
Scheduler-Specific Confidentiality for
Multi-Threaded Programs and Its Logic-Based

Verification

Marieke Huisman and Tri Minh Ngo

University of Twente, Netherlands
Marieke.Huisman@ewi.utwente.nl

tringominh@gmail.com

Abstract. Observational determinism has been proposed in the liter-
ature as a way to ensure confidentiality for multi-threaded programs.
Intuitively, a program is observationally deterministic if the behavior
of the public variables is deterministic, i.e., independent of the private
variables and the scheduling policy. Several formal definitions of observa-
tional determinism exist, but all of them have shortcomings; for example
they accept insecure programs or they reject too many innocuous pro-
grams. Besides, the role of schedulers was ignored in all the proposed
definitions. A program that is secure under one kind of scheduler might
not be secure when executed with a different scheduler. The existing def-
initions do not ensure that an accepted program behaves securely under
the scheduler that is used to deploy the program.
Therefore, this paper proposes a new formalization of scheduler-specific
observational determinism. It accepts programs that are secure when
executed under a specific scheduler. Moreover, it is less restrictive on
harmless programs under a particular scheduling policy. We discuss the
properties of our definition and argue why it better approximates the
intuitive understanding of observational determinism.
In addition, we discuss how compliance with our definition can be veri-
fied, using model checking. We use the idea of self-composition and we
rephrase the observational determinism property for a single program
C as a temporal logic formula over the program C executed in parallel
with an independent copy of itself. Thus two states reachable during the
execution of C are combined into a reachable program state of the self-
composed program. This allows to compare two program executions in a
single temporal logic formula. The actual characterization is done in two
steps. First we discuss how stuttering equivalence can be characterized as
a temporal logic formula. Observational determinism is then expressed
in terms of the stuttering equivalence characterization. This results in a
conjunction of an LTL and a CTL formula, that are amenable to model
checking.

1 Introduction

The success of applications, such as e.g. Internet banking and mobile code, de-
pends for a large part on the kind of confidentiality guarantees that can be given

to clients. Using formal means to establish confidentiality properties of such ap-
plications is a promising approach. Of course, there are many challenges related
to this. Many systems for which confidentiality is important are implemented in
a multi-threaded fashion. Thus, the outcome of such programs depends on the
scheduling policy. Moreover, because of the interactions between threads and
the exchange of intermediate results, also intermediate states can be observed.
Therefore, to guarantee confidentiality for multi-threaded programs, one should
consider the whole execution traces, i.e., the sequences of states that occur during
program execution.

In the literature, different definitions of confidentiality are proposed for multi-
threaded programs. This paper follows the approach advocated by Roscoe [11]
that the behavior that can be observed by an attacker should be deterministic.
To capture this formally, the notion of observational determinism has been in-
troduced. Intuitively, observational determinism expresses that a multi-threaded
program is secure when its publicly observable traces are independent of its con-
fidential data, and independent of the scheduling policy [16]. Several formal def-
initions are proposed [16, 7, 14], but none of these capture exactly this intuitive
definition.

The first formal definition of observational determinism was proposed by
Zdancewic and Myers [16]. It states that a program is observationally determin-
istic iff given any two initial stores s1 and s2 that are indistinguishable w.r.t. the
low variables1, any two low location traces are equivalent upto stuttering and
prefixing, where a low location trace is the projection of a trace into a single low
variable location. Zdancewic and Myers consider the trace of each low variable
separately. Zdancewic and Myers also argue that prefixing is sufficiently strong
equivalence relation, as this only causes external termination leaks of one bit of
information [16].

In 2006, Huisman, Worah and Sunesen showed that allowing prefixing of low
location traces can reveal more secret information — instead of just one bit of
information — even for sequential programs. They strengthened the definition
of observational determinism by requiring that low location traces must be stut-
tering equivalent [7]. In 2008, Terauchi showed that an attacker can observe the
relative order of two updates of the low variables in traces, and derive secret in-
formation from this [14]. Therefore, he proposed another variant of observational
determinism, requiring that all low store traces — which are the projection of
traces into a store containing only all low variables — should be stuttering and
prefixing equivalent, thus not considering the variables independently.

However, Terauchi’s definition is also not satisfactory. This is for several
reasons: first of all, the definition still allows an accepted program to reveal
secret information, and second, it rejects too many innocuous programs because
it requires the complete low store to evolve in a deterministic way.

1 For simplicity, we consider a simple two-point security lattice, where the data is di-
vided into two disjoint subsets H and L, containing the variables with high (private)
and low (public) security level, respectively.

In addition, the fact that a program is secure under a particular scheduler
does not imply that it is secure under another scheduler. All definitions of ob-
servational determinism proposed so far implicitly assume a non-deterministic
scheduler, and might accept programs that are not secure when executed with a
different scheduler. Therefore, in this paper, we propose a definition of scheduler-
specific observational determinism that overcomes these shortcomings. This def-
inition accepts only secure programs and rejects fewer secure programs under a
particular scheduling policy. It essentially combines the previous definitions: it
requires that for any low variable, the low location traces from initial stores s1
and s2 are stuttering equivalent. However, it also requires that for any low store
trace starting in s1, there exists a stuttering equivalent low store trace start-
ing in s2. Thus, any difference in the relative order of updates is coincidental,
and no information can be deduced from it. This existential condition strongly
depends on the scheduler used when the program is actually deployed, because
traces model possible runs of a program under that scheduling policy. In addi-
tion, we also discuss the properties of our formalization. Based on the properties,
we argue that our definition better approximates the intuitive understanding of
observational determinism, which unfortunately cannot be formalized directly.

Of course, we also need a way to verify adherence to our new definition. A
common way to do this for information flow properties is to use a type system.
However, such a type-based approach is insensitive to control flow, and rejects
many secure programs. Therefore, recently, self-composition has been advocated
as a way to transform the verification of information-flow properties into a stan-
dard program verification problem [3, 1]. We exploit this idea in a similar way
as in our earlier work [7, 5] and translate the verification problem into a model
checking problem over a model that executes the program to be verified twice,
in parallel with itself. We show that our definition can be characterized by a
conjunction of an LTL [8] and a CTL [8] formula. For both logics, good model
checkers exist that we can use to verify the information flow property. The char-
acterization is done in two steps: first we characterize stuttering equivalence, and
prove correctness of this characterization, and second we use this to characterize
our definition of observational determinism.

The rest of this paper is organized as follows. After the preliminaries in
Section 2, Section 3 formally discusses the existing definitions of observational
determinism and illustrates their shortcomings on several examples. Section 4
gives our new formal definition of scheduler-specific observational determinism,
and discusses its properties. The two following sections discuss verification of
this new definition. Finally, Section 7 draws conclusions, and discusses related
and future work.

2 Preliminaries

This section presents the formal background for this paper. It describes syntax
and semantics of a simple programming language, and formally defines equiva-
lence upto stuttering and prefixing.

2.1 Programs and Traces

We present a simple while-language, extended with parallel composition ||, i.e.,
C||C ′ where C and C ′ are two threads which can contain other parallel composi-
tions. A thread is a unit of commands that can be scheduled by an scheduler. The
program syntax is not used in subsequent definitions, but we need it to formulate
our examples. Programs are defined as follows, where v denotes a variable, E a
side-effect free expression involving numbers, variables and binary operators, b
a Boolean expression, and ε the empty (terminated) program.

C ::= skip | v := E | C;C | while (b) do C |
if (b) then C else C | C||C | ε

Parallel programs communicate via shared variables in a global store. For sim-
plicity, we assume that assignments and lookups are atomic, thus data races
(where two variable accesses can occur simultaneously) cannot happen, and we
can assume an interleaving semantics (cf. [4]). We also do not consider proce-
dure calls, local memory or locks. These could be added to the language but this
would not essentially change the technical results.

Let Conf , Com, and Store denote the sets of configurations, programs, and
stores, respectively. A configuration c = 〈C, s〉 ∈ Conf consists of a program
C ∈ Com and a store s ∈ Store, where C denotes the program that remains to
be executed and s denotes the current program store. A store is the current state
of the program memory, which is a map from program variables to values. Let L
be a set of low variables. Given a store s, we use s |L to denote the restriction of
the store where only the variables in L are defined. We say stores s1 and s2 are
low-equivalent, denoted s1 =L s2, iff s1 |L = s2 |L , i.e., the values of all variables
in L in s1 and s2 are the same.

The small step operational semantics of our program language is standard.
Individual transitions of the operational semantics are assumed to be atomic.
As an example, we have the following rules for parallel composition (with their
usual counterparts for C2):

〈C1, s1〉 → 〈ε, s′1〉

〈C1 || C2, s1〉 → 〈C2, s
′
1〉

〈C1, s1〉 → 〈C′
1, s

′
1〉 C′

1 6= ε

〈C1 || C2, s1〉 → 〈C′
1 || C2, s

′
1〉

We also have a special transition step for terminated programs, i.e., 〈ε, s〉 →
〈ε, s〉, ensuring that all traces are infinite. Thus, we assume that the attacker
cannot detect termination.

A multi-threaded program executes threads from the set of live threads, i.e.,
the set of not-yet terminated threads. During the execution, a scheduling pol-
icy repeatedly decides which threads can be picked to proceed next with the
computation. Different scheduling policies differ in how they make this decision,
e.g., a nondeterministic scheduler chooses threads randomly and hence all possi-
ble interleavings of threads are potentially enabled; and a round-robin scheduler
assigns equal time slices to each thread in circular order. Given scheduling pol-
icy δ, and configuration 〈C, s〉, an infinite list of configurations T = c0c1c2...

(T : N0 → Conf) is a trace of the execution of C from s under the control of δ,
denoted 〈C, s〉 ⇓δ T , iff c0 = 〈C, s〉 and ∀i ∈ N0. ci → ci+1 under δ. We simply
write 〈C, s〉 ⇓ T when the scheduler is nondeterministic.

Let Ti, for i ∈ N, denote the ith element in the trace, i.e., Ti = ci. We use
T�i to denote the prefix of T upto the index i, i.e., T�i = T0T1 . . . , Ti. When
appropriate, T�i can be considered as an infinite trace stuttering in Ti forever.
Further, we use T |L to denote the projection of a trace to a store containing
only the variables in L. Formally: T |L = map(|L ◦ store)(T), where map is
the standard higher-order function that applies (|L ◦ store) to all elements in
T . When L is a singleton set {l}, we simply write T |l . Finally, in the examples
below, when writing an infinite trace that stutters forever from state Ti onwards,
we just write this as a finite trace T = [T0, T1, . . . , Ti−1, Ti].

2.2 Stuttering and Prefixing Equivalences

The key ingredient in the different definitions of observational determinism is
the equivalence of traces upto stuttering or upto stuttering and prefixing. The
definition of stuttering equivalence is based on [10, 7]. It uses an auxiliary notion
of stuttering equivalence upto indexes i and j.

Definition 1 (Stuttering equivalence). Traces T and T ′ are stuttering equiv-
alent upto i and j, written T ∼i,j T ′, iff we can partition T�i and T ′�j into
n blocks such that elements in the pth block of T�i are equal to each other and
also equal to elements in the pth block of T ′�j (for all p ≤ n). Corresponding
blocks may have different lengths.

Formally, T ∼i,j T ′ iff there are sequences 0 = k0 < k1 < k2 < . . . < kn =
i + 1 and 0 = g0 < g1 < g2 < . . . < gn = j + 1 such that for each 0 ≤ p < n
holds: Tkp = Tkp+1 = · · · = Tkp+1−1 = T ′gp = T ′gp+1 = · · · = T ′gp+1−1.

T and T ′ are stuttering equivalent, denoted T ∼ T ′, iff ∀i. ∃j. T ∼i,j T ′ ∧
∀j. ∃i. T ∼i,j T ′.

Stuttering equivalence defines an equivalence relation, i.e., it is reflexive,
symmetric and transitive.

Equivalence upto stuttering and prefixing is defined as one trace being stut-
tering equivalent to a prefix of the other trace.

Definition 2 (Prefixing and stuttering equivalence). Traces T and T ′ are
prefixing and stuttering equivalent, written T ∼p T ′, iff ∃i.T ∼ T ′�i∨T�i ∼ T ′.

3 Observational Determinism in the Literature

This section presents the existing definitions of observational determinism for-
mally, and discusses their shortcomings. The next section presents our improved
definition.

3.1 Existing Definitions of Observational Determinism

Given any two initial low equivalent stores, s1 =L s2, a program C is observa-
tionally deterministic, according to

– Zdancewic and Myers [16]: iff any two low location traces are equivalent
upto stuttering and prefixing, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ ∀l ∈
L. T |l ∼p T ′ |l .

– Huisman et al. [7]: iff any two low location traces are equivalent upto stut-
tering, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ ∀l ∈ L. T |l ∼ T ′ |l .

– Terauchi [14]: iff any two low store traces are equivalent upto stuttering and
prefixing, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ T |L ∼p T ′ |L .

Notice that the existing definitions all have implicitly assumed a nondetermin-
istic scheduler, without mentioning this explicitly.

Zdancewic and Myers, followed by Terauchi, allow equivalence upto prefixing.
This has as an advantage that it removes the obligation to consider program ter-
mination. The definition of Huisman et al. is stronger than the one of Zdancewic
and Myers, as it only allows stuttering equivalence. Both definitions of Zdancewic
and Myers, and Huisman et al. only specify equivalence of traces on each sin-
gle low location separately, they do not consider the relative order of variable
updates in traces, while Terauchi does. In particular, Terauchi’s definition is
stronger than Zdancewic and Myers’ definition as it requires equivalence upto
stuttering and prefixing on low store traces instead of on low location traces.

3.2 Shortcomings of These Definitions

Unfortunately, all these definitions have shortcomings. Huisman et al. showed
that allowing prefixing of low location traces, as in the definition of Zdancewic
and Myers, can reveal secret information, see [7]. Further, as observed by Ter-
auchi, attackers can derive secret information from the relative order of updates,
see [14]. It is not sufficient to require that only the low location traces are de-
terministic for a program to be secure. Therefore, Terauchi required that all low
store traces should be stuttering and prefixing equivalent. However, allowing
prefixing of full low store traces still can reveal secret information. Besides, the
requirement that traces have to agree on updates to all the low locations as a
whole, as in Terauchi’s definition, is overly restrictive. In addition, all these def-
initions accept programs that behave insecurely under some specific schedulers.
These shortcomings are illustrated below by several examples. In all examples,
we assume an observational model is where attackers can access the full code
of the program, observe the traces of public data, and limit the set of possible
program traces by choosing a scheduler.

How prefixing equivalences can reveal information Consider the following
program. Suppose h ∈ H and l1, l2 ∈ L, h is a Boolean.

Example 1.

l1 := 0; l2 := 0;
{if (l1 == 1) then (l2 := h) else skip}

∣∣∣∣ l1 := 1

For notational convenience, let C1 and C2 denote the left and right operands of
the parallel composition operator in all examples. A low store trace is denoted
by a sequence of low stores, containing the values of the low variables in order,
i.e., (l1, l2). If we execute this program from several low equivalent stores for
different values of h, we obtain the following low store traces.

Case h = 0 : T |L =

{
[(0, 0), (1, 0)] execute C1 first
[(0, 0), (1, 0), (1, 0)] execute C2 first

Case h = 1 : T |L =

{
[(0, 0), (1, 0)] execute C1 first
[(0, 0), (1, 0), (1, 1)] execute C2 first

According to Zdancewic and Myers, and Terauchi, this program is observation-
ally deterministic. However, when h = 1, we can terminate in a state where
l2 = 1. It means that when the value of l2 changes, an attacker can conclude
that surely h = 1; partial information still can be leaked because of prefixing.

How too strong conditions reject too many programs The restrictiveness
of Terauchi’s definition arises from the fact that no variation in the relative order
of updates is allowed at all. This rejects many harmless programs, such as for
example,

Example 2.
l1 := 0; l2 := 0; {l1 := 3 || l2 := 4}

If C1 is executed first, we get the following traces, T |L = [(0, 0), (3, 0), (3, 4)]; oth-
erwise, T |L = [(0, 0), (0, 4), (3, 4)]. This program is rejected by Terauchi, because
not all low store traces are equivalent upto stuttering and prefixing.

How scheduling policies can be exploited by attackers In all examples
given so far, a nondeterministic scheduler is assumed. However, in practice, the
scheduler may vary from execution to execution. The security of a program
depends strongly on the scheduler’s behavior. Under a specific scheduling policy,
some traces cannot occur. Due to the fact that an attacker knows the full code of
the program, when he chooses an appropriate scheduler, secret information can
be revealed from the limited set of possible traces. This sort of attack is often
called a refinement attack [13, 2], because the choice of scheduling policy refines
the set of possible program traces. Consider the following example,

Example 3.

l := 0;
{
{{if (h > 0) then sleep(n)}; l := 1}

∣∣∣∣ l := 0
}

where sleep(n) abbreviates n consecutive skip commands. Under a nondeter-
ministic scheduler, the initial value of h cannot be derived; this program is ac-
cepted by the definitions of Zdancewic and Myers, and Terauchi.

However, suppose we execute this program using a round-robin scheduling
policy, i.e., the scheduler picks a thread and then proceeds to run that thread

for m steps, before giving control to the next thread. If m < n we obtain store
traces of the following shapes.

Case h ≤ 0 : T |L =

{
[(0), (1), (0)] execute C1 first
[(0), (0), (1)] execute C2 first

Case h > 0 : T |L =

{
[(0), (0), . . . , (0), (1)] execute C1 first
[(0), (0), . . . , (0), (1)] execute C2 first

With this scheduling policy, this program is still accepted by Zdancewic and
Myers, and Terauchi. However, when h ≤ 0, we can terminate in a state where
l = 0. Thus, the final value of l may reveal whether h is positive or not.

Example 4.

l1 := 0; l2 := 0;

{if (h > 0) then l1 := 1 else l2 := 1}
∣∣∣∣{l1 := 1; l2 := 1}

∣∣∣∣{l2 := 1; l1 := 1}

This program is secure under a nondeterministic scheduler, and it is accepted
by the definitions of Zdancewic and Myers, and Huisman et al. However, when
an attacker chooses a scheduler which always executes the leftmost thread first,
he gets only two different kinds of traces, corresponding to the values of h: when
h > 0, T |L = [(0, 0), (1, 0), (1, 1), . . .]; otherwise, T |L = [(0, 0), (0, 1), (1, 1), . . .].

In this case, this program is still accepted by the definitions of Zdancewic and
Myers, and Huisman et al. but this program is not secure anymore. Attackers
can learn information about h by observing whether l1 is updated before l2.
Notice that the problem of relative order of updates was shown in [14].

To conclude, the examples above show that all the existing definitions of
observational determinism allow programs to reveal private data because they
allow equivalence upto prefixing, as in the definitions of Zdancewic and Myers,
and Terauchi, or do not consider the relative order of updates, as in the defi-
nitions of Zdancewic and Myers, and Huisman et al. The definition of Terauchi
is also overly restrictive, rejecting many secure programs. Moreover, all these
definitions are not scheduler-specific. They accept programs behaving insecurely
under a specific scheduling policy. This is our motivation to propose a new def-
inition of scheduler-specific observational determinism. This definition on one
hand only accepts secure programs, and on the other hand is less restrictive on
innocuous programs w.r.t. a particular scheduler.

4 Scheduler-Specific Observational Determinism

To overcome the problems discussed above, we say that a program is observa-
tionally deterministic under a particular scheduler if any two low location traces
are stuttering equivalent and for any low store trace produced from one initial
store, there exists a low store trace produced from the other initial low equiv-
alent store such that these two traces are stuttering equivalent. Our definition
does not allow information to be leaked because of prefixing equivalence. Notice

that Zdancewic and Myers, and Terauchi allow prefixing equivalence because
it removes the obligation to prove program termination in their proposed type
systems.

Scheduler-specific observational determinism is defined formally as follows.

Definition 3 (δ-specific observational determinism).
Given a scheduling policy δ, a program C is δ-specific observationally de-

terministic w.r.t. L iff for all initial low equivalent stores s1, s2, s1 =L s2, the
following conditions (1) and (2) are satisfied.

- ∀T, T ′. 〈C, s1〉 ⇓δ T ∧ 〈C, s2〉 ⇓δ T ′ ⇒ ∀l ∈ L. T |l ∼ T
′
|l . (1)

- ∀T. 〈C, s1〉 ⇓δ T.∃T ′. 〈C, s2〉 ⇓δ T ′ ∧ T |L ∼ T
′
|L . (2)

We require that the low locations individually behave deterministically be-
cause in the literature it has been shown how nondeterminism of a low variable
can be exploited to make other programs reveal confidential information. Even
the simple program “l := 0 || l := 1” can be used to violate confidentiality of
another program. If public variables are shared between programs, there exists
a channel between them [15]. Suppose that the public variable l is shared, i.e.,
this data is used by another apparently secure program, and access to this data
is conditioned on confidential information, then this assignment is more likely
to happen last. Therefore, there is a timing channel between two programs and
it can be used to derive information about the confidential data, see [16, 15].
Therefore, to be considered secure, a program must enforce an ordering on the
accesses to a single low location, i.e., the sequence of operations performed at a
single low location is deterministic [16].

However, notice that the program “l1 := 3 || l2 := 4” in Example 2 is con-
sidered secure because it writes to two different locations.

Besides, this definition also releases the requirement that all low store traces
have to agree on the relative order of updates. Our definition differs from the
previous definitions of observational determinism in one important aspect: the
existential condition. This condition depends strongly on the scheduling policy
used to deploy the program because traces model possible runs of a program
and refinements of the set of traces, when the scheduling policy changes, cannot
guarantee this condition.

Notice that the execution of a program under a nondeterministic scheduler
means that we consider all possible interleavings of threads. Given any schedul-
ing policy δ, the set of possible program traces under δ is a subset of the set of
possible program traces under a nondeterministic scheduler. If we quantify Defi-
nition 3 over all possible schedulers, it requires that each low store trace produced
from one initial store under a nondeterministic scheduler must be matched with
every low store trace produced from the other initial store. It means that for any
two initial low equivalent stores, if any two low store traces obtained from the
execution of a program under a nondeterministic scheduler are stuttering equiv-
alent, this program is secure under any scheduling policy δ. Thus, this gives a
truly scheduler-independent definition of observational determinism.

4.1 Properties of Scheduler-Specific Observational Determinism

To illustrate that Definition 3 captures the intended meaning of observational
determinism best, we discuss different properties of the definition.

Property 1 (Deterministic low location traces). If a program is accepted by Def-
inition 3, no secret information can be derived from the publicly observable
location traces. It is required that the low locations individually evolve deter-
ministically, and thus, the values of private variables may not affect the values
of low variables.

Property 2 (Deterministic relative order of updates). If a program is accepted
by Definition 3, no information can be derived from the relative order of updates
because there is always a matching low store trace.

Notice that the insecure programs in Examples 1 and 3 are rejected by our def-
inition under a nondeterministic scheduling policy. The program in Example 4
is secure under a nondeterministic scheduler and it is accepted by our definition
instantiated accordingly. However, it is insecure under the scheduler that always
chooses the leftmost thread to execute first; and hence, it is rejected if we in-
stantiate the definition with this scheduler. Thus, given a scheduling policy δ, if
a program is accepted by our definition, instantiated for this scheduler, we can
conclude that the program is secure under δ.

Property 3 (Less restrictive on harmless programs). Compared with Terauchi’s
definition, Definition 3 is more permissive: it allows some freedom in the order
of individual updates, as long as a matching execution exists.

For example, Example 2 and 4, which are secure, are accepted by our definition
instantiated with a nondeterministic scheduler, but rejected by Terauchi.

After having presented an improved definition of observational determinism,
the next sections discuss how to verify it formally.

5 A Temporal Logic Characterization of Stuttering
Equivalence

5.1 Self-Composition to Verify Information Flow Properties

A common approach to check information flow properties is to use a type system.
However, the type-based approach is not suitable to verify Definition 3. First,
type systems for multi-threaded programs often aim to prevent secret informa-
tion from affecting the thread timing behavior of a program, e.g., secret informa-
tion can be derived from observing the internal timing of actions [16]. For to this
reason, the type systems proposed to enforce confidentiality for multi-threaded
programs are often very restrictive. This restrictiveness makes the application
programming become impractical and many intuitively secure programs are re-
jected by type systems. Besides, it also seems difficult to enforce stuttering equiv-
alence via type-based methods without being overly restrictive [14]. In addition,
type systems are not suitable to verify existential properties, as the one in our

definition. This can be understood as follows. If the program C is well-typed,
then for any two configurations c1 = 〈C, s1〉 and c2 = 〈C, s2〉 such that s1 =L s2,
there exists a configuration, e.g., c′, that simulates both [16]. This means that for
any two traces T and T ′ starting in c1 and c2 respectively, the low-deterministic
properties of T and T ′ can be simulated by the same trace starting in c′. In other
words, if C is well-typed, two sets of traces starting in c1 and c2 have the same
low-security behavior. Therefore, our definition, which contains an existential
quantification, cannot be verified via type-based methods.

Instead, we use self-composition. This is a recently developed technique [3, 1]
that transforms the verification of information flow properties into a verification
problem. Self-composition means that we compose a program C with its copy,
denoted C ′, i.e., we execute C and C ′ in parallel, and consider C || C ′ as a single
program. Notice that C ′ is program C, but with all variables renamed to make
them distinguishable from the variables in C [1]. In this model, the original two
programs still can be distinguished, and then we express the information flow
property as a property over the executions of the self-composed program.

Concretely, in this paper we characterize observational determinism with a
temporal logic formula. The essence of observational determinism is stuttering
equivalence of execution traces. Therefore, we first investigate the characteris-
tics of stuttering equivalence and discuss which extra information is needed to
characterize this in temporal logic. Based on the idea of self-composition and
the extra information, we define a model over which we want the temporal logic
formula to hold. After that, a temporal logic formula that characterizes stutter-
ing equivalence is defined. This formula can be instantiated in different ways,
depending on the equivalence relation that is used in the stuttering equivalence.
Observational determinism is expressed in terms of the stuttering equivalence
characterization. This results in a conjunction of an LTL and a CTL formula
(for the syntax and semantics definitions of LTL and CTL, see [8]). Both for-
mulas are evaluated over a single execution of the self-composed program. We
show that the logic formulas are equivalent to the original definitions, thus the
characterization as a model checking problem is sound and complete.

5.2 Characteristics of Stuttering Equivalence

We let symbols a,b, c, etc. represent states in traces. Given T ∼ T ′ as follows,

index: 0 1 2 3 4 5 . . .
T = a b c d d d . . .

nr of state changes in T : 0 1 2 3 3 3

T ′ = a a b b c d . . .
nr of state changes in T ′: 0 0 1 1 2 3

The top row indicates the indexes of states. The row below each trace indicates
the total numbers of state changes, counted from the first state, that happened in
the trace. Based on this example, we can make some general observations about
stuttering equivalence that form the basis for our temporal logic characterization.

– Any state change that occurs first in trace T at index i, i.e., Ti, will also
occur later in trace T ′ at some index j ≥ i.

– For any index r between such a first and second occurrence of a state change,
i.e., i ≤ r < j, at state T ′r, the total number of state changes is strictly smaller
than the total number of state changes at Tr.

– Similarly for any change that occurs first in trace T ′.

Notice that these properties are sound and complete to characterize stuttering
equivalence, see Appendix A.2 of [6].

5.3 Extra Information

To characterize stuttering equivalence in temporal logic, we have to come up with
a temporal logic formula over a combined trace. As a convention, we use T 1 and
T 2 to denote the two component traces. Thus, the ith state of the combined trace
contains both T 1

i and T 2
i . The essence of stuttering equivalence is that any state

change occurring in one trace also has to occur in the other trace. Therefore, we
have to extend the state with extra information that allows to determine for a
particular state (1) whether the current state is different from the previous one,
(2) whether a change occurs first or second, and (3) how many state changes
have already happened.

How to characterize state change? To determine whether a state change
occurred, we need to know the previous state. Therefore, we define a memorizing
transition relation, remembering the previous state of each transition.

Definition 4 (Memorizing transition relation). Let →⊆ (State×State) be
a transition relation. The memorizing transition relation→m⊆ (State×State)×
(State × State) is defined as: (c1, c

′
1)→m (c2, c

′
2) ⇔ c1 → c2 ∧ c′2 = c1.

Thus, (c1, c
′
1) makes a memorizing transition to (c2, c

′
2) if (1) c1 makes a transi-

tion to c2 in the original system, and (2) c′2 remembers the old state c1. We use
accessor functions current and old to access the components of the memorized
state, such that current(c1, c

′
1) = c1 ∧ old(c1, c

′
1) = c′1.

A state change can now be observed by comparing old and current compo-
nents of a single state.

How to characterize the order of state changes? To determine whether
a state change occurs for the first time or has already occurred in the other
trace, we use a queue of states, denoted q . Its contents represents the difference
between the two traces. We have the following operations and queries on a queue:
add , adds an element to the end of the queue, remove, removes the first element
of the queue, and first , returns the first element of the queue. In addition, we
use an extra state component lead , that indicates which component trace added
the last state in q , i.e., lead = m (m = 1, 2) if the last element in q was added
from Tm. Initially, the queue is empty (denoted ε), and lead is 0.

The rules to add/remove a state to/from the queue are the following. When-
ever a state change occurs for the first time in Tm, the current state is added to

the queue and lead becomes m. When this state change occurs later in the other
trace, the element will be removed from the queue. When a state change in one
trace does not match with the change in the other trace, both q and lead become
undefined, denoted ⊥, indicating a blocked queue. If q = ⊥ (and lead = ⊥), the
component traces are not stuttering equivalent, and therefore we do not have to
check the remainders of the traces. Therefore, operations add and remove are
not defined when q and lead are ⊥.

Formally, these rules for adding and removing are defined as follows. Initially,
q is ε and lead is 0. Whenever q 6= ⊥ and Tmi 6= Tmi−1 (m = 1, 2),

– if lead = 3−m and Tmi = first(q), then remove(q). If q = ε, set lead = 0.

– if lead = m or lead = 0, then execute add(q , Tmi) and set lead = m.

– otherwise, set q = ⊥ and lead = ⊥.

How to characterize the number of state changes? To determine the
number of state changes that have happened, we extend the state with counters
nr ch1 and nr ch2. Initially, both nr ch1 and nr ch2 are 0, and whenever a state
change occurs, i.e., Tmi 6= Tmi−1 (m = 1, 2), then nr chm increases by one. Thus,
the number of state changes at T 1

i and T 2
i can be determined via the values of

nr ch1 and nr ch2, respectively.

5.4 Program Model

Next we define a model over which a temporal logic formula should hold. Given
program C and two initial stores s, s′, we take the parallel composition of C and
its copy, denoted C ′, and consider C || C ′ as a single program. In this model,
the store of C || C ′ can be considered as the product of the two separate stores
s and s′, ensuring that the variables from the two program copies are disjoint,
and thus that updates are done locally, i.e., not affecting the store of the other
program copy.

First, we define the elements of the program model.

States: A state of a composed trace is of the form (〈C1 || C2, (s1, s2)〉, 〈C3 ||
C4, (s3, s4)〉, χ), where 〈C3 || C4, (s3, s4)〉 remembers the old configuration (via
the memorizing transition relation of Definition 4), and χ is extra information, as
discussed above, of the form (nr ch1,nr ch2, q , lead). We define accessor func-
tions conf1, conf2, and extra to extract (〈C1, s1〉, 〈C3, s3〉), (〈C2, s2〉, 〈C4, s4〉),
and χ, respectively.

Thus, in our model, the original two program copies still can be distinguished
and the updates of program copies are done locally. Therefore, if T is a trace
of the composed model, then we can decompose it into two individual traces by
functions Π1 and Π2, respectively, defined as Πm = map(confm). Thus, given a
state Ti = (〈C1 || C2, (s1, s2)〉, 〈C3 || C4, (s3, s4)〉, χ) of the composed trace, then
(Π1(T))i = (〈C1, s1〉, 〈C3, s3〉) and (Π2(T))i = (〈C2, s2〉, 〈C4, s4〉). The current
configuration of program copy m can be extracted by function Γm, defined as
Γm = map(current) ◦ Πm. Thus, (Γ1(T))i = 〈C1, s1〉 and (Γ2(T))i = 〈C2, s2〉.

Finally, extra(Ti)(x) denotes the value of the extra information x at Ti, for
x ∈ {nr ch1,nr ch2, q , lead}.
Transition Relation: Let → be the translation relation induced by the op-
erational semantics of programs, and →m the memorizing transition relation
derived from → (cf. Definition 4). The transition relation of the program model
→χ is defined using →m, and a relation → ⊆ χ × Conf × χ that describes

how the extra information evolves, following the rules below (with a similar rule
for when C1 terminates, i.e., 〈C1, s1〉 → 〈ε, s1〉, and the symmetric counterparts
for C2).

(〈C1 || C2, (s1, s2)〉, c2)→m (〈C′
1 || C2, (s

′
1, s2)〉, c4) χ

〈C′
1,s

′
1〉→ χ′

(〈C1 || C2, (s1, s2)〉, c2, χ)→χ (〈C′
1 || C2, (s

′
1, s2)〉, c4, χ′)

where c4 = 〈C1 || C2, (s1, s2)〉 and χ
c→ χ′ is defined as follows (notice that this

relation is parametric on the concrete equality relation used).

lead = 2 c = first(q) nr ch1′ = nr ch1 + 1 q ′ = remove(q) lead ′ = 1

(nr ch1,nr ch2, q , lead)
c→ (nr ch1′,nr ch2′, q ′, lead ′)

lead ∈ {0, 1} lead ′ = 1 nr ch1′ = nr ch1 + 1 q ′ = add(q , c)

(nr ch1,nr ch2, q , lead)
c→ (nr ch1′,nr ch2′, q ′, lead ′)

lead 6∈ {0, 1} c 6= first(q) nr ch1′ = nr ch1 + 1 q ′ = ⊥ lead ′ = ⊥

(nr ch1,nr ch2, q , lead)
c→ (nr ch1′,nr ch2′, q ′, lead ′)

Notice that above we studied stuttering equivalence in a generic way, where
two traces could make a state change simultaneously. However, in the self-
composed program model, the operational semantics of parallel composition
ensures that in every step, either C1 or C2, but not both, make a transition.
Therefore, for any trace T , state changes do not happen simultaneously in both
Π1(T) and Π2(T). This also means that it can never happen that in one step,
both add and remove are applied simultaneously on the queue.

Atomic Propositions: Next we define the atomic propositions of our program
model, together with their valuation. Notice that their valuation is parametric on
the concrete equality relation used. Below, when characterizing observational de-
terminism, we instantiate this in different ways, to define stuttering equivalence
on a low location trace, and on a low store trace, respectively.

For m = 1, 2,

– fst chm denotes that a state change occurs for the first time in the program
copy m.

– snd chm denotes that a state change occurs in the program copy m, while
the program copy 3−m has already made this change.

– nr chm < nr ch3−m denotes that the number of state changes made by the
program copy m is less than the total number of state changes made by the
program copy 3−m.

The valuation function λ for these atomic propositions is defined as follows. Let
c denote a state of the composed trace.

fst chm ∈ λ(c)⇔ current(confm(c)) 6= old(confm(c)) and

extra(c)(lead) = m or extra(c)(lead) = 0.

snd chm ∈ λ(c)⇔ current(confm(c)) 6= old(confm(c)) and

extra(c)(lead) = 3−m and

current(confm(c)) = first(extra(c)(q)).

nr chm < nr ch3−m ∈ λ(c)⇔ extra(c)(nr chm) < extra(c)(nr ch3−m).

Program Model: Using the definitions of state, transition relation and atomic
propositions above, we can now define a program model, encoding the behav-
ior of a self-composed program under a scheduler δ. The characterizations are
expressed over this model.

Definition 5 (Program model). Given a scheduler δ, let C be a program, and
s1 and s2 be stores. The program modelMδ

C,s,s′ is defined as (Σ, →χ , AP, λ, I)
where
– Σ denotes the set of all configurations, obtained by executing from the initial

configuration under δ, including the extra information, as defined above;
– AP is the set of atomic propositions defined above, and λ is their valuation;
– I = {〈C || C ′, (s, s′)〉} is the initial configuration of the composed trace.

5.5 Characterization of Stuttering Equivalence

Based on the observations and program model above, we characterize stuttering
equivalence by an LTL formula φ.

φ = G
(∧
m∈{1,2}

fst chm ⇒ nr ch3−m < nr chm U snd ch3−m
)
.

Intuitively, this formula expresses the characteristics of stuttering equiva-
lence: any state change occurring in one component trace will occur later in
the other component trace; and in between these changes the number of state
changes at the intermediate states in the latter is strictly smaller than in the
first.

We prove formally that φ characterizes stuttering equivalence.

Theorem 1. Let T be a composed trace that can be decomposed into T 1 and T 2

with T 1
0 = T 2

0 , then T 1 ∼ T 2 ⇔ T |= φ.

Proof. See Appendix A.2 of [6].

6 Temporal Logic Characterization of Scheduler-Specific
Observational Determinism

Based on the results from the previous section, a temporal logic formula char-
acterizing scheduler-specific observational determinism can be established. The
formula consists of two parts: one that expresses stuttering equivalence of low
location traces, and one that expresses stuttering equivalence of low store traces.
Both are instantiations of the formula characterizing stuttering equivalence de-
fined above.

6.1 Definitions of Atomic Propositions

We define atomic propositions that are used to instantiate the characterization
of stuttering equivalence in different ways, so that we can characterize stuttering
equivalence over low location traces, and over low store traces. For each l ∈ L,
fst chml , snd chml , and nr chl

m < nr ch3−m
l relate to each low variable, and

fst chmL , snd chmL , and nr chL
m < nr ch3−m

L relate to the set of low variables
L, where m = 1 or 2.

The formal definitions are defined as in the previous section, where equality
is instantiated as =l (for l ∈ L) and =L, respectively.

6.2 Characterization of Scheduler-Specific Observational
Determinism

Now we can give a temporal logic formula characterizing the properties of traces
of a program that is observationally deterministic under a scheduler δ. A program
C is observationally deterministic under δ iff for any two low equivalent stores
s1 and s2, the following formula holds on the traces of Mδ

C,s1,s2
.(∧

l∈L

φl

)
∧ φL, where

φl = G
(∧
m∈{1,2}

fst chml ⇒ nr chl
3−m < nr chml U snd ch3−m

l

)
φL = AG

(∧
m∈{1,2}

fst chmL ⇒ E(nr chL
3−m < nr chmL U snd ch3−m

L)
)

Notice that φl is an LTL and φL a CTL formula.
Thus, if the program has n low variables, we have n + 1 verification tasks,

where n tasks relate to low location traces and one task relates to low store
traces. For each task, we instantiate the extra information χ and the equality
relation differently.

Theorem 2. Given program C and initial stores s1 and s2 such that s1 =L s2,
C is observationally deterministic under δ iff

Mδ
C,s1,s2 |=

(∧
l∈L

φl

)
∧ φL.

Proof. See Appendix A.3 of [6].

7 Conclusion

This paper presents a new formal definition of observational determinism that
approximates the intuitive definition of observational determinism well. If a pro-
gram is accepted under a specific scheduler, no secret information can be derived
from the publicly observable location traces and the relative order of updates.

Compliance with our definition can be verified via a characterization as a
temporal logic formula. The characterization is developed in two steps: first
we characterize stuttering equivalence, which is the basis of the definition of
scheduler-specific observational determinism, and then we characterize our defi-
nition itself. The characterization is an important step towards model checking
observational determinism properties.

Related Work: The idea of observational determinism originates from the no-
tion of noninterference, which only considers input and output of programs. We
refer to [13, 7] for a more detailed description of noninterference, its verification,
and a discussion why it is not appropriate for multi-threaded programs.

Roscoe [11] was the first to state the importance of determinism to ensure
secure information flow of multi-threaded programs. The work of Zdancewic and
Myers, Huisman et al., and Terauchi [16, 7, 14] has been mentioned above. They
all propose different formal definitions of observational determinism, with a cor-
responding verification method. Zdancewic and Myers propose a type system
that requires that the type checked program must be confluent in order to be
verified [14]. Terauchi also proposes a type system to verify observational deter-
minism, but this one does not enforce confluence. Huisman et al. characterize
observational determinism in CTL*, using a special non-standard synchronous
composition operator, and also in the polyadic modal µ-calculus (a variation of
the modal µ-calculus) [7]. The idea of using self-composition was first proposed
by Barthe et al. and Darvas et al. [1, 3]. The way self-composition is worked
out here, with a temporal logic characterization also bears resemblance with
temporal logic characterizations of strong bisimulation [9].

Finally, Russo and Sabelfeld take a different approach to ensure security of
a multi-threaded program. They propose to restrict the allowed interactions be-
tween threads and scheduler [12]. This allows them to present a compositional
security type system which guarantees confidentiality for a wide class of sched-
ulers. However, the proposed security specification is similar to noninterference,
just considering input and output of a program.

Future Work: As future work, we will encode the characterization in one (or
more) model checkers. An important challenge is to model the queue, as this can
have a strong effect on the state space that has to be examined. An additional
challenge is to make the program model parametric, so that properties can be
expressed for varying initial values. This step will be necessary to scale to large
applications.

Notice that observational determinism is a possibilistic secure information
flow property: it only considers the nondeterminism that is possible in an exe-
cution, but it does not consider the probability that an execution will happen.
In a separate line of work, we will also study how probability can be used to
guarantee secure information flow.

Acknowledgment: The authors would like to thank Jaco van de Pol for his
useful comments and the anonymous reviewers for useful feedback of an earlier

version of this paper. Our work is supported by the Netherlands Organization
for Scientific Research.

References

1. G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-composition.
In R. Foccardi, editor, Computer Security Foundations Workshop, pages 100–114.
IEEE Press, 2004.

2. G. Barthe and L.P. Nieto. Formally verifying information flow type systems for
concurrent and thread systems. In Proceedings of the 2004 ACM workshop on
Formal methods in security engineering, FMSE ’04, pages 13–22, New York, NY,
USA, 2004. ACM.

3. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In D. Hutter and M. Ullmann, editors, Security in
Pervasive Computing, volume 3450 of Lecture Notes in Computer Science, pages
193–209. Springer-Verlag, 2005.

4. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java language specification, third
edition. Addison Wesley, 2005.

5. M. Huisman and H.-C. Blondeel. Model-checking secure information flow for multi-
threaded programs. In Theory of Security and Applications (Tosca), Lecture Notes
in Computer Science. Springer-Verlag, 2011. To appear.

6. M. Huisman and T.M. Ngo. Scheduler-specific confidentiality for
multi-threaded programs and its logic-based verification. Available via
http://www.homeewi.utwente.nl/∼ngominhtri/, full version.

7. M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterization of ob-
servation determinism. In Computer Security Foundations Workshop. IEEE Com-
puter Society, 2006.

8. M. Huth and M. Ryan. Logic in computer science: modeling and reasoning about
the system. Cambridge University Press, second edition, 2004.

9. A. Parma and R. Segala. Logical characterizations of bisimulations for discrete
probabilistic systems. In Proceedings of the 10th international conference on Foun-
dations of software science and computational structures, FOSSACS’07, pages 287–
301. Springer-Verlag, 2007.

10. D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible with-
out the next-time operator. In Inf. Processing Letters, volume 63, pages 243–246,
1997.

11. A.W. Roscoe. Csp and determinism in security modeling. In IEEE Symposium on
Security and Privacy, page 114. IEEE Computer Society, 1995.

12. A. Russo and A. Sabelfeld. Security interaction between threads and the scheduler.
In Computer Security Foundations Symposium, pages 177–189, 2006.

13. A. Sabelfeld and A. Myers. Language-based information flow security. In IEEE
Journal on Selected Areas in Communications, volume 21, pages 5–19, 2003.

14. T. Terauchi. A type system for observational determinism. In Computer Science
Foundations, 2008.

15. T.V. Vleck. Timing channels. In Poster session at IEEE TCSP conference, 1990.
Available via http://www.multicians.org/timing-chn.html.

16. S. Zdancewic and A.C. Myers. Observational determinism for concurrent program
security. In Computer Security Foundations Workshop, pages 29–43. IEEE Press,
June 2003.

