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Emotional control - conditio sine qua non for
advanced artificial intelligences?

Claudius Gros

Abstract Humans dispose of two intertwined information processing pathways,
cognitive information processing via neural firing patterns and diffusive volume
control via neuromodulation. The cognitive information processing in the brain is
traditionally considered to be the prime neural correlate of human intelligence, clin-
ical studies indicate that human emotions intrinsically correlate with the activation
of the neuromodulatory system.

We examine here the question: Why do humans dispose of the diffusive emo-
tional control system? Is this a coincidence, a caprice of nature, perhaps a leftover
of our genetic heritage, or a necessary aspect of any advanced intelligence, being it
biological or synthetic?

We argue here that emotional control is necessary to solve the motivational prob-
lem, viz the selection of short-term utility functions, in the context of an environ-
ment where information, computing power and time constitute scarce resources.

1 Introduction

The vast majority of research in artificial intelligences isdevoted to the study of
algorithms, paradigms and philosophical implications of cognitive information pro-
cessing, like conscious reasoning and problem solving [1].Rarely considered is the
motivational problem - a highly developed AI needs to set andselect its own goals
and tasks autonomously.

We believe that it is necessary to consider the motivationalproblem in the context
of the observation that humans are infused with emotions, possibly to a greater
extend than any other species [2]. Emotions play a very central role in our lives, in
literature and human culture in general. Is this predominance of emotional states a
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coincidence, a caprice of nature, perhaps a leftover from times when we were still
‘primitives and brutes’, or perhaps a necessary aspect of any advanced intelligence?

The motivational problem is about the fundamental conundrum that all living in-
telligences face. From the myriads of options and behavioral strategies it needs to
select a single route of action at any given time. These decisions are to be taken
considering three limited resources, the information disposed of about the present
and the future state of the world, the time available to take the decision and the com-
putational power of its supporting hard- or wetware. Here weargue that emotional
control is deeply entwined with both short- and long-term decision making and al-
lows to compute in real time approximate solutions to the motivational problem.

When considering the relation between emotional control and the motivational
problem one needs to discuss the nature of non-biological intelligences for which
this issue is of relevance. We believe that, in the long term,there will be two major
developmental tracks in AI research - focused artificial intelligences and organismic
universal synthetic intelligences. We believe that the emotional control constitutes
an inner core functionality for any universal intelligenceand not a secondary adden-
dum.

2 Intelligent Intelligences

We start with some terminology and a loose categorization ofpossible forms of
intelligence.

Focused Artificial Intelligences We will use the termfocused AIfor what consti-
tutes today’s mainstream research focus in artificial intelligence and robotics. These
are highly successful and highly specialized algorithmic problem solvers like the
chess playing program Deep Blue [8], the DARPA-like autonomous car driving sys-
tems [9] and Jeopardy software champion Watson [10].

Focused artificial intelligences are presently the only type of artificial intelli-
gences suitable for commercial and real-world applications. In the vast majority
of today’s application scenarios a focused intelligence isexactly what is needed, a
reliable and highly efficient solution solver or robotic controller.

Focused AIs may be able to adapt to changing demands and have some forms of
built-in, application specific learning capabilities. They are however characterized
by two features.

• Domain specificityA chess playing software is not able to steer a car. It is much
more efficient to develop two domain specific softwares, one for chess and one
for driving, than to develop a common platform.

• Maximal a priori informationThe performance real-world applications are gen-
eraly greatly boosted when incorporating a maximal amount of a priori infor-
mation into the architecture. Deep Blue contains the compressed knowledge of
hundreds of years of human chess playing, the DARPA racing car software the
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Newton laws of motion and friction, the algorithms do not need to discover and
acquire this knowledge from proper experiences.

Focused AI sees a very rapid development, increasingly driven by commercial ap-
plications. They will become extremely powerful within thenext decades and it is
questionable whether alternative forms of intelligences,whenever the may be avail-
able in the future, will ever be able to compete with focused AI on economical
grounds. It may very well be, though difficult to foretell, that focused AI will al-
ways yield a greater return on investment than more general types of intelligences
with their motivational issues.

Synthetic Intelligences The term ‘artificial intelligence’ has been used and abused
in myriads of ways over the past decades. It is standardly in use for mainstream
AI research, or focused AI as described above. We will use here the termsynthetic
intelligencefor alternative forms of intelligences, distinct from todays mainstream
route of AI and robotics research.

Universal Intelligences It is quite generally accepted that the human brain is an
exemplification of ‘universal’ or ‘generic’ intelligence.The same wetware and neu-
ral circuitry can be used in many settings - there are no new brain protuberances
being formed when a child learns walking, speaking, operating his fairy-tale player
or the alphabet at elementary school. There are parts of the brain more devoted to vi-
sual, auditory or linguistic processing, but rewiring of the distinct incoming sensory
data streams will lead to reorganization processes of the respective cortical neural
circuitry allowing it to adapt to new tasks and domains.

The human brain is extremely adaptive, a skilled car driver will experience, to a
certain extend, its car as an extension of his own body. A new brain-computer inter-
ference, when available in the future, will be integrated and treated as a new sensory
organ, on equal footing with the biological pre-existing senses. Human intelligence
is to a large extend not domain specific, its defining trait is universality.

Organismic Intelligences An ‘organismic intelligence’ is a real-world or simu-
lated robotic system which has the task to survive. It is denotedorganismicsince
the survival task is generically formulated as the task to keep the support unit, the
body, functional [3, 4].

Humans are examples of organismic intelligences. An organismic synthetic in-
telligence may be universal, but not necessarily. The term ‘organismic’ is not to be
confused with ‘embodiment’. Embodied AI deals with the question whether consid-
ering the physical functionalities of robots and bodies is helpful, of even essential,
for the understanding of cognitive information processingand intelligence in gen-
eral [5, 6, 7].

Cognitive System The term ‘cognitive system’ is used in various ways in the lit-
erature, mostly as a synonym for a cognitive architecture, viz for an information
processing domain-specific software. I like to reserve the termcognitive systemfor
an intelligence which is both universal and organismic, mayit be biological or syn-
thetic.
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Fig. 1 Illustration of the
(hypothetical) complexity co-
nundrum, which regards the
speculation that the mental
capabilities of biological or
synthetic intelligences (right)
might be systematically too
low to fully understand the
complexity of their own
supporting cognitive architec-
tures (left). In this case the
singularity scenario would be
void.
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Humans are biological cognitive systems in this sense and most people would
expect, one can however not foretell with certainty, that ‘true’ or ‘human level AI’
would eventually be realized as synthetic cognitive systems. It is an open and unre-
solved questions, as a matter of principle, whether forms ofhuman level AI which
are not cognitive systems in above sense, are possible at all.

Human Level Artificial Intelligences An ultimate goal of research in artificial and
synthetic intelligences is to come up with organizational principles for intelligences
of human or higher level. How and when this goal will be achieved is presently in
the air, a few aspects will be discussed in the next section. This has not precluded an
abundance of proposals on how to test for human-level intelligences, like the Turing
test [11] or the capability to perform scientific research. Some people believe that
human intelligence will have been achieved when we do not notice it.

The Complexity Conundrum Regarding the issue when and how humanity will
develop human level intelligences we discuss here shortly the possible occurance of
a ‘complexity paradox’, for which we will use the termcomplexity conundrum.

Every intelligence arises form a highly organized soft- or wetware. One may as-
sume, though this is presently nothing more than a working hypothesis, that more
and more complex brains and software architectures are needed for higher and
higher intelligences. The question is than, whether a brainwith a certain degree
of complexity will give raise to a level on intelligence capable to understand its own
wetware, compare Fig. 1. It may be, as a matter of principle, that the level of com-
plexity a certain level of intelligence is a able to handle isalways below the level of
complexity of its own supporting architecture.

This is really a handwaving and rather philosophical question with many open
ends. Nevertheless one may speculate whether the apparent difficulties of present-
day neuroscience research to carve out the overall working principles of the brain
may be in part due to a complexity conundrum. Equivalently, considering the suc-
cesses and the failures of over half a century of AI research,our present near-to
complete ignorance of the overall architectural principles necessary for the develop-
ment of eventual human level AI may be routed similarly in either a soft or a strong
version of the complexity conundrum.
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Fig. 2 Mainstream architecture for a hypothetical human-level artificial intelligence. The motiva-
tional problem would be delegated to a secondary level responsible of selecting appropriate mod-
ules for problems and tasks which are not autonomously generated but presumably presented to
the AI by human supervisors. Higher cognitive states like consciousness are sometimes postulated
to emerge spontaneously with raising complexity from self-organizational principles, emotional
control is generically regarded as a later-stage add-on, ifat all.

The complexity conundrum would however not, even if true, preclude humanity
to develop human level artificial or synthetic intelligences in the end. As a last re-
sort one may proceed by trial and error, viz using evolutionary algorithms, or via
brute force reverse engineering, if feasible. The notion ofa complexity conundrum
is relevant also to the popular concept of a singularity, a postulated runaway self
improving circle of advanced intelligences [12, 13]. The complexity conundrum,
if existing in any form, would render the notion of a singularity void, as it would
presumably apply to intelligences at all levels.

3 Routes to Intelligence

There are presently no roadmaps, either individually proposed or generally ac-
cepted, for research and development plans leading to the ultimate goal of highly
advanced intelligences. Nevertheless there are two main, conceptually distinct, ap-
proaches.

3.1 From focused to general intelligence?

The vast majority of present-day research efforts is devoted to the development of
high-performing focused intelligences. It is to be expected that we will see advances,
within the next decades, along this roadmap for hundreds andmany more applica-
tion domains.

There is no generally accepted blueprint on how to go beyond focused intelli-
gences, a possible scenario is presented in Fig. 2. A logicalnext step would be to
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hook up a vast bank of specialized algorithms, the focused intelligences, adding a
second layer responsible for switching between them. This second layer would then
select the algorithm most appropriate for the problem at hand and could contain
suitable learning capabilities.

This kind of selection layer constitutes a placebo for the motivational problem,
the architecture presented in Fig. 2 would not be able to autonomously generate its
own goals. This is however not a drawback for industrial and for the vast majority
of real-world applications, for which the artificial intelligence is expected just to
efficiently solve problems and tasks presented to it by humanusers and supervisors.

In a third step it is sometimes expected that cognitive architectures may develop
spontaneously consciousness with raising levels of complexity. This speculation,
particularly popular with science-fiction media, is presently void of any supporting
or contrarian scientific basis [14, 15]. Interesting is the tendency of mainstream AI
to discuss emotions as secondary features, mostly useful tofacilitate human-robot
interactions [16]. Emotions are generically not attributed a central role in cognitive
architectures withing mainstream AI.

One could imagine that the kind of cognitive architecture presented in Fig. 2 ap-
proaches, with the expansion of its basis of focused intelligences, step by step the
goal of a universal intelligence able to handle nearly any conceivable situation. It
is unclear however which will be the pace of progress towardsthis goal. It may be
that progress will be initially very fast, slowing then however down substantially
when artificial intelligence with elevated levels of intellectual capabilities have been
successfully developed. This kind of incremental slowing-down is not uncommon
for the pace of scientific progress in general. Life expectancy has been growing lin-
early, to give an example, over the last two centuries. The growth in life expectancy
is extremely steady and still linear nowadays, despite veryrapidly growing med-
ical research efforts. Not only in economics, but also in science there are generic
decreasing returns on growing investments. Similarly, vast increases in the number
and in the power of the underlying array of focused intelligences may, in the end,
lead to only marginal advances towards universality.

3.2 Universal learning systems

The only real-world existing example of an advanced cognitive system is the mam-
malian brain. It is hence reasonable to consider biologically inspired cognitive ar-
chitectures. Instead of reverse engineering the human brain, one tries then to deeply
understand the general working principles of the human brain.

There are good arguments that self-organization and general working principles
are indeed dominant driving forces both for the developmentof the brain and for
its ongoing functionality [17, 18]. Due to the small number of genes in the human
genome, with every gene encoding only a single protein, direct genetic encoding
of specific neural algorithms has either to be absent all together in the brain or be
limited to only a very small number of vitally important features.
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Fig. 3 Architecture for biologically inspired universal synthetic intelligences, viz of cognitive sys-
tems. The basis would be given by a relatively small number ofgenetically encode universal op-
erating principles, with emotional control being central for the further development through self-
organized learning processes. How consciousness would arise in this setting is not known presently,
it is however regarded as a prerequisite for higher intellectual capabilities such as abstract reason-
ing and knowledge specialization.

It is hence plausible that a finite number of working principles, possibly as small
as a few hundred, may be enough for a basic understanding of the human brain,
with higher levels of complexity arising through self-organization. Two examples
for general principles are ‘slowness’ [19] for view-invariant object recognition and
‘universal prediction tasks’ [3] for the autonomous generation of abstract concepts.

Universality, in the form of operating principles, lies therefore at the basis of
highly developed cognitive systems, compare Fig. 3. This isin stark contrast to
mainstream AI, where universality is regarded as the long-term goal, to be reached
when starting from advanced focused intelligences.

One of the genetically encoded control mechanisms at the basis of a cognitive
system is emotional control, which we will discuss in more detail in the next section.
Emotional control is vitally important for the functioningof a universal learning
system, and not a secondary feature which may be added at a later stage.

• LearningIn the brain two dominant learning mechanisms are known. Hebbian-
type synaptic plasticity which is both sub-conscious and automatic, and reward-
induced learning, with the rewards being generated endogenously through the
neuromodulatory control system, the later being closely associated with the ex-
perience of motions.

• Goal selectionAdvanced cognitive systems are organismic and hence need to
constantly select their short- and long term goals autonomously, with emotional
weighing of action alternatives playing a central role.

It is not a coincidence, that the emotional control system isrelevant for above two
functionalities, which are deeply inter-dependent. Therecan be no efficient goal
selection without learning from successes and failure, vizwithout reward induced
learning processes.
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sensory data input stream

motor action output

autonomous

Fig. 4 Fast and slow variables have distinct functionalities in the brain, with the operating modus
(mood) being set by the slow variables and the actual cognitive processes, which are either input
induced or autonomous [20, 21], being performed by the fast variables. The adaption of the slow
variables (metalearning) is the task of the diffusive neuromodulatory system (emotional control).

4 Emotional Control

Emotions are neurobiologically not yet precisely defined. There are however sub-
stantial indications from clinical studies that emotions are intrinsically related to
either the tonic or the phasic activation of the neuromodulatory system [22]. For
this reason we will denote the internal control circuit involving neuromodulation,
compare Fig. 4,emotional control. We will also use the expressiondiffusive emo-
tional controlsince neuromodulation acts as a diffusive volume effect.

One needs to differentiate between the functionality of emotions in the con-
text of cognitive system theory, discussed here, and the experience (the qualia)
of emotions. It is presently an open debate whether the body is necessary for
the experience of emotions and moods, which may be induced bythe propri-
oceptual sensing of secondary bodily reactions [23]. The origin of emotional
experience is not subject of our deliberations.

4.1 Neuromodulation and metalearning

Animals dispose of a range of operating modi, which one may identify with moods
or emotional states. A typical example of a set of two complementary states is ex-
ploitation vs. exploration: When exploitive the animal is focused, concentrated on
a given task and decisive. In the explorative state the animal is curious, easily dis-
tracted and prone to learn about new aspects of his environment. These moods are
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induced by the tonic, respectively the phasic activation ofthe neuromodulatory sys-
tem [24], the main agents being Dopamine, Serotonin, Norepinephrine and Acetyl-
choline.

When using the language of dynamical system theory we can identify the task of
the neuromodulatory system with metalearning [25]. Any complex system disposes
of processes progressing on distinct time scales. There maybe in principle a wide
range of time scales, the simplest classification is to consider slow and fast processes
driven respectively by slow and fast variables.

Cognitive information processing is performed in the brainthrough neural fir-
ing and synaptic plasticity, corresponding to the fast variables in terms of dynam-
ical system theory [3]. The general operating modus of the neural circuitry, like
the susceptibility to stimuli, the value of neural thresholds or the pace of synaptic
plasticities are slow degrees of freedom. The adaption of slow degrees of freedom to
changing tasks is the realm of metalearning, which in the brain is preformed through
the neuromodulatory system, compare Fig. 4.

Metalearning is a necessary component of any complex dynamical system and
hence also for any evolved synthetic or biological intelligence. It is therefore not sur-
prising that the human brain disposes of a suitable mechanism. Metalearning is also
intrinsically diffusive, as it involves the modulation notof individual slow variables,
metalearning is about the modulation of the operating modusof entire dynamical
subsystems. It is hence logical that the metalearning circuitry of the brain involves
neuromodulatory neurons which disperse their respective neuromodulators, when
activated, over large cortical or subcortical areas, modulating the behavior of down-
stream neural populations in large volumes.

An interesting and important question regards the guiding principles for meta-
learning. An animal has at its disposal a range of distinct behaviors and moods,
foraging, social interaction, repose, exploration, and soon. Any cognitive system
is hence faced with a fundamental time allocation problem, what to do over the
course of the day. The strategy will in general not be to maximize time allocation
of one type of behavior, say foraging, at the expense of all others, but to seek an
equilibrated distribution of behaviors. This guiding principle of metalearning has
been denoted ‘polyhomeostatic optimization’ [26].

4.2 Emotions and the motivational problem

It is presently unclear what distinguishes metalearning processes which are expe-
rienced as emotional from those which are unconscious and may hence be termed
‘neutral’. It has been proposed that the difference may be that emotional control
has a preferred level of activation, neutral control not [27, 28]. When angry one
generally tries behavioral strategies aimed at reducing the level of angriness and
internal rewards are generated when successful. In this view emotional control is in-
trinsically related to behavior and learning, in agreementwith neuro-psychological
observations [24, 2, 29].
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Emotional states induce, quite generically, problem solving strategies. The cog-
nitive system either tries to stay in its present mood, in case it is associated with
positive internal rewards, or looks for ways to remove the causes for its current
emotional state, in case it is associated with negative internal rewards. Emotional
control hence represents a way, realized in real-world intelligences, to solve the mo-
tivational problem, determining the utility function the intelligence tries to optimize
at any given point of time.

A much discussed alternative to emotional control is straightforward maximiza-
tion of an overall utility function [30]. This paradigm is highly successful when
applied to limited and specialized tasks, like playing chess, and is as such important
for any advanced intelligence. Indeed we argue that emotional control determines
the steady-state utility function. As an example consider playing chess. Your util-
ity function may either consist in trying to beat the opponent chess player or to be
defeated by your opponent (in a non-so-evident way) when playing together with
your son or daughter. These kinds of utility functions are shaped in real life by our
emotional control mechanisms.

It remains however doubtful whether it would be possible to formulate an overall,
viz a long-term utility function for a universal intelligence and to compute in real
time its gradients. Even advanced hyper-intelligences will dispose of only an expo-
nentially small knowledge about the present and the future state of the world, pre-
diction tasks and information acquisition is generically NP-hard (non-polynomial)
[31, 32, 33]. Time and computing power (however large it may be) will forever
remain, relatively seen, scarce resources. It is hence likely that advanced artificial
intelligences will be endowed with ‘true’ synthetic emotions, the perspective of a
hyper-intelligent robot waiting emotionless in its corner, until its human boss calls
him to duty, seems implausible [34, 35, 36].

Any advanced intelligence needs to be a twofold universal learning system. The
intelligent system needs to be on one side able to acquire anykind of information
in a wide range of possible environments and on the other sideto determine au-
tonomously what to learn, viz solve the time allocation problem. The fact that both
facets of learning are regulated through diffusive emotional control in existing ad-
vanced intelligences suggests that emotional control may be a conditio sine qua non
for any, real-world or synthetic, universal intelligence.

5 Hyper-emotional trans-human intelligences?

Looking around at the species on our planet one may surmise that increasing cog-
nitive capabilities go hand in hand with rising complexity and predominance of
emotional states [2]. The rational is very straightforward. An animal with say only
two behavioral patterns at its disposition, e.g. sleeping and foraging, does not need
dozens of moods and emotions, in contrast to animals with a vast repertoire of po-
tentially complex behaviors.
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This observation is consistent with the theory developed here, that metalearning
as a diffusive emotional control system is a necessary component for any synthetic
and biological intelligence. It is also plausible that the complexity the metalearning
control needs to increase adequately with increasing cognitive capacities.

It is hence amusing to speculate, whether synthetic intelligences with higher
and higher cognitive capabilities may also become progressively emotional. Super-
human intelligences would then also be hyper-emotional. Anoutlook in stark con-
trast to the mainstream view of hyper-rational robots, which presumes that emo-
tional states will be later-stage addendums to high performing artificial intelli-
gences.
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