
The COST IC0701 Verification Competition 2011

Thorsten Bormer6, Marc Brockschmidt1, Dino Distefano2,3. Gidon Ernst4,
Jean-Christophe Filliâtre7,8, Radu Grigore2, Marieke Huisman5,
Vladimir Klebanov6, Claude Marché7,8, Rosemary Monahan9,

Wojciech Mostowski5, Nadia Polikarpova10, Christoph Scheben6,
Gerhard Schellhorn4, Bogdan Tofan4, Julian Tschannen10,

and Mattias Ulbrich6

1 RWTH Aachen, Germany
2 Queen Mary, University of London, UK

3 Monoidics Ltd., UK
4 Universität Augsburg, Germany

5 University of Twente, The Netherlands
6 Karlsruhe Institute of Technology, Germany

7 LRI, France
8 INRIA Saclay, France

9 National University of Ireland Maynooth, Ireland
10 ETH Zürich, Switzerland

http://foveoos2011.cost-ic0701.org

Abstract. This paper reports on the experiences with the program ver-
ification competition held during the FoVeOOS conference in October
2011. There were 6 teams participating in this competition. We discuss
the three different challenges that were posed and the solutions devel-
oped by the teams. We conclude with a discussion about the value of
such competitions and lessons learned from them.

1 Introduction

A program verification competition was organized as part of the Formal Verifi-
cation of Object-Oriented Software (FoVeOOS) conference held in Torino, Italy
in October 2011. The conference was initiated by the COST Action IC0701,
whose topic is advancing formal verification of object-oriented software. One of
the tasks pursued by the Action is to set common goals and to develop common
benchmarks for program verification tools. The competition aimed—in contrast
to larger comparative case studies—to evaluate the usability of verification tools
in a relatively controlled experiment that could be easily repeated by others.

The competition was organized by Marieke Huisman, University of Twente,
Netherlands, Vladimir Klebanov, Karlsruhe Institute of Technology, Germany,
and Rosemary Monahan, National University of Ireland Maynooth, Ireland. All
three organizers have an extensive background in program specification and ver-
ification, and they have actively contributed to the development of different
verification tools.

B. Beckert, F. Damiani, and D. Gurov (Eds.): FoVeOOS 2011, LNCS 7421, pp. 3–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 T. Bormer et al.

The competition was inspired by, and had a format similar to, the VSComp
competition [12] held at VSTTE 2010: up to 3 people could form a team, all
participants had to be physically present, and teams could use any verification
system of their choice. The event took place the afternoon before the confer-
ence officially started. Challenges were given in natural language and required a
solution that consisted of a formal specification and an implementation, where
the specification was formally verified w.r.t. the implementation. In contrast to
the VSComp event, a fixed time slot was assigned for each of the three chal-
lenges provided. This setup was chosen in order to increase precision of the tool
comparisons.

The three different challenges were the following: (1) MaxElim: finding the
maximum in an array by elimination, (2) TreeMax: finding the maximum in
a tree, and (3) TwoEq: finding two duplets in an array. In addition, a fourth
challenge (Cycle) was presented for teams to address outside the competition.
This challenge was to determine if a given linked list contains a cycle. The chal-
lenges were chosen with the idea that they should be tough, but doable within
the given time frames. Thorsten Bormer and Mattias Ulbrich, both Karlsruhe
Institute of Technology, Germany, helped select and test the challenges.

For this report, participants were also given the possibility to improve their
solutions. A record of all submitted solutions as well as an extended version of
this report is available at the competition web site (see front page).

The remainder of this report is structured as follows. First the different teams
and tools that participated in the competition are briefly introduced in Section 2.
Then, Sections 3, 4, and 5 present the different challenges and the solutions pro-
vided by the different teams. Finally, Section 6 presents an overview of solutions
submitted both during and after the competition, gathers most interesting obser-
vations and conclusions that were made by the organizers and participants, and
makes some suggestions about running verification competitions in the future.

2 Participating Teams and Tools

The six participating teams used six different verification tools: the KeY sys-
tem1 [2], Dafny2 [13], KIV3 [15], jStar4 [6], Why3 [3] (with the Krakatoa front-
end [7]), and AProVe [9]. This section briefly describes these tools, and the
background of the team members.

Team KeY. The KeY system [2] is a highly automated, explicit-proof-object
theorem prover for Java programs based on Dynamic Logic. Recently, the KeY
system started its second life – the current development version is based on
explicit heap representations and dynamic frames [11,16]. In this version of KeY,
program specifications are written using JML* – a KeY-specific modification of

1 http://www.key-project.org
2 http://research.microsoft.com/projects/dafny/
3 http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
4 http://www.jstarverifier.org

The COST IC0701 Verification Competition 2011 5

JML to accommodate the idea of dynamic frames. This was the main version of
the KeY system used in the competition, however, an older version of KeY based
on static frames was also successfully used in solving the first challenge.

The KeY team consisted of two members: Wojciech Mostowski (postdoc at
University of Twente) and Christoph Scheben (PhD student at Karlsruhe In-
stitute of Technology). Mostowski is an active developer and user of the KeY
system for the last 10 years. Scheben is a recently started PhD student develop-
ing the theory and extending the KeY system to reason about information flow
properties in Java programs.

Team Dafny. Dafny [13] is a programming language with built-in specifica-
tion constructs. A Dafny program consists of classes, which contain variables
and methods. Methods can be equipped with annotations in the form of pre-
and postconditions, inline assertions, loop invariants and termination measures
for loops and recursion. Specifications may contain user-defined recursive func-
tions, as well as ghost variables and ghost code. Language features such as sets,
sequences, and inductive data types are useful both in specifications and in exe-
cutable code.

The Dafny verifier statically checks all user-supplied annotations, as well as
memory safety properties (such as the absence of null dereferences or array
accesses out of bounds), well-foundedness of recursive functions and termination
of methods. The verifier is built on top of the Boogie [1] platform and works
by generating verification conditions, which are discharged by a proof engine of
choice, usually the SMT solver Z3 [5].

At the competition, the Dafny team consisted of two PhD students from
ETH Zürich: Julian Tschannen and Nadia Polikarpova. Both team members are
novice users of Dafny, however with extensive experience in other Boogie-based
verification tools.

Team KIV. KIV [15] is a tool for formal system development and interac-
tive verification. It is based on many-sorted higher-order logic and structured
algebraic specifications. KIV supports reasoning about programs written in two
languages: 1) abstract programs that contain while loops, nondeterminism and re-
cursive procedures, which operate on arbitrary algebraic data types, and 2) Java
programs. The calculus is based on sequents and symbolic execution/wp-calculus
for programs. KIV also implements a temporal logic.

KIV has a user-friendly interface with specification graphs and explicit proof
trees. Proof automation is achieved by a set of heuristics (e.g., for quantifier
instantiation) and efficient compiled rewriting.

TeamKIV consisted of twoPhD students –GidonErnst andBogdanTofan, who
have both workedwith the KIV tool for about two years – and Gerhard Schellhorn,
who is one of the main developers of the tool, with many years of experience.

The solutions of the KIV team with full proofs are available online 5.

5 http://www.informatik.uni-augsburg.de/swt/projects/

cost-competition-2011/

6 T. Bormer et al.

Team jStar. jStar is a verification tool based on separation logic that aims
at verifying object-oriented programs written in Java. It verifies that programs
meet specifications which are provided by the user in the form of method pre-
and postconditions. Loop invariants are computed automatically by means of
abstract interpretation. The jStar tool is geared towards reasoning about the
heap and defers all other reasoning (such as arithmetic reasoning) to the SMT
solver Z3.

The jStar tool is built on top of coreStar, a generic language-independent
back-end intended for building verification tools based on separation logic. The
two essential components that jStar brings together are: a theorem prover for
separation logic which embeds an abstraction module for defining abstract inter-
pretations; and a symbolic execution module for separation logic. Both of these
components are tailored to object-oriented verification.

Reasoning about arrays was built into jStar only the day before the competi-
tion (and thus had not been thoroughly evaluated). As a result, the jStar team
did not develop complete solutions to the challenges considering arrays – but
used the experience from the competition to find out how they had to improve
their support for arrays.

At the competition, the jStar team consisted of Dino Distefano and Radu
Grigore from Queen Mary, University of London. Distefano has been working
on the development of jStar since 2008, while Grigore is a postdoctoral research
assistant working on the project since 2010.

Team Why/Krakatoa. The Why platform [7] is an environment for deduc-
tive program verification. It provides a rich specification language for modeling
program behavior, and a verification condition generator. The verification condi-
tions are passed to various backends (involving formula transformers/simplifiers,
type encoders and pretty-printers) allowing a large set of automated or inter-
active external provers to be called. It also provides several front-ends to deal
with input programs written in mainstream languages such as C (via the Jessie
plugin of Frama-C [14]) and Java (with the Krakatoa front-end6).

During the competition, the team used Why3 [3], the last major ver-
sion of Why, and the Krakatoa front-end. The team had only one member,
Claude Marché, INRIA Saclay and LRI, France. Marché is an active developer
of the C and Java front-ends of Why and Why3 since 2004. Improved solutions
were written after the competition together with J.-C. Filliâtre, and are available
as part of the ProVal Web gallery of certified programs7.

Team AProVe. AProVE [9] is a fully automated termination and complex-
ity analysis system with front-ends for several programming languages such as
Haskell, Prolog and Java. It builds upon the power of techniques developed for
termination analysis of term rewriting systems (TRS) over the past 30 years
by using a non-termination-preserving translation from the input problem to a
TRS.
6 http://krakatoa.lri.fr
7 http://proval.lri.fr/gallery/cost11comp.en.html

The COST IC0701 Verification Competition 2011 7

For the competition, the team used AProVE’s Java frontend [4], which can also
be accessed online8. The system currently only analyzes full programs, so each
challenge solution needed to be accompanied by a routine to generate (random)
inputs corresponding to the given pre-conditions. Please note that AProVE only
proved termination properties for the presented examples.

The termination prover AProVE was used by Marc Brockschmidt, a PhD
student working primarily on static analysis of Java programs in AProVE.

3 Challenge 1: Finding the Maximum in an Array

������ ��	��� �
� max(�
�[] a) {

�
� x = 0;

�
� y = a.length-1;

����
 (x != y) {

�� (a[x] <= a[y]) x++;

��
 y--;

}

�
���
 x;

}

Fig. 1. Search by elimination

Time: 60 minutes
Given: A non-empty integer array a.
Challenge: Verify that the index re-
turned by the method max() given in
Fig. 1 points to an element maximal
in the array.
Motivation: This challenge is an in-
stance of Kaldewaij’s Search by Elim-
ination [10], where an element with
a given property is located by elimi-
nating elements that do not have that
property. The challenge was selected
as it involves a relatively simple but

interesting invariant, expressing that the maximal element is in the remaining
search space rather than maintaining the maximal element found so far.
Results: Teams using tools that supported array data structures found the solu-
tion to this problem straightforward. Teams KeY, Dafny, KIV and Why/Kraka-
toa successfully specified and verified the pre- and postcondition of the max

method. They successfully stated a loop invariant for the main while loop. The
first part of the invariant is simple: it relates the search space bounds x and
y and the bounds of the input array a. The second part of the loop invariant,
concerned with maximality, was more difficult to express and verify. Fig. 2 gives
an overview of this invariant part, showing quite some variations. Apart from
the invariant, all teams have found the right termination measure y− x.

Team KeY. One particular thing the KeY team found difficult to get right in
the invariant was the disjunction of the two cases under each quantifier. The first
intuition was that both conditions always hold. However, since it is difficult to
establish in the loop invariant which of the two indices is changed by the loop, a
disjunction, rather than a conjunction, is correct and at the same time sufficient
to prove the final property. The KeY system proves this program fully correct
(including integer overflow checks)9 in around 10 seconds.
8 http://aprove.informatik.rwth-aachen.de/eval/JBC-Nonterm/
9 The overflow checking option of the KeY system was only used in this task to show
that this is possible. Overflow checks are skipped in the rest.

8 T. Bormer et al.

(����	�� �
� i; i>=0 && i<=x; a[i]<=a[x] || a[i]<=a[y]) &&

(����	�� �
� j; j>y && j<a.length; a[j]<=a[x] || a[j]<=a[y]);
KeY

�
�	��	
� ∀ i • 0 ≤ i ≤ x =⇒ a[i] ≤ a[x] ∨ a[i] ≤ a[y];

�
�	��	
� ∀ i • y ≤ i ≤ a.Length - 1 =⇒
a[i] ≤ a[x] ∨ a[i] ≤ a[y];

Dafny original

�
�	��	
� ∀ i • 0 ≤ i < a.Length ∧
a[i] > a[x] ∧ a[i] > a[y] =⇒ x < i < y;

Dafny revised

∃k. x ≤ k ∧ k < y ∧ k < #ar ∧ ar [k] = max (ar) KIV

����	�� integer i;

0 <= i < x || y < i < a.length ==> a[i] <= max(a[x],a[y]);

Why

Fig. 2. Invariants for MaxElim (relevant parts)

Team Dafny. The first challenge did not present any problems for the Dafny
team. The initial solution was achieved in 25% of the allotted time. It contained
five loop invariants, which were essentially a more verbose version of the revised
solution that was developed after the competition. It also specified a termination
measure through a decreases clause, which turned out to be redundant, as
Dafny can infer simple termination measures automatically.

Team KIV. The solution of the KIV team models the underlying array data
structure as an algebraic array, by actualizing the parameter type of arrays in
the KIV library with natural numbers. Array indices are natural numbers too,
rather than integers.

After the competition, the team also solved this challenge using KIV’s Java
calculus [17]. The program is encoded in compilable Java and the proof addition-
ally shows that during execution of the program, no ArrayIndexOutOfBounds-
Exception occurs. The proof structure is identical to the abstract proof, but for-
mulas look slightly more complex, since additional information regarding type
and heap access safety is necessary.

Team Why/Krakatoa. The first challenge did not provide any difficulties for
the Why/Krakatoa team. Around 15 minutes were enough to write the Why3
version and to prove it correct. Another 15 minutes were sufficient to transform
it into a solution for the annotated Java code.

Team AProVe. To analyze the given problem, the AProVE team added a
routine to create a random integer array. Then, AProVE could directly prove
the resulting program to terminate in under 5 seconds. To achieve this, the max
routine is automatically translated into a TRS with built-in integers [8] consisting
of two rules (here simplified for presentation):

The COST IC0701 Verification Competition 2011 9

f(Array(l), x, y)→ f(Array(l), x+ 1, y) | x ≥ 0 ∧ y ≥ 0 ∧ y < l ∧ x < l ∧ x �= y

f(Array(l), x, y)→ f(Array(l), x, y − 1) | x ≥ 0 ∧ y ≥ 0 ∧ y < l ∧ x < l ∧ x �= y

In term rewriting, a rule �→ r can be applied to a term t if there is a substitution
σ such that �σ = t′ for some subterm t′ of t. Then the application of the rewrite
rule results in a variant of t where the subterm t′ is replaced by rσ.

For the example, the two generated rules closely match the two possible loop
traversals. The first argument of f represents the input array, for which only the
length l is encoded here. Termination is easily, and automatically, proven using
a polynomial interpretation corresponding to the measure 2l − x + y, which
decreases in each rule.

Interestingly enough, the loop invariant x < y is not needed to show termina-
tion, as x and y are used as array indices and are thus implicitly bounded by 0
and the length of the array.

4 Challenge 2: Finding the Maximum in a Tree

Time: 90 minutes
Given: A non-empty binary tree, where every node carries an integer.
Challenge: Implement and verify a program that computes the maximum of
the values in the tree.
Motivation: The challenge was constructed by the organizers to explore how
tools handle heap data structures that are not lists. The challenge, nonetheless,
did admit a reasonably simple specification with an abstract sequence, map, or
similar data type, as it did not involve properties such as the ordering of elements
in a tree. Another aspect not tested was data structure mutation.
Results: Within the time slot allocated during the competition, only the KIV
team provided a full solution to the problem (and the AProVe team showed
termination). However, after the competition, all teams worked out a solution
to TreeMax.

TeamKeY. InKeY, the solution toTreeMax is based ondynamic frames [11,16].
Due to the linked structure of the tree and the recursive implementation of the max
method, the KeY team chose to specify both the heap structure of the tree, and
a flat representation of it. The heap structure definition states that trees cannot
be cyclic, while the flat representation of the tree as a finite sequence of integers
disallows infinite trees.

Figure 3 shows the relevant part of the resulting JML* specification. The
heap structure is specified with the ghost field fp, which denotes the set of loca-
tions making up the footprint of the tree, and an invariant that structures this
footprint correspondingly. The accessible clause provides a measure proving
well-foundedness of the recursively defined invariant.

The integer payload of the tree is packed into a sequence in a natural way: the
head of the sequence is the node of the tree, the left sub-tree follows, and then
the right. The length of the sequence is the measure proving that the recursive
call to the method max terminates.

10 T. Bormer et al.

������ ��	�� Tree {

����	�
 �
� value; ����	�
 /*@
���	��
 @*/ Tree left, right;

/*@ ����� �����
� fp; �
�	��	
� fp ==

��
���
��
(����.*, ��
���
��
(

left==
���? �
���� : ��
���
��
(left.*,left.fp),

right==
���? �
���� : ��
���
��
(right.*,right.fp)));

�
�	��	
� left !=
��� ==>

(�������
� (����.*, left.fp) && left.��
�);

...

����� ��
� seq; �
�	��	
� seq ==

��
����
�	�(��
����
��
��
(value), ��
����
�	�(

left==
���? ��
��
���� : left.seq,

right==
���? ��
��
���� : right.seq));

	��
�����
 ��
� : fp ��
	���
���� seq.length; @*/

Fig. 3. The KeY team’s solution for TreeMax (excerpt)

What turned out to be the most challenging part of this task for the KeY
team was the actual proof. The boundedness of the invariant and the structure
of the footprint is proved automatically and very quickly. The first part of the
top-level specification, a universal quantifier stating that the result is greater
than or equal to all the elements in the tree is also quite straightforward. Up to
this point, the KeY system finds all proofs automatically and within one minute.
However, the system has difficulty with the second main property: the existential
quantifier that states the presence of the result in the tree. In the automated
proof search mode the proof starts to grow uncontrollably regardless of the prover
settings used. In the end, substantial manual interaction was required to guide
the prover through the important cases (left and right sub-trees being null

or not) and to give it the right instantiations for the existential quantifier. This
manual interaction with the prover (over 200 interactions in total) was where
most of the time was spent on this challenge. The rest of the proof was done
automatically and took less than a minute to finish.

Team Dafny. Memory footprints of linked data structures are commonly de-
scribed in Dafny using dynamic frames [11]. According to this idiom, the Tree

class is extended with a ghost field Repr, which stores the set of all nodes in
the subtree with root this. The ghost field serves multiple purposes: on the one
hand, it is used to describe footprints of functions and methods, thus taking care
of the frame problem; on the other hand, it serves as a termination measure for
any recursion on subtrees. For the latter use, the data structure is required to be
acyclic. Dafny does not support class invariants, where the acyclicity property
could be stated. Class invariants are simulated by defining a predicate valid,
and using it in pre- and postconditions of class methods.

The COST IC0701 Verification Competition 2011 11

To facilitate functional specifications, another ghost field Values is defined
to denote the set of all values stored in the subtree. Using this field, it is easy
to specify that method max returns a value from the tree that is larger than
all other values. A straightforward recursive implementation for max was pro-
vided; the only auxiliary annotation needed to verify this implementation was
the termination measure.

In the rush of the competition the Dafny team forgot to specify that the
return value must be present in the tree. The team added the omitted piece of
specification in the final version, and Dafny was able to verify it without any
further modifications. The final version also contains a constructor: a method
that establishes the valid predicate without requiring it. Adding such a method
to any class is important in order to ensure consistency of the class invariant.

Team KIV. The difficult task in the second challenge is to specify a proper
tree structure within a heap H . The KIV team used a lightweight embedding
of separation logic into HOL. This is part of the KIV library. The embedding
encodes heap assertions as heap predicates of type heap → bool. It contains
a straightforward specification of binary trees in the heap, using a recursive
function tr : ref × tree → (heap → bool). The heap predicate tr(r, t) states
that pointer r is the root of a binary heap tree that corresponds to an alge-
braic tree t. Algebraic trees are a free data type with two constructors: leaf and
branch(t0, a, t1). Predicate tr is specified as

tr(r, leaf)(H) ↔ emp(H) ∧ (r = null)
tr(r, branch(t0, a, t1))(H) ↔

∃ r0, r1. (r �→ node(r0, a, r1) ∗ tr(r0, t0) ∗ tr(r1, t1))(H)

Predicate emp is true for the empty heap only, and maplet r �→ node(r0, a, r1)
defines a singleton heap consisting of exactly one node at address r, which holds
an element a (actualized with integers in the following) and pointers r0 and r1 to
the left and right subtree respectively. Crucially, separation logic’s star operator
∗ enforces that each tree node resides in a different part of the heap, which
ensures the tree shape of the heap structure.

With these preliminaries, total correctness of a recursive procedure MAX(r;
i, H) was proven. This procedure returns the maximum value of the tree stored
under reference r, in output variable i (the semicolon separates input parameters
from reference/output parameters). The proof obligation is:

r �= null ∧ (tr(r,t) ∗ p)(H) → 〈|MAX(r; i,H)|〉 ((tr(r,t) ∗ p)(H) ∧ i = max(t))

In the formula, 〈|α|〉ϕ is KIV notation for the weakest precondition wp(α, ϕ) of
program α for postcondition ϕ. Therefore, the goal asserts that all executions of
MAX terminate without changing the input tree and that i stores max(t) at the
end. The maximum function max(t) was defined by structural recursion over the
algebraic tree. Predicate p is a universally quantified predicate variable allowing
an abstraction from everything else on the heap beyond the tree structure (p

12 T. Bormer et al.

can, e.g., be instantiated with the empty heap emp). Thus, the generalized goal
is directly provable by induction over the size of t. When applying the induction
hypothesis for the right (left) subtree, p is instantiated with the original p plus
the root cell plus the left (right) subtree. KIV’s heuristic applies one instance
of the induction hypothesis automatically, the second instance has to be given
manually. The proof is simple and has six interactive steps out of 39 steps in
total.

Team jStar. The implementation from the jStar team consists of one class
whose fields are final, private, and initialized by the constructor. The method max
is coded as follows:

�
� max() { �
� r = value;

�� (left !=
��� && left.max() > r) r = left.max();

�� (right !=
��� && right.max() > r) r = right.max();

�
���
 r; }

The main objective of the specification is to keep track of the maximum of each
tree. The predicate Tree(t, {max = m}) denotes that the Java reference t points
to a tree whose maximum value is m.

Tree(t, {max = m}) ⇐⇒
(t = nil ∧m = 0) ∨ (t �= nil ∧ NonEmptyTree(t, {max = m}))

(1)

NonEmptyTree(t, {max = m}) ⇐⇒ ∃ l lm r rm v,

t
left�−→ l ∗ t right�−→ r ∗ t value�−→ v ∗

Tree(l, {max = lm}) ∗ Tree(r, {max = rm}) ∗
m = max(v,max(lm , rm)) ∗ v ≥ 0

(2)

In general, one can associate abstract records with objects. In this case, the
record has exactly one field, max. Verification is easier if one assumes a lower
bound on possible values. In this case, the bound 0 was chosen, but also the
smallest representable integer could have been chosen. Background axioms spec-
ify the function max.

Given this setup, jStar verifies the following specifications.

{ v ≥ 0 ∗ Tree(l, {max = lm ′}) ∗ Tree(r, {max = rm ′}) }
〈init〉(v, l, r)
{NonEmptyTree(this, {max = max(v,max(lm ′, rm ′))}) }

(3)

{NonEmptyTree(this, {max = m′}) }
max()

{NonEmptyTree(this, {max = m′}) ∗ return = m′ }
(4)

Specification (3) ensures that the constructor preserves absence of sharing and
value non-negativity when building the tree. More importantly, it keeps track of

The COST IC0701 Verification Competition 2011 13

the maximum value for each tree that is constructed in the program. Specifica-
tion (4) ensures that the tree remains allocated and that the returned value is
indeed the maximum reachable.

During the competition the jStar team was only able to verify (3). After the
competition, the team were also able to verify (4). This could not be proved
during the competition as, at that time, jStar could not send extra axioms to
Z3, such as the ones for max, which are necessary to prove (4).

Team Why/Krakatoa. For the Why/Krakatoa team, the tree data structure
made the second challenge significantly difficult. As a first step, proving a Why3
version of the problem was very useful, since such a data structure can be defined
using an algebraic datatype, as follows:

type tree = Null | Tree int tree tree

Predicates for testing membership of a value v in a tree and for checking if a
value is greater than or equal to all elements of a tree, can be defined recursively:

predicate mem (v:int) (t:tree) = match t with

| Null -> false

| Tree x l r -> x=v \/ mem v l \/ mem v r

predicate ge tree (v:int) (t:tree) = match t with

| Null -> true

| Tree x l r -> v >= x /\ ge tree v l /\ ge tree v r

Given this model of trees, one can provide annotated code for the problem. The
team decided to code an auxiliary subprogram, having an accumulator as an
extra argument, to take care of empty trees:

let rec max aux (t : tree) (acc : int) =

{ true }
match t with

| Null -> acc

| Tree v l r -> max aux

l (max aux r (MinMax.max v acc))

end

{ ge tree result t /\ result >= acc }

let max (t : tree) =

{ t <> Null }
match t with

| Null -> absurd

| Tree v l r ->

max aux l (max aux r v)

end

{ ge tree result t }

The postconditions declare that the result is greater than or equal to all the
elements of the given tree. This is incomplete, since it is also necessary to express
that the result is itself an element of the tree. This is indeed easy to specify using
the predicate mem. However, during the competition the team made a mistake,
and used conjunctions instead of disjunctions in the definition of mem, thus failing
to prove correctness of the fully specified program. The solution presented here
is the one that the team developed during the competition. The ProVal gallery
provides a different solution that is both simpler (without auxiliary functions)
and complete (with a postcondition that the result appears in the tree).

To prove correctness of max_aux’s postcondition, the team used the following
lemma:

14 T. Bormer et al.

lemma trans: forall t:tree, x y:int.x >= y /\ ge tree y t -> ge tree x t

Verification conditions are all proved, using a combination of provers, including
the interactive prover Coq for the above lemma. The Coq proof script is a few
lines long and proceeds by induction over the tree structure.

The ProVal gallery also provides solutions in Java and C. In these cases,
complex predicates must be defined in order to specify that the given tree is
well-formed, i.e., is a finite tree properly terminated with null pointers as leaves.
However, there is no need to specify that there is no sharing in the subtrees: a
recursive traversal for finding the maximum is also correct in the case of sharing.

Team AProVe. Again, the AProVE team first added a routine to randomly
create a tree. Then, AProVE could automatically translate the max method into
a TRS. Next, integer comparisons that are not relevant for termination are
automatically filtered out, leaving only rules of the form f(Tree(l, r))→ f(l) and
f(Tree(l, r)) → f(r). These can easily be proven to terminate, as the size of the
considered tree decreases strictly in each step. The fully automatic termination
proof takes about 15 seconds, where a majority of the time is spent on proving
termination of the routine generating a random tree.

5 Challenge 3: Finding Two Duplets in an Array

Time: 90 minutes
Given: An integer array a of length n+ 2 with n ≥ 2. It is known that at least
two values stored in the array appear twice (i.e., there are at least two duplets).
Challenge: Implement and verify a program that finds two such values. You
may assume that the array contains values between 0 and n− 1.
Motivation: This challenge is a popular “job interview-style” question, but we
are not aware of its origin. The challenge was selected as it requires complicated
array reasoning, specifications, and invariants.
Results: Most teams solved this problem within or shortly after the deadline
for the competition. The KeY team provided a complete solution after the com-
petition finished but before the end of the conference.

Team KeY. The key point in the solution of this challenge is to be able to
specify the number of occurrences of a value in the array (and reason about it).
In JML, this can be done with the help of the \sum operator, a special quantifier
that provides an arithmetic sum over the quantified elements.

First, the team defined a method to count the number of occurrences of a
given value in the array with the following simple specification:

//@

���
� ��
���� ==

//@ (���� �
� i; 0<=i && i<a.length; a[i] == value ? 1 : 0);

��	��� �
� /*@ ���
 @*/ countAcc(�
�[] a, �
� value) {...}

The implementation of the method uses a simple loop annotated with appropri-
ate JML specifications to count the occurrences. KeY proves this method correct
automatically within a few seconds.

The COST IC0701 Verification Competition 2011 15

The team then used this method to both implement and specify the top-
level method that finds the two values that are each duplicated in the array.
The solution was developed for a slightly more general case, where it was not
assumed that the values in the array are all between 0 and n−1. Instead, only the
existence of two pairs of duplicates from an arbitrary range of values smin..smax
(smin+1<smax) is required by the precondition of the top-level method. This not
only makes the specifications more elegant but also makes the correctness proof
easier for the tool to complete.

The implementation of the top-level method is different from that of other
teams in that it iterates over all potential array values (given a priori by the
smin..smax range) and not over the array elements. For each potential value, it
calls countAcc to get the count of the value’s occurrences, and terminates once
a second duplicated value has been found. The most difficult part is expressing
the invariant for the iteration loop. It makes a case distinction over how many
duplicate values have been found so far and specifies a corresponding condition
about the elements yet-to-be found. The proof for the top-level method requires
some minor interactions (more or less obvious quantifier instantiations), while
the rest is done automatically within 10 seconds.

Team Dafny. The main difficulty of the third challenge was to express the
precondition that the array has at least two duplicate pairs, and to get the verifier
to make use of this fact so that it concludes that the program always succeeds.
The team went for a functional approach to specification and formulated the
precondition as follows: the array has a duplicate pair, and if that pair is removed
from the array, it still has a duplicate pair. To this end, recursive functions
has duplicates and first duplicate are defined on sequences.

For the reason of time constraints, the team decided to write the implemen-
tation in terms of these functions as well. Dafny makes this possible through
a construct called function method : a recursive function that must be free of
specification-only constructs and thus can be used in executable code.

Note that the implementation uses sequences instead of arrays, because the
former are easier for Dafny to reason about. In the opinion of the team, this is
not a limitation, as the implementation is still executable.

The postcondition of the program is expressed more abstractly: through the
number of occurrences of both results in the initial sequence. To make the pro-
gram verify, three inductive lemmas were needed. Those lemmas connect the
number of occurrences of an element in a sequence to the notions membership,
duplicates and removal from a sequence, respectively.

Team KIV. The KIV team first understood (incorrectly) that the task was to
compute two indices m, n with a duplicate element in the array (ar[m] = ar[n]).
Therefore, the total correctness of an algorithm FINDDUP(ar;m,n) that finds
such a pair of indices was proved initially.

The algorithm uses two nested loops to find the right positions. The outer
loop runs through the array using an index m. The inner loop sets done to

16 T. Bormer et al.

true if it finds an index n > m with a duplicate. The invariant of the outer
loop asserts that no duplicate exists below m, and that the done flag of the
inner loop indicates ar[m] = ar[n]. To verify the inner loop, the precondition
is generalized (weakened) from n = m + 1 to “no duplicate for ar[m] below n”.
Then well-founded induction over #ar − n and symbolic execution of one inner
loop body is sufficient to finish the proof.

After verifying this algorithm, the team realized that the intended task was
rather to verify an algorithm that computes two duplicate values of the input
array. Fortunately, both the first implementation and its correctness proof could
be reused to come up with the right solution.

A second procedure FINDDUPSND(ar, k;m,n) was then defined, which gets
an additional input value k and computes the indices m, n of a duplicate value
different from ar[k]. The program and the proof for this second algorithm are
almost identical to the first. The final theorem that solves the challenge then just
combines the two results to prove that executing both procedures sequentially
finds the two required duplicates.

Team Why/Krakatoa. The solution that the Why/Krakatoa team imple-
mented during the competition first defines an auxiliary function that given
an array a and an optional value o, returns the two indexes of a duplet in a
whose value differs from o (if any). The main program first calls the auxiliary
program without the optional argument o, and then calls it a second time with
the argument o initialized to the value found during the first call. The solution is
correct whatever the values stored in the array (they do not have to be between 0
and n− 1).

The code is too large to be presented here; it is found in the ProVal gallery. The
code for the auxiliary program consists of two nested loops and is not intended
to be computationally optimal. Suitable loop invariants can be found without
major difficulty. The proofs are obtained using automatic provers. During the
competition, the fully proved Why3 program was obtained in around 60 minutes.
Java and C versions, as well as an alternative solution inWhy3, were implemented
after the competition.

Team AProVe. The AProVE team solved the problem by enumerating all pairs
of values of the array using two nested loops (using counters i and j bounded
by the array length) and then searching for duplets. AProVE could translate
the method to rules of the form f(Array(l), i, j) → f(Array(l), i + 1, i + 2) | l ≤
j ∧ l > i+1 and f(Array(l), i, j)→ f(Array(l), i, j+1) | l > j ∧ l > i. The second
rule corresponds to one iteration in the inner loop, in which j is incremented
while it is smaller than the array size. The first rule corresponds to the case that
the counter j of the inner loop has reached its bound. The rule then encodes
that i is incremented, j is reset to i + 1 and then a first iteration of the inner
loop is performed. Termination of the generated TRS can be proven easily and
automatically.

The COST IC0701 Verification Competition 2011 17

6 Wrap-Up, Conclusions and Future Competitions

Solution Overview. This report discusses the three challenges and the so-
lutions developed during the verification competition organized as part of the
FoVeOOS conference in October 2011. Figure 4 summarizes the outcome of the
competition.

The “revised” column of Figure 4 also records solutions to the 4th, “take-
home” challenge (Cycle), which is mentioned in the introduction. After the
competition, the teams Dafny, KIV and Why/Krakatoa submitted solutions for
this challenge10.

Solutions Time, % of slot Revised

Team (# members) M
a
x
E
l
i
m

T
r
e
e
M
a
x

T
w
o
E
q

M
a
x
E
l
i
m

T
r
e
e
M
a
x

T
w
o
E
q

M
a
x
E
l
i
m

T
r
e
e
M
a
x

T
w
o
E
q

C
y
c
l
e

KeY (2) 67 100 100

Dafny (2)
a b

25 83 110

KIV (3)
b

75 44 122

jStar (2) 100 100 100

Why3 (1) 25 100 67

AProVE (1) T T T – – – T T T

a incomplete specification, fixable w/o extra proof hints
b full solution shortly after deadline
T verified termination only

solved not solved substantial partial solution

Fig. 4. Solution overview

One of the main developers of Dafny, Rustan Leino, has also attempted the
challenges, out of competition. He reported that the first three caused him no
particular problems (spending approximately 20, 40 and 90 minutes on them,
respectively). Studying the solution of the Why/Krakatoa team to TreeMax

inspired him to simplify his own. Leino also solved Cycle in about 8 hours.
His solutions are now available as part of the Dafny test suite. We encourage
others in the verification community to try the challenges and report back to
the competition organizers.

The solutions to Cycle submitted by team KIV, team Why, and by Leino
verify the efficient “tortoise and hare” algorithm (attributed by Knuth to Floyd).
Team KIV also verified Brent’s algorithm, which is another efficient cycle detec-
tion method.
10 Available in the extended version of this paper.

18 T. Bormer et al.

Participants’ Observations. All teams reported that participating in the
competition had been a positive experience and an incentive to continue de-
velopment of the tools. Taking part in the competition allowed them to get a
good overview of the power and usability of verification systems other than the
ones with which they were most familiar. Also, because of the requirement to
be physically present, the competition provided a good opportunity to interact
with developers of competing tools.

During the competition several teams realized the importance of obtaining
good feedback from the tool, both upon syntax and specification errors, as well as
on failed proof attempts. Developing the solutions under a certain time pressure
made these requirements much more obvious than usual.

For the jStar team, the competition gave a clear indication on parts of the
tool that had to be improved: jStar’s libraries are very basic, and the support
for arrays has to be developed further, as the current implementation seems to
have some unwanted interactions with Z3.

For the AProVE team, the challenges addressed during the competition
were atypical (AProVE usually addresses more complex termination problems).
However, the experience of the competition inspired the team to explore how
AProVE’s fully automated nature might be used to find termination measures
that are usable for other tools.

Organizers’ Observations. The organizers observed the importance of gath-
ering a bank of challenges well in advance of the competition so that they could
be evaluated with respect to their difficulty and their suitability for a wide se-
lection of verification tools. This evaluation was particularly important when
determining the length of time to allocate to each challenge.

With respect to the solutions submitted to each of the challenges, the orga-
nizers were surprised at the variation of loop invariants used in MaxElim and
were interested to see that most teams completed the challenge in less than three
quarters of the allotted time. TreeMax brought greater difficulty to teams, with
user interaction required by many of the tools and only one team achieving a
solution within the allotted time. This re-affirmed the suspicion that verification
of programs involving linked data structures is still not a straightforward task for
many verification tools. In TwoEq, it was no surprise that most teams divided
the challenge into subproblems and took advantage of their tool’s support for
modular verification to compose the overall solution.

When evaluating the different solutions, the organizers observed that expert
non-users of tools can understand the solutions. However, they also observed
the importance and the difficulty of communicating program verification proofs.
Most tools try to do something in this respect: Why3 supports the user in produc-
ing a LATEX report with key lemmas and some statistics; KIV can process proofs
for browsing on the web, however the proofs could be more informative; KeY
offers a nicely annotated proof tree, but in the tool only; and Dafny has a very
clean annotation syntax11. All these aspects help to make the understanding of

11 An assessment of solution verbosity is available in the extended version of this report.

The COST IC0701 Verification Competition 2011 19

the proof easier. However, it would be a worthwhile exercise for tool developers
to come together to combine and extend the different approaches.

The competition also made it clear that certain tool features help to specify
programs and construct proofs. For example, both KIV and Why3 can define and
reason easily about arbitrary ADTs, while Dafny has very good built-in support
for sets and sequences. However, it is evident that techniques such as system-
atic refinement between abstract and implemented data types, and invariant
generation are not yet adopted in mainstream program verification tools.

Design of Future Verification Competitions. The competition also pro-
vided some further ideas about the format of future verification competitions.
Unsurprisingly, the outcome of this kind of verification competition depends
heavily on the ability and experience of the human proof engineer(s). While this
cannot be avoided completely, it is helpful (a) trying to balance the experience
and skills between teams, (b) encouraging participation of several teams with
the same tool, and (c) trying to attract non-developer teams. On the other hand,
it needs to be stressed that tool performance must be measured in terms of us-
ability and not just raw deduction power alone. A suggestion that we consider
worth investigating is to record the participants as they interact with their tools
and later collect their comments on the solution-finding process.

The teams and the organizers appreciated that dedicated time slots were
given to challenges. Teams felt that this forced them to work on the problems
together, which was beneficial, because sharing ideas reduces the probability of
getting stuck on a wrong path. Moreover, it also gives the possibility to pursue
two alternative approaches to the same problem in parallel, when one is not sure
which one will work.

One of the risks of a verification competition is that the choice of challenges
favors a particular tool or approach (in fact, the Dafny team remarked that the
challenges did not address modifying the state of complex data structures, which
are more difficult to handle in Dafny). An alternative format that would address
this issue, would be to ask that each participating team contribute a challenge
that they can handle well, and that they believe might be a challenge for the
other participants. This would ensure that each team could submit at least one
solution to a challenge, and these solutions would provide a good benchmark
with which to compare other team solutions.

We conclude that program verification tools are mature enough now to have
verification competitions. However, because of the more open nature of program
verification problems, and the importance of the experience of the team members,
it will be complicated to standardize such a competition. Instead, we believe that
it is worth investigating different formats. As the tools will develop further, also
verification competitions will develop further.

Acknowledgements. The competition received generous supported from
COST Action IC0701. Huisman and Mostowski are partially supported by ERC
grant 258405 for the VerCors project. Mostowski is partially supported by
Artemis grant 2008-100039 for the CHARTER project.

20 T. Bormer et al.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroc�law, Poland (August 2011)

4. Brockschmidt, M., Otto, C., Giesl, J.: Modular termination proofs of recursive
Java Bytecode programs by term rewriting. In: Proc. RTA 2011. LIPIcs, vol. 10,
pp. 155–170 (2011)

5. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems Languages and Applications, OOPSLA 2008, pp. 213–226. ACM,
New York (2008)

7. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

8. Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving Termina-
tion of Integer Term Rewriting. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595,
pp. 32–47. Springer, Heidelberg (2009)

9. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination
Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

10. Kaldewaij, A.: Programming: the derivation of algorithms. Prentice-Hall, Inc.
(1990)

11. Kassios, I.T.: Dynamic Frames: Support for Framing, Dependencies and Sharing
Without Restrictions. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

12. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition:
Experience Report. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 154–168. Springer, Heidelberg (2011)

13. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

14. Moy, Y., Marché, C.: The Jessie plugin for Deduction Verification in Frama-C —
Tutorial and Reference Manual. INRIA & LRI (2011), http://krakatoa.lri.fr/

The COST IC0701 Verification Competition 2011 21

15. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and inter-
active proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction—A
Basis for Applications, vol. II.1, pp. 13–39. Kluwer (1998)

16. Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic Frames in Java Dynamic Logic.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152.
Springer, Heidelberg (2011)

17. Stenzel, K.: A Formally Verified Calculus for Full Java Card. In: Rattray, C.,
Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 491–505.
Springer, Heidelberg (2004)

