Skip to main content

Speedup of RNA Pseudoknotted Secondary Structure Recurrence Computation with the Four-Russians Method

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7402))

Abstract

While secondary pseudoknotted structure prediction is computationally challenging, such structures appear to play biologically important roles in both cells and viral RNA [1]. Restricting the class of possible structures and then finding the optimal structure for that restricted class is a common method employed to deal with the computational complexity.

We derive a practical and worst-case speedup algorithm using the Four-Russians method for the O(n 6) time Rivas&Eddy Algorithm [2] describing the broadest set of structures. Fast R&E algorithm finds the optimal Rivas&Eddy fold in O(n 6/q)-time, where q ≥ log(n).

Because the solution matrix produced by Fast R&E algorithm is identical to the one produced by the original Rivas&Eddy algorithm, the contribution of the algorithm lies not only in its stand alone practicality but also in its ability to be implemented alongside heuristic speedups, leading to even greater reductions in time. Our approach is the first to achieve a Ω(log(n)) time speedup without reducing the set of possible Rivas&Eddy pseudoknotted structures. The analysis presented here of the original algorithm could be used to improve other pseudoknot algorithms with similar recurrences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Condon, A., Jabbari, H.: Computational prediction of nucleic acid secondary structure: Methods, applications, and challenges. Theor. Comput. Sci. 410(4-5), 294–301 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  3. Torarinsson, E., Havgaard, J.H., Gorodkin, J.: Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23(8), 926–932 (2007)

    Article  Google Scholar 

  4. Rose, D., Hackermuller, J., Washietl, S., Reiche, K., Hertel, J., FindeiSZ, S., Stadler, P., Prohaska, S.: Computational rnomics of drosophilids. BMC Genomics 8(1), 406 (2007)

    Article  Google Scholar 

  5. Torarinsson, E., Yao, Z., Wiklund, E.D., Bramsen, J.B., Hansen, C., Kjems, J., Tommerup, N., Ruzzo, W.L., Gorodkin, J.: Comparative genomics beyond sequence-based alignments: RNA structures in the encode regions. Genome Res. 18(2), 242–251 (2008)

    Article  Google Scholar 

  6. Liu, C., Song, Y., Shapiro, L.: RNA Folding Including Pseudoknots: A New Parameterized Algorithm and Improved Upper Bound. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 310–322. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bulletin of Mathematical Biology 46(4), 591–621 (1984)

    MATH  Google Scholar 

  9. Waterman, M.S., Smith, T.F.: RNA secondary structure: A complete mathematical analysis. Math. Biosc. 42, 257–266 (1978)

    Article  MATH  Google Scholar 

  10. Frid, Y., Gusfield, D.: A Simple, Practical and Complete \(O(\frac{n^3}{ \log n})\)-Time Algorithm for RNA Folding Using the Four-Russians Speedup. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 97–107. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. Journal of Computational Biology 7(3-4), 409–427 (2000)

    Article  Google Scholar 

  12. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104(1-3), 45–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. Journal of Computational Chemistry 24(13), 1664–1677 (2003)

    Article  Google Scholar 

  14. Mathews, D.H., Turner, D.H.: Prediction of RNA secondary structure by free energy minimization. Current Opinion in Structural Biology 16(3), 270–278 (2006); Nucleic acids/Sequences and topology - Anna Marie Pyle and Jonathan Widom/Nick V Grishin and Sarah A Teichmann

    Article  Google Scholar 

  15. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5(1), 104 (2004)

    Article  Google Scholar 

  16. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210(2), 277–303 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deogun, J.S., Donts, R., Komina, O., Ma, F.: RNA secondary structure prediction with simple pseudoknots. In: Chen, Y.-P.P. (ed.) APBC. CRPIT, vol. 29, pp. 239–246. Australian Computer Society (2004)

    Google Scholar 

  18. Cao, S., Chen, S.-J.: Predicting structures and stabilities for h-type pseudoknots with interhelix loops. RNA 15(4), 696–706 (2009)

    Article  Google Scholar 

  19. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saule, C., Régnier, J.-M.S.M., Denise, A.: Counting RNA pseudoknotted structures. Journal of Computational Biology 18(10), 1339–1351 (2011)

    Article  MathSciNet  Google Scholar 

  21. Möhl, M., Salari, R., Will, S., Backofen, R., Sahinalp, S.C.: Sparsification of RNA Structure Prediction Including Pseudoknots. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 40–51. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Pinhas, T., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Edit Distance with Duplications and Contractions Revisited. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 441–454. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Williams, R.: Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 995–1001. SIAM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frid, Y., Gusfield, D. (2012). Speedup of RNA Pseudoknotted Secondary Structure Recurrence Computation with the Four-Russians Method. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31770-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31769-9

  • Online ISBN: 978-3-642-31770-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics