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Emotional control - conditio sine qua non for
advanced artificial intelligences?

Claudius Gros

Abstract Humans dispose of two intertwined information processiathways,

cognitive information processing via neural firing pateand diffusive volume
control via neuromodulation. The cognitive informatiormpessing in the brain is
traditionally considered to be the prime neural correléteuonan intelligence, clin-
ical studies indicate that human emotions intrinsicallyrelate with the activation
of the neuromodulatory system.

We examine here the question: Why do humans dispose of thesig# emo-
tional control system? Is this a coincidence, a caprice aireaperhaps a leftover
of our genetic heritage, or a necessary aspect of any advamedligence, being it
biological or synthetic?

We argue here that emotional control is necessary to sodvtitivational prob-
lem, viz the selection of short-term utility functions, imet context of an environ-
ment where information, computing power and time congifgiarce resources.

1 Introduction

The vast majority of research in artificial intelligencesdevoted to the study of
algorithms, paradigms and philosophical implicationsajmitive information pro-
cessing, like conscious reasoning and problem solvingjaiely considered is the
motivational problem - a highly developed Al needs to set seldct its own goals
and tasks autonomously.

We believe that it is necessary to consider the motivatipralem in the context
of the observation that humans are infused with emotionssipty to a greater
extend than any other speci€$ [2]. Emotions play a very akrtle in our lives, in
literature and human culture in general. Is this predontgeaif emotional states a
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coincidence, a caprice of nature, perhaps a leftover fraregiwhen we were still
‘primitives and brutes’, or perhaps a necessary aspectyoddvanced intelligence?

The motivational problem is about the fundamental conumdhat all living in-
telligences face. From the myriads of options and behavstrategies it needs to
select a single route of action at any given time. These mecsare to be taken
considering three limited resources, the information as&al of about the present
and the future state of the world, the time available to takedecision and the com-
putational power of its supporting hard- or wetware. Hereanguie that emotional
control is deeply entwined with both short- and long-terrisien making and al-
lows to compute in real time approximate solutions to theivatibnal problem.

When considering the relation between emotional contrdlthie motivational
problem one needs to discuss the nature of non-biologitalligences for which
this issue is of relevance. We believe that, in the long téhere will be two major
developmental tracks in Al research - focused artificialligences and organismic
universal synthetic intelligences. We believe that the tamnal control constitutes
an inner core functionality for any universal intelligerazed not a secondary adden-
dum.

2 Intelligent Intelligences

We start with some terminology and a loose categorizatiopasfsible forms of
intelligence.

Focused Artificial Intelligences We will use the ternfocused Affor what consti-
tutes today’s mainstream research focus in artificial ligishce and robotics. These
are highly successful and highly specialized algorithnrimhem solvers like the
chess playing program Deep Bllie [8], the DARPA-like autonasxcar driving sys-
tems [9] and Jeopardy software champion Wat5oh [10].

Focused artificial intelligences are presently the onlyetyp artificial intelli-
gences suitable for commercial and real-world applicatidn the vast majority
of today’s application scenarios a focused intelligenaexactly what is needed, a
reliable and highly efficient solution solver or robotic ¢ailer.

Focused Als may be able to adapt to changing demands and draesfarms of
built-in, application specific learning capabilities. Jha&re however characterized
by two features.

e Domain specificityA chess playing software is not able to steer a car. It is much
more efficient to develop two domain specific softwares, aneliess and one
for driving, than to develop a common platform.

e Maximal a priori informationiThe performance real-world applications are gen-
eraly greatly boosted when incorporating a maximal amofirgt priori infor-
mation into the architecture. Deep Blue contains the cosga@ knowledge of
hundreds of years of human chess playing, the DARPA racingafavare the
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Newton laws of motion and friction, the algorithms do notaée discover and
acquire this knowledge from proper experiences.

Focused Al sees a very rapid development, increasinglgdidy commercial ap-
plications. They will become extremely powerful within thext decades and it is
questionable whether alternative forms of intelligenedgnever the may be avail-
able in the future, will ever be able to compete with focusédA economical
grounds. It may very well be, though difficult to foretellathfocused Al will al-
ways yield a greater return on investment than more gengraktof intelligences
with their motivational issues.

Synthetic Intelligences The term ‘artificial intelligence’ has been used and abused
in myriads of ways over the past decades. It is standardlysenfar mainstream

Al research, or focused Al as described above. We will use tier termsynthetic
intelligencefor alternative forms of intelligences, distinct from tggamainstream
route of Al and robotics research.

Universal Intelligences It is quite generally accepted that the human brain is an
exemplification of ‘universal’ or ‘generic’ intelligenc&he same wetware and neu-
ral circuitry can be used in many settings - there are no naintprotuberances
being formed when a child learns walking, speaking, opegdtis fairy-tale player
or the alphabet at elementary school. There are parts ofétenore devoted to vi-
sual, auditory or linguistic processing, but rewiring of ttistinct incoming sensory
data streams will lead to reorganization processes of thgertive cortical neural
circuitry allowing it to adapt to new tasks and domains.

The human brain is extremely adaptive, a skilled car drivilrexperience, to a
certain extend, its car as an extension of his own body. A mamktomputer inter-
ference, when available in the future, will be integrated #aated as a new sensory
organ, on equal footing with the biological pre-existingses. Human intelligence
is to a large extend not domain specific, its defining trainisersality.

Organismic Intelligences An ‘organismic intelligence’ is a real-world or simu-
lated robotic system which has the task to survive. It is tighorganismicsince
the survival task is generically formulated as the task tepkilhe support unit, the
body, functionall[3.4].

Humans are examples of organismic intelligences. An oggaici synthetic in-
telligence may be universal, but not necessarily. The temganismic’ is not to be
confused with ‘embodiment’. Embodied Al deals with the diggswhether consid-
ering the physical functionalities of robots and bodiesakpful, of even essential,
for the understanding of cognitive information processang intelligence in gen-

eral [B,[6/7].

Cognitive System The term ‘cognitive system’ is used in various ways in the lit
erature, mostly as a synonym for a cognitive architectuiiefor an information
processing domain-specific software. | like to reserve ¢hmtognitive systerfor
an intelligence which is both universal and organismic, iih&g biological or syn-
thetic.
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Fig. 1 lllustration of the complexity complexity

(hypothetical) complexity co-
nundrum, which regards the
speculation that the mental

capabilities of biological or
synthetic intelligences (right)
might be systematically too
low to fully understand the
complexity of their own
supporting cognitive architec-
tures (left). In this case the
singularity scenario would be
void.

of cognitive architecture
of intellectual capabilities

Humans are biological cognitive systems in this sense anst people would
expect, one can however not foretell with certainty, thatét or ‘human level Al
would eventually be realized as synthetic cognitive systdiis an open and unre-
solved questions, as a matter of principle, whether fornfsuofian level Al which
are not cognitive systems in above sense, are possible at all

Human Level Artificial Intelligences An ultimate goal of research in artificial and
synthetic intelligences is to come up with organizationalgples for intelligences
of human or higher level. How and when this goal will be achikis presently in
the air, a few aspects will be discussed in the next sectibis.ffas not precluded an
abundance of proposals on how to test for human-leveligégites, like the Turing
test [11] or the capability to perform scientific researchm® people believe that
human intelligence will have been achieved when we do natedtt

The Complexity Conundrum Regarding the issue when and how humanity will
develop human level intelligences we discuss here shdmlpbssible occurance of
a ‘complexity paradox’, for which we will use the teromplexity conundrum

Every intelligence arises form a highly organized soft- etware. One may as-
sume, though this is presently nothing more than a workingpthesis, that more
and more complex brains and software architectures areedefed higher and
higher intelligences. The question is than, whether a braih a certain degree
of complexity will give raise to a level on intelligence céato understand its own
wetware, compare Fifl 1. It may be, as a matter of principk, the level of com-
plexity a certain level of intelligence is a able to handlalisays below the level of
complexity of its own supporting architecture.

This is really a handwaving and rather philosophical qoestvith many open
ends. Nevertheless one may speculate whether the appéfiendtées of present-
day neuroscience research to carve out the overall workingiples of the brain
may be in part due to a complexity conundrum. Equivalentipsidering the suc-
cesses and the failures of over half a century of Al researghpresent near-to
complete ignorance of the overall architectural prin@piecessary for the develop-
ment of eventual human level Al may be routed similarly ilneita soft or a strong
version of the complexity conundrum.
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Fig. 2 Mainstream architecture for a hypothetical human-levédieial intelligence. The motiva-
tional problem would be delegated to a secondary level resple of selecting appropriate mod-
ules for problems and tasks which are not autonomously gewibut presumably presented to
the Al by human supervisors. Higher cognitive states likesctousness are sometimes postulated
to emerge spontaneously with raising complexity from seffanizational principles, emotional
control is generically regarded as a later-stage add-@u,af.

The complexity conundrum would however not, even if truechrde humanity
to develop human level artificial or synthetic intelligeadée the end. As a last re-
sort one may proceed by trial and error, viz using evolutipradgorithms, or via
brute force reverse engineering, if feasible. The notioa cbmplexity conundrum
is relevant also to the popular concept of a singularity, stydated runaway self
improving circle of advanced intelligences [12] 13]. Thengexity conundrum,
if existing in any form, would render the notion of a singitiavoid, as it would
presumably apply to intelligences at all levels.

3 Routes to Intelligence

There are presently no roadmaps, either individually psegoor generally ac-
cepted, for research and development plans leading to timeat® goal of highly
advanced intelligences. Nevertheless there are two mairteptually distinct, ap-
proaches.

3.1 From focused to general intelligence?

The vast majority of present-day research efforts is deltighe development of
high-performing focused intelligences. It is to be expdthat we will see advances,
within the next decades, along this roadmap for hundredsyanty more applica-
tion domains.

There is no generally accepted blueprint on how to go beyondsed intelli-
gences, a possible scenario is presented in[FFig. 2. A log&dlstep would be to
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hook up a vast bank of specialized algorithms, the focustdliences, adding a
second layer responsible for switching between them. Hdersd layer would then
select the algorithm most appropriate for the problem athemd could contain
suitable learning capabilities.

This kind of selection layer constitutes a placebo for thaivational problem,
the architecture presented in Fig. 2 would not be able toreumusly generate its
own goals. This is however not a drawback for industrial ardfie vast majority
of real-world applications, for which the artificial intejence is expected just to
efficiently solve problems and tasks presented to it by huasans and supervisors.

In a third step it is sometimes expected that cognitive &echires may develop
spontaneously consciousness with raising levels of coxiplelhis speculation,
particularly popular with science-fiction media, is prabewoid of any supporting
or contrarian scientific basis [114,115]. Interesting is thedency of mainstream Al
to discuss emotions as secondary features, mostly usefatitidate human-robot
interactions[[16]. Emotions are generically not attriloéecentral role in cognitive
architectures withing mainstream Al.

One could imagine that the kind of cognitive architecturesgnted in Fid.12 ap-
proaches, with the expansion of its basis of focused igetices, step by step the
goal of a universal intelligence able to handle nearly anycedvable situation. It
is unclear however which will be the pace of progress towtridsgoal. It may be
that progress will be initially very fast, slowing then hovee down substantially
when artificial intelligence with elevated levels of inegdtual capabilities have been
successfully developed. This kind of incremental slowitogvn is not uncommon
for the pace of scientific progress in general. Life expentdras been growing lin-
early, to give an example, over the last two centuries. Thestrin life expectancy
is extremely steady and still linear nowadays, despite vapydly growing med-
ical research efforts. Not only in economics, but also iresce there are generic
decreasing returns on growing investments. Similarlyt vaseases in the number
and in the power of the underlying array of focused inteliges may, in the end,
lead to only marginal advances towards universality.

3.2 Universal learning systems

The only real-world existing example of an advanced cogaslystem is the mam-
malian brain. It is hence reasonable to consider biololyi¢gaspired cognitive ar-
chitectures. Instead of reverse engineering the human,lmaé tries then to deeply
understand the general working principles of the humambrai

There are good arguments that self-organization and glemerking principles
are indeed dominant driving forces both for the developrog¢ithe brain and for
its ongoing functionality[[1[7, 18]. Due to the small numbégenes in the human
genome, with every gene encoding only a single proteinctigenetic encoding
of specific neural algorithms has either to be absent allthegen the brain or be
limited to only a very small number of vitally important feaes.
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Fig. 3 Architecture for biologically inspired universal syntteeintelligences, viz of cognitive sys-
tems. The basis would be given by a relatively small numbegeoietically encode universal op-
erating principles, with emotional control being centr@l the further development through self-
organized learning processes. How consciousness woskliarhis setting is not known presently,
it is however regarded as a prerequisite for higher intelllcapabilities such as abstract reason-
ing and knowledge specialization.

Itis hence plausible that a finite number of working prineglpossibly as small
as a few hundred, may be enough for a basic understanding dfuiman brain,
with higher levels of complexity arising through self-onjgation. Two examples
for general principles are ‘slowness™[19] for view-invaami object recognition and
‘universal prediction tasks’[3] for the autonomous getieraof abstract concepts.

Universality, in the form of operating principles, lies théore at the basis of
highly developed cognitive systems, compare FEig. 3. Thim istark contrast to
mainstream Al, where universality is regarded as the l@mgyigoal, to be reached
when starting from advanced focused intelligences.

One of the genetically encoded control mechanisms at this b&s cognitive
system is emotional control, which we will discuss in mor&adén the next section.
Emotional control is vitally important for the functioningf a universal learning
system, and not a secondary feature which may be added at atage.

e Learningln the brain two dominant learning mechanisms are known biidets
type synaptic plasticity which is both sub-conscious andmatic, and reward-
induced learning, with the rewards being generated endaginthrough the
neuromodulatory control system, the later being closetpeiated with the ex-
perience of motions.

e Goal selectiorAdvanced cognitive systems are organismic and hence need to

constantly select their short- and long term goals autonmhypwith emotional
weighing of action alternatives playing a central role.

It is not a coincidence, that the emotional control systenelisvant for above two
functionalities, which are deeply inter-dependent. Theae be no efficient goal
selection without learning from successes and failurewwihout reward induced
learning processes.
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Fig. 4 Fast and slow variables have distinct functionalities mlbhain, with the operating modus
(mood) being set by the slow variables and the actual cognifiocesses, which are either input
induced or autonomous [20,121], being performed by the fasables. The adaption of the slow
variables (metalearning) is the task of the diffusive nexadulatory system (emotional control).

4 Emotional Control

Emotions are neurobiologically not yet precisely defineldefe are however sub-
stantial indications from clinical studies that emotiome atrinsically related to

either the tonic or the phasic activation of the neuromamasystem[[2R]. For

this reason we will denote the internal control circuit iwing neuromodulation,

compare Figlhemotional contral We will also use the expressiatiffusive emo-

tional controlsince neuromodulation acts as a diffusive volume effect.

One needs to differentiate between the functionality of gons in the con-
text of cognitive system theory, discussed here, and theresqe (the qualia)
of emotions. It is presently an open debate whether the odgdéessary for
the experience of emotions and moods, which may be inducéeyyropri-
oceptual sensing of secondary bodily reactions [23]. Tlhgiroof emotional
experience is not subject of our deliberations.

4.1 Neuromodulation and metalearning

Animals dispose of a range of operating modi, which one meantify with moods
or emotional states. A typical example of a set of two comgletary states is ex-
ploitation vs. exploration: When exploitive the animal eicfised, concentrated on
a given task and decisive. In the explorative state the drnigmairious, easily dis-
tracted and prone to learn about new aspects of his envinonihieese moods are



Diffusive emotional control 9

induced by the tonic, respectively the phasic activatiotihefneuromodulatory sys-
tem [24], the main agents being Dopamine, Serotonin, Naegirine and Acetyl-
choline.

When using the language of dynamical system theory we cantifigé¢he task of
the neuromodulatory system with metalearning [25]. Any ptax system disposes
of processes progressing on distinct time scales. Thereb@ay principle a wide
range of time scales, the simplest classification is to camsilow and fast processes
driven respectively by slow and fast variables.

Cognitive information processing is performed in the brarough neural fir-
ing and synaptic plasticity, corresponding to the fastaklas in terms of dynam-
ical system theory(|3]. The general operating modus of thealecircuitry, like
the susceptibility to stimuli, the value of neural threstsobr the pace of synaptic
plasticities are slow degrees of freedom. The adaptiorowf degrees of freedom to
changing tasks is the realm of metalearning, which in thmlisgreformed through
the neuromodulatory system, compare Elg. 4.

Metalearning is a necessary component of any complex dy@system and
hence also for any evolved synthetic or biological inteltige. It is therefore not sur-
prising that the human brain disposes of a suitable mecmaMgtalearning is also
intrinsically diffusive, as it involves the modulation raftindividual slow variables,
metalearning is about the modulation of the operating madwentire dynamical
subsystems. It is hence logical that the metalearning itiycof the brain involves
neuromodulatory neurons which disperse their respectugamodulators, when
activated, over large cortical or subcortical areas, matihg the behavior of down-
stream neural populations in large volumes.

An interesting and important question regards the guidimgcples for meta-
learning. An animal has at its disposal a range of distintiab®rs and moods,
foraging, social interaction, repose, exploration, an@isoAny cognitive system
is hence faced with a fundamental time allocation probletmatwo do over the
course of the day. The strategy will in general not be to mé&eéntime allocation
of one type of behavior, say foraging, at the expense of akkrst but to seek an
equilibrated distribution of behaviors. This guiding mipple of metalearning has
been denoted ‘polyhomeostatic optimizatidn’l[26].

4.2 Emotions and the motivational problem

It is presently unclear what distinguishes metalearnirgg@sses which are expe-
rienced as emotional from those which are unconscious arycherace be termed
‘neutral’. It has been proposed that the difference may la¢ émotional control
has a preferred level of activation, neutral control not, [2&]. When angry one
generally tries behavioral strategies aimed at reducieddtel of angriness and
internal rewards are generated when successful. In thisesieotional control is in-
trinsically related to behavior and learning, in agreenvéittt neuro-psychological

observationd 24,12, 29].
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Emotional states induce, quite generically, problem sgj\gtrategies. The cog-
nitive system either tries to stay in its present mood, iredag associated with
positive internal rewards, or looks for ways to remove theses for its current
emotional state, in case it is associated with negativenateewards. Emotional
control hence represents a way, realized in real-worldligémces, to solve the mo-
tivational problem, determining the utility function theelligence tries to optimize
at any given point of time.

A much discussed alternative to emotional control is stif@yward maximiza-
tion of an overall utility function[[30]. This paradigm isdtily successful when
applied to limited and specialized tasks, like playing shasd is as such important
for any advanced intelligence. Indeed we argue that emalticontrol determines
the steady-state utility function. As an example considayipg chess. Your util-
ity function may either consist in trying to beat the opparress player or to be
defeated by your opponent (in a non-so-evident way) wheyimdatogether with
your son or daughter. These kinds of utility functions arap&d in real life by our
emotional control mechanisms.

It remains however doubtful whether it would be possibletorfulate an overall,
viz a long-term utility function for a universal intelligea and to compute in real
time its gradients. Even advanced hyper-intelligencelsdispose of only an expo-
nentially small knowledge about the present and the futiate f the world, pre-
diction tasks and information acquisition is genericallp-Nard (non-polynomial)
[31],[32,[338]. Time and computing power (however large it may Wwill forever
remain, relatively seen, scarce resources. It is hencly likat advanced artificial
intelligences will be endowed with ‘true’ synthetic ematf the perspective of a
hyper-intelligent robot waiting emotionless in its cornantil its human boss calls
him to duty, seems implausible [34.]135] 36].

Any advanced intelligence needs to be a twofold universahieg system. The
intelligent system needs to be on one side able to acquir&iadyof information
in a wide range of possible environments and on the othertsidketermine au-
tonomously what to learn, viz solve the time allocation peal The fact that both
facets of learning are regulated through diffusive emai@ontrol in existing ad-
vanced intelligences suggests that emaotional control reaydonditio sine qua non
for any, real-world or synthetic, universal intelligence.

5 Hyper-emotional trans-human intelligences?

Looking around at the species on our planet one may surmagentreasing cog-
nitive capabilities go hand in hand with rising complexitydapredominance of
emotional states [2]. The rational is very straightforwakd animal with say only
two behavioral patterns at its disposition, e.g. sleepimdjfaraging, does not need
dozens of moods and emotions, in contrast to animals witlsaregertoire of po-
tentially complex behaviors.
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This observation is consistent with the theory developed tibat metalearning
as a diffusive emotional control system is a necessary casmdor any synthetic
and biological intelligence. It is also plausible that tleenplexity the metalearning
control needs to increase adequately with increasing tiogriapacities.

It is hence amusing to speculate, whether synthetic igtices with higher
and higher cognitive capabilities may also become progrelgsemotional. Super-
human intelligences would then also be hyper-emotionaloétook in stark con-
trast to the mainstream view of hyper-rational robots, Wipcesumes that emo-
tional states will be later-stage addendums to high peifognartificial intelli-
gences.
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