codes for all l ≥ 5 (see Section 5 for the proof).
For α < 1 they behave better than what can be achieved using Reed-
Solomon codes as outer code. For α < 1 admittedly the new ǫ-bias spaces
perform worse than the spaces coming from the AG construction. This,
however, is only part of the picture. It turns out that to construct the
spaces with α < 1/2 from the AG construction requires quite a number of
operations. In contrast, our construction is considerable faster. We shall
revert to this issue in Section 4. Before dealing with the new construction
we will investigate how to ensure ǫ = k−α in the case of the AG bound.
It turns out that for α < 1/2 the situation is rather complicated. We
include the description here, as to our best knowledge, the details cannot
be found in the literature.

2 The AG-bound

Let q be a power of 2 and consider an algebraic function field over Fq2 of
genus g with at least N = (q − 1)g rational places. That is, the function
field attains the Drinfeld-Vladut bound. As noted in the introduction
Theorem 2 equipped with a one-point algebraic geometric code from the

above function field produces ǫ-bias spaces X ⊆ F
Ω(k)
2 with

|X | = O
(

k

ǫ3 log2(
1
ǫ )

)
. (4)

In the following we investigate how to achieve corresponding values ǫ and
k under the requirement ǫ = k−α, α > 0, and k → ∞. Observe, that in
this situation for any fixed α we have ǫ → 0. For completeness we start
by proving (4) in this setting.
Consider rational places P1, . . . , PN−1, Q and let U = P1 + · · · + PN−1

and G = (ag)Q with a ≥ 1. The code CL(U,G) has parameters N = (q−
1)g−1, K ≥ degG−g = (a−1)g, and D ≥ N−degG = ((q−1)−a)g−1.
As we are interested in asymptotics we shall assume N = (q − 1)g and
D ≥ ((q−1)−a)g. From Theorem 2 we get ǫ-bias spaces with ǫ = a/(q−1),

X ⊆ F
Ω(k)
2 . Here, k = 2 log2(q)(a − 1)g and we have |X | = q2N =

(q3 − q2)g. As a is bounded below by 1 and ǫ → 0 we need q → ∞ when
k → ∞. So the task basically boils down to establishing a sequence of
function fields over increasingly large fields and a corresponding function
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a(q) such that

|X | = O




2 log2(q)(a− 1)g
(

a
q−1

)3
log2

(
q−1
a

)


 . (5)

Note that the argument on the right side is a function in the single variable
q as by construction now g is a function of q. We have

2 log2(q)(a − 1)g
(

a
q−1

)3
log2

(
q−1
a

) ≥ 1

2

log2(q)(a− 1)

a3(log2(q − 1)− log2(a))
|X |

as (q − 1)3 ≥ 1
4(q

3 − q2) holds for q ≥ 2. In conclusion (5) holds if
a(q) = O (1).
We first assume that the sequence of function fields are the Hermitians
which are function fields with g = q(q − 1)/2. Here, actually the number
of rational places is 2qg + q2 + 1 but we shall only use (q − 1)g of them.
Let a = 1 + q−c where 0 ≤ c < 2. Clearly, a(q) = O (1) as requested.
We have k = 2 log2(q)q

−cg = q2−cqβ where β(q) → 0 for q → ∞. Hence,
asymptotically ǫ = k−α with α = 1/(2 − c). In other words the situation
is clear for α ∈ [12 ,∞[.
To achieve α ∈]0, 12 [ is more difficult. The problem is to keep a(q) = O (1)
at the same time as having ǫ = k−α. For this purpose we consider families
of towers of function fields over Fq2 attaining the Drinfeld-Vladut bound
[5]. We will need one tower for each value of q. Note that in such a
tower for arbitrary v ≥ 2 we can find a function field with g ≥ qv. Say
g = qv+d(q), where d(q) ≥ 0 holds. Let a(q) = 1 + q−d(q) then clearly
a(q) = O (1) holds. We have k = 2 log2(q)(a−1)g = qv+β where β(q) → 0
for q → ∞. Also ǫ = q−1+γ where γ(q) → 0 for q → ∞. Hence, k−α = ǫ
asymptotically means vα = 1 ⇒ α = 1/v. As we only assumed v ≥ 2 we
have established that all α ∈]0, 12 [ can be attained.
For our purpose the best candidate for a family of good towers of function
fields is the second construction by Garcia and Stichtenoth [5]. In [16] it
was shown how to construct CL(U,G) codes from this tower using

O
(
(N logq(N))3

)
(6)

operations over Fq2 . Although we might only need codes of small dimen-
sion the method as stated requests us to find bases for all one-point codes.
As shall be demonstrated in Section 4 the small-bias spaces of the present
paper can be constructed much faster than what (6) guarantees for the
AG construction.
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3 The new small-bias spaces

In the present paper we propose a new choice of outer codes in the con-
struction of Theorem 2. As already mentioned this results in small-bias
spaces with good properties. The new choice of outer codes is derived by
combining two Hermitian codes as described below. The easiest way to
explain the combination is by using the language of affine variety codes [4]
and we therefore start our investigations with a presentation of Hermitian
codes as such.

Definition 3. Given a monomial ordering ≺ and an ideal I ⊆ F[X1, . . . ,Xm]
(here F is any field) the footprint is

∆≺(I) := {Xα1
1 · · ·Xαm

m | Xα1
1 · · ·Xαm

m is not a leading monomial

of any polynomial in I}.

We have the following two useful results [3, Pro. 4 and Pro. 8, Sec. 5.3].

Theorem 3. The set {M+I | M ∈ ∆≺(I)} is a basis for F[X1, . . . ,Xm]/I
as a vector space over F.

As a corollary one gets the following result often referred to as the foot-
print bound [7,9].

Theorem 4. Assume I is zero-dimensional (meaning that ∆≺(I) is fi-
nite). The variety V

F̄
(I) satisfies |V

F̄
(I)| ≤ |∆≺(I)|.

Consider the Hermitian polynomial Xq+1−Y q−Y and the corresponding
ideal

I = 〈Xq+1 − Y q − Y 〉 ⊆ Fq2 [X,Y ].

Define a monomial function w by w(X) = q and w(Y ) = (q + 1) and
consider the weighted degree monomial ordering ≺w given by Xα1Y β1 ≺w

Xα2Y β2 if one of the following two conditions holds:

1. w(Xα1Y β1) < w(Xα2Y β2).
2. w(Xα1Y β1) = w(Xα2Y β2) but β1 < β2.

Observe for later use that no two different monomials in

∆≺w(I) = {XiY j | 0 ≤ i and 0 ≤ j < q}

are of the same weight implying that w : ∆≺w(I) → 〈q, q+1〉 is a bijection.
Observe also that the Hermitian polynomial Xq+1 − Y q − Y contains
exactly two monomials of highest weight. The implication of this is that

w(lm(F (X,Y )) = w(lm(F (X,Y ) rem {Xq+1 − Y q − Y })

8



holds for any polynomial F (X,Y ) that possesses exactly one monomial
of highest weight in its support.
Consider next the ideal

Iq2 := 〈Xq2 −X,Y q2 − Y 〉+ I.

The variety VF
q2
(I) = VF

q2
(Iq2) consists of n = q3 different points

{P1, . . . Pn}. The set {Xq2 − X,Xq+1 − Y q − Y } constitutes a Gröbner
basis for Iq2 with respect to ≺w and therefore

∆≺w(Iq2) = {XiY j | 0 ≤ i < q2, 0 ≤ j < q}

holds. It now follows from Theorem 3 that

{XiY j + Iq2 | 0 ≤ i < q2, 0 ≤ j < q}

is a basis for Fq2 [X,Y ]/Iq2 as a vector space over Fq2 . The code construc-
tion relies on the bijective evaluation map ev : Fq2 [X,Y ]/Iq2 → F

n
q2 given

by ev(F (X,Y ) + Iq2) = (F (P1), . . . , F (Pn)). Theorem 4 tells us that we
can estimate the Hamming weight of a word c = ev(F (X,Y ) + Iq2) by

wH(c) ≥ n− |∆≺w(〈F (X,Y )〉+ Iq2)|.

Without loss of generality we can assume Supp(F ) ⊆ ∆≺w(Iq2). From the
discussion prior to the definition of Iq2 we conclude that no two different
monomials in F (X,Y ) are of the same weight. As a consequence

w(lm(XαY βF (X,Y )) = w(lm(XαY βF (X,Y ) rem {Xq+1 − Y q − Y })

holds for allXαY β. Write Λ = w(∆≺w(I)) = 〈q, q+1〉, Λ∗ = w(∆≺w(Iq2)) ⊆
Λ and λ = w(lm(F )) ∈ Λ∗. We have

|∆≺w(〈F (X,Y )〉+ Iq2)| ≤ |(Λ∗ − (λ+ Λ))| ≤ |(Λ\(λ + Λ)| = λ,

where the last equality comes from [10, Lem. 5.15]. Hence, wH(c) ≥ n−λ
holds. Observe that

Λ∗ = {λ1, . . . , λg} ∪ {2g, . . . , n− 1} ∪ {λn−g+1, . . . , λn}, (7)

where λi ≤ g−1+i for i = 1, . . . , g. This is a general result for Weierstrass
semigroups and not particular for the Hermitian function field. Having
described the Hermitian codes as affine variety codes we are now ready to

9



introduce the combination of codes on which our construction of small-
bias spaces rely. Consider the ideal

I
(2)
q2

:= 〈Xq+1
1 −Y q

1 −Y1,X
q+1
2 −Y q

2 −Y2,X
q2

1 −X1, Y
q2

1 −Y1,X
q2

2 −X2, Y
q2

2 −Y2〉

and the corresponding variety

VF
q2
(I

(2)
q2

) = VF
q2
(Iq2)× VF

q2
(Iq2) = {Q1, . . . , Qq6}.

Define a monomial function w(2) given by w(2)(X1) = (q, 0), w(2)(Y1) =
(q + 1, 0),w(2)(X2) = (0, q), and finally w(2)(Y2) = (0, q + 1). Let ≺N2

0
be

any monomial ordering on N
2
0 and define ≺w(2) by

X
α
(1)
1

1 Y
β
(1)
1

1 X
α
(2)
1

2 Y
β
(2)
1

2 ≺(2)
w X

α
(1)
2

1 Y
β
(1)
2

1 X
α
(2)
2

2 Y
β
(2)
2

2

if one of the following two conditions holds:

1. w(2)(X
α
(1)
1

1 Y
β
(1)
1

1 X
α
(2)
1

2 Y
β
(2)
1

2 ) ≺N2
0
w(2)(X

α
(1)
2

1 Y
β
(1)
2

1 X
α
(2)
2

2 Y
β
(2)
2

2 )

2. w(2)(X
α
(1)
1

1 Y
β
(1)
1

1 X
α
(2)
1

2 Y
β
(2)
1

2 ) = w(2)(X
α
(1)
2

1 Y
β
(1)
2

1 X
α
(2)
2

2 Y
β
(2)
2

2 )
but

X
α
(1)
1

1 Y
β
(1)
1

1 X
α
(2)
1

2 Y
β
(2)
1

2 ≺lex X
α
(1)
2

1 Y
β
(1)
2

1 X
α
(2)
2

2 Y
β
(2)
2

2 .

Here, X1 ≻lex Y1 ≻lex X2 ≻lex Y2 is assumed. The set {Xq+1
1 − Y q

1 −
Y1,X

q+1
2 − Y q

2 − Y2,X
q2

1 −X1,X
q2

2 −X2} is a Gröbner basis for I
(2)
q2

with
respect to ≺w(2) giving us the basis

{Xi1
1 Y j1

1 Xi2
2 Y j2

2 + Iq2 | 0 ≤ i1, i2 < q2, 0 ≤ j1, j2 < q}

for Fq2 [X1, Y1,X2, Y2]/I
(2)
q2

as a vectorspace over Fq2 . For the code con-
struction we need the following bijective evaluation map

EV : Fq2 [X1, Y1,X2, Y2]/I
(2) → F

q6

q2

given by EV(F (X1, Y1,X2, Y2) + I
(2)
q2

) = (F (Q1, ), . . . , F (Qq6)). Define

Λ(2) = Λ× Λ and
(
Λ(2)

)∗
= Λ∗ × Λ∗. We have

(
Λ(2)

)∗
= w(2)(∆≺

w(2)
(I

(2)
q2

))

where no two monomials in ∆≺
w(2)

(I
(2)
q2

) have the same weight. Simi-
lar to the situation of a Hermitian code we consider a codeword c =

10



EV(F (X1, Y1,X2, Y2) + I
(2)
q2

) where without loss of generality we will as-

sume that F (X1, Y1,X2, Y2) ∈ ∆≺
w(2)

(I
(2)
q2

). We write λ(2) = (λ1, λ2) =

w(2)(lm(F )). We can estimate

|∆≺
w(2)

(〈F (X1, Y1,X2, Y2)〉+ I
(2)
q2

)| ≤ |Λ(2) − (λ(2) + Λ(2))|
≤ q6 − (q3 − λ1)(q

3 − λ2).

Hence, wH(c) ≥ (q3 − λ1)(q
3 − λ2).

Consider the code Ẽ(δ) which is to Hermitian codes what Massey-Costello-
Justesen codes [13] are to Reed-Solomon codes

Ẽ(δ) := SpanF
q2

{
EV(Xi1

1 Y j1
1 Xi2

2 Y j2
2 + I

(2)
q2

) | 0 ≤ i1, i2 < q2, 0 ≤ j1, j2 < q,

(q3 − w(Xi1
1 Y j1

1 ))(q3 − w(Xi2
2 Y j2

2 )) ≥ δ

}
.

From our discussion we conclude that the minimum distance satisfies
d(Ẽ(δ)) ≥ δ. To estimate the dimension we make use of the characteri-
zation (7). The task is to estimate the number of (λ1, λ2)s that satisfies
(q3 − λ1)(q

3 − λ2) ≥ δ. For this purpose we can replace Λ∗ with

{g, g + 1, . . . , q3 − 1} ∪ {λn−g+1, . . . , λn}.

When estimating the dimension k(Ẽ(δ)) we shall furthermore ignore the
elements in {λn−g+1, . . . , λn}. Writing T = q3 − g we thereby get

k(Ẽ(δ)) ≥ |{(i, j) | 0 ≤ i, j ≤ T − 1, (T − i)(T − j) ≥ δ}|

≥
∫ T− δ

T

0

∫ T− δ
T−i

0
djdi = T 2 − δ + ln.

(
δ

T 2

)
,

where the last inequality holds under the assumption δ ≥ T .

Proposition 1. Assume δ ≥ T where T = q3 − g. The parameters of
Ẽ(δ) are [n = q6, k ≥ T 2 − δ + δ ln(δ/T 2), d ≥ δ].

In [8] Feng-Rao improved codes C̃(δ) over Fq2 [X1, Y1,X2, Y2]/I
(2)
q2

were
considered and a formula similar to the above proposition was derived
under a stronger assumption on δ. Feng-Rao improved codes are described
by means of their parity check matrix which is not very useful when
the aim is to construct a small-bias space. This is why we included the
description of Ẽ(δ) in the present paper. We have a proof that Ẽ(δ) =
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C̃(δ), however, we do not include it here as it has no implication for the
construction of small-bias spaces. Observe that to derive Proposition 1
we did not use detailed information about the Weierstrass semigroup Λ
but relied only on the genus and the number of roots of the Hermitian
polynomial. Proposition 1 can be generalized to hold for not only two
copies of Hermitian function fields but to arbitrary many such copies.
Such constructions, however, are not useful when dealing with small-bias
spaces so we do not treat them here.
From Proposition 1 and Theorem 2 we get a new class of ǫ-bias spaces:

Theorem 5. For any ǫ, 0 < ǫ < 1 using codes Ẽ(δ) as outer code in the
construction of Theorem 2 one can construct ǫ-bias spaces with

X ⊆ F
Ω(k)
2 , |X | = O

((
k

ǫ+ (1− ǫ) ln(1− ǫ)

) 4
3

)
. (8)

Proof. In the following we will use the substitution 1 − ǫ = δ/N which
follows from ǫ = (N − δ)/N . Assume δ >

√
N . We then have δ > T

which is the condition in Proposition 1. Note that δ >
√
N is equivalent

to ǫ < 1− (1/
√
N). For N → ∞ this becomes ǫ < 1 which is actually no

restriction at all. From the proposition we get

K

N
≥
(
q3 − g

q6

)2

− δ

q6
+

δ

q6
ln

(
δ

(q3 − g)2

)

≥ o(1) + 1− (1− ǫ) + (1− ǫ) ln(1− ǫ)

= o(1) + ǫ+ (1− ǫ) ln(1− ǫ).

With q2 = 2s we have

|X | ≤ 2s

s

(
k

o(1) + ǫ+ (1− ǫ) ln(1− ǫ)

)
.

But |X | = (2s)4 implies 2s = |X |1/4 and (8) has been demonstrated.

Theorem 6. Consider the family of ǫ-bias spaces in Theorem 5. Given
α ∈ R

+ choose ǫ = k−α and let k → ∞. We have

logk(|X |) = 4

3
+

8

3
α+ o(1). (9)

Proof. We have

logk(|X |) ≤ 4

3
− 4

3
logk(ǫ+ (1− ǫ) ln(1− ǫ)).

12



We now apply Taylors formula to derive ln(1− ǫ) = −ǫ− ǫ2/2(1 − c)2 for
some c ∈ [0, ǫ]. This produces

logk(|X |) ≤ 4

3
− 4

3
logk

(
ǫ+ (1− ǫ)(−ǫ− ǫ2

2(1 − ǫ)2
)

)

≤ 4

3
− 4

3
logk

(
ǫ2
(
2(1− ǫ)2 − ǫ2

(1− ǫ)2

))
.

With ǫ = k−α we arrive at (9).

4 Time complexity considerations

To build the multiset X in our construction we need to construct a gener-
ator matrix for the concatenated code. This involves the following tasks:

1. Build the generator matrix G1 for Ẽ(δ).

2. Express every entry of G1 as a binary vector giving us G2 (a matrix
with binary vectors as entries).

3. For every row in G2 we produce s = log2(q
2) rows. This is done by

taking cyclic shifts of all the vectors appearing in the row. We arrive
at a matrix G3.

4. Every entry in G3 is a vector of length s and it must be multiplied with
the s × 2s generator matrix of the Walsh-Hadamard code producing
G4.

The total cost in binary operations is estimated as follows:

1. Determining functions and points for the code construction is inexpen-
sive. To produce one entry costs O (log(N) log(log(N))) operations.
G1 is a K×N matrix. Using K ≤ N−D+1, ǫ = (N−D)/N , ǫ = k−α,

and k = K log2(N)/6 we arrive at K ≤ N
1

1+α (log2(N))
−α
1+α 6

α
1+α . So

the price for building G1 is O
(
N

2+α
1+α (log(N))

1
1+α log(log(N))

)
.

2. To produce one entry in G2 costs O
(
N

1
3 log(N

1
3 ) log(log(N

1
3 ))
)
op-

erations. That is, to produce G2 from G1 amounts to

O
(
N

7+4α
3+3α log(N)

1
1+α log(log(N))

)
operations.

3. There will be O
(
N

2+α
1+α (log(N))

1
1+α

)
entries in G3 each coming with

a cost of s operations. Altogether we have O
(
N

2+α
1+α (log(N))

2+α
1+α

)
op-

erations.
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4. The price for multiplying with a generator matrix for the Walsh-
Hadamard code is N

1
3 log(N) giving a total cost of

O
(
N

7+4α
3+3α (log(N))

2+α
1+α

)
(10)

operations for producing G4 from G3.

Clearly, the overall cost is that of (10). Note that (10) counts binary
operations in contrast to (6) which counts operations in Fq2 .

5 Small-bias spaces from norm-trace codes

The method developed by Ben-Aroya and Ta-Shma for Hermitian codes
in [2] were generalized to norm-trace codes by Matthews and Peachey
in [12]. Given r ≥ 2 consider the Cab curve [11]

X
qr−1
q−1 − Y qr−1 − Y qr−2 − · · · − Y q − Y

known as the norm-trace curve over Fqr [6]. Clearly, r = 2 corresponds to
the Hermitian function field. The following theorem from [12] coincides
with (3) when l = 4.

Theorem 7. Given an integer l, l ≥ 4, define r = ⌊(l + 2)/3⌋. Let k be
a positive integer and ǫ a real number, 0 < ǫ < 1 such that

ǫ
(
logv(1/ǫ)

) 1√
l

≤ k
−1√

l (11)

holds. Here, v is any fixed real number larger than 1. Using the norm-trace

function field over Fqr one can construct an ǫ-bias space X ⊆ F
Ω(k)
2 with

|X | = O



(

k

ǫl−
√
l logv(1/ǫ)

) l+1
l


 .

In the above theorem it is not completely clear how well the cases l ≥ 5
compete with the case l = 4. Below we address this question and also
compare the small-bias spaces from Theorem 7 with those achieved by
using the codes Ẽ(δ) as is done in the present paper.
We first translate Theorem 7 into the setting from Section 1 where for
increasing k and fixed α we consider a sequence of ǫ-bias multisets with
ǫ = k−α. Condition (11) from Theorem 7 then translates into

k1−α
√
l ≤ α logv(k).
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For fixed v, logv(k) = O
(
kβ
)
holds for any β > 0. Therefore we have

1− α
√
l ≤ logk(α).

Letting k → ∞ we get the condition

1√
l
≤ α.

Theorem 7 therefore guarantees that for any α ≥ 1/
√
l we can construct

an infinite sequence of ǫ-bias spaces with ǫ = k−α, X ⊆ F
Ω(k)
2 such that

logk(|X |) = l + 1

l
(1 + α(l −

√
l)) + o(1). (12)

Given an α and two integers l1, l2 ≥ 4 with α ≥ 1/
√
li, i = 1, 2 it is

clear from (12) that the best result is obtained by choosing the smallest
li. So the advantage of Theorem 7 over (3) boils down to the fact that
Theorem 7 allows for any α provided that the l is chosen accordingly
while (3) requires α ≥ 1/2. Recall from Section 3 that using the code
Ẽ(δ) in the construction of Theorem 2 one achieves

logk(|X |) = 4

3
+

8

3
α+ o(1) (13)

for any choice of α. We now compare this result with (12) ignoring of
course the o(1) parts. For fixed l (12) is a linear expression in α which is
smaller than the linear expression from (13) when α = 0. We now show
that for α = 1/

√
l (which is the smallest α allowed) (12) is larger than

(13) when l ≥ 5. It follows that none of the cases l ≥ 5 can compete with
the construction of the present paper. To show that (12) is larger than
(13) for α = 1/

√
l we substitute k =

√
l into (12)-(13) to get

1

k2
(k3 − 4

3
k2 − 5

3
k).

The function k3− 4
3k

2− 5
3k is positive for k belonging to the interval from

0 to approximately 2.119 and negative for higher values of k. Therefore
for all l ≥ 5 indeed (13) is better than (12).
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