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Abstract. It is a well-known fact that the Bayesian Networks’ (BNs) use as 
classifiers in different fields of application has recently witnessed a noticeable 
growth. Yet, the Naïve Bayes’ application, and even the augmented Naïve 
Bayes’, to classifier-structure learning, has been vulnerable to certain limits, 
which explains the practitioners’ resort to other more sophisticated types of 
algorithms. Consequently, the use of such algorithms has paved the way for 

raising the problem of super-exponential increase in computational complexity 
of the Bayesian classifier learning structure, with the increasing number of 
descriptive variables. In this context, the present work’s major objective lies in 
setting up a further solution whereby a remedy can be conceived for the 
intricate algorithmic complexity imposed during the learning of Bayesian 
classifiers’ structure with the use of sophisticated algorithms. Noteworthy, the 
present paper’s framework is organized as follows. We start, in the first place, 
by to propose a novel approach designed to reduce the algorithmic complexity 
without engendering any loss of information when learning the structure of a 

Bayesian classifier. We, then, go on to test our approach on a car diagnosis and 
a Lymphography diagnosis databases. Ultimately, an exposition of our 
conducted work’s interests will be a closing step to this work.   
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1 Introduction 

It is worth noting that efficient classifiers can be reached through the use of 

Bayesian networks [1, 2, 3]. In fact, a Bayesian Classifier relative to a problem with p 

variables is characterized by the distinction of having p + 1 nodes. Indeed, all 

Bayesian classifiers model the fact of belonging to a certain class by means of a 

discrete node dubbed "class node". This node is discrete and multinomial having k 

modality. The class node is distinct for not owning a parent node. Regarding the other 

p variables, which we call descriptive variables, they are denoted Xi (i from 1 to p). 
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The Bayesian classifier with the simplest structure is the Naïve Bayesian Network 

(RBN) [9], also called Naïve Bayes classifier. Nevertheless, no correlations between 

the attributes are taken into account with respect to the Naïve Bayes, where all 

features contribute to the classification in the same way. The classification node takes 

advantage of the information provided by each attribute independently of the 

information provided by other features-still; this may not be optimal for the 

classification task. Hence, various proposals have been suggested in a bid to enrich 

the Naive Bayesian Network structure to make it account for correlations between 
different attributes. In [2], for instance, the authors have proposed a Tree-Augmented 

Naïve Bayes (TAN) approach to enrich the network structure. According to this 

approach, a tree structure is applied for the classification to be achieved [20, 5]. The 

tree structure has the advantage of having a low degree of complexity, along with the 

ability to avoid over fitting problems. However, it restricts the number of parents, 

other than the classification node, to exactly one single parent for each node, which 

turns out to be a strong constraint. So, the resulting structure appears to neglect the 

case where a variable is correlated with several other variables. Besides, it outlooks 

the case where a variable is conditionally independent of all other variables within the 

classification node. In which case, the node representing that variable only needs the 

class node as a parent. The addition of another parent only adds unnecessary 

complexity and increases the number of network parameters. Consequently, other 
authors [4, 5, 6, 28, 8] have proposed the use of more sophisticated methods to 

overcome these shortcomings, among which are: the use of the K2 algorithms [6, 24, 

25, 26, 27, 28, 10, 4], the Genetic Search [7, 4], the Greedy Search [11, 4], the 

Annealing Simulated [8, 4], the Greedy Hill Climber [7, 4] and the Repeated Hill 

Climber [7, 4]. Although these algorithms have actually managed to attain performant 

classifiers, their application has resulted in the frequently and commonly encountered 

problem of structure-learning computational complexity owing to the increase in the 

number of descriptive variables. 

Hence, a new approach has been proposed through this research work based on a 

structure learning upstream clustering, which can be jointly used with the K2 

algorithms pertinent to the structure learning of Bayesian Classifiers. The envisaged 
aim behind this framework proposal is to reduce the computational complexity and, 

consequently, the execution time without engendering a loss of information, in 

comparison to the use of the classic K2 algorithm. 

2 A new clustering-based heuristic: methodology 

The idea lying behind our conceived procedure lies in the rapid super-exponential 

surge of algorithmic complexity of learning the Bayesian Classifier structure from 

data [12, 13] with respect to the rise in the number of variables. To remedy this 

problem, our idea consists in subdividing the variables into subsets (or clusters), by 

learning the structure of each cluster’s separately, while looking for a convenient 

procedure whereby the different structures could be assembled into a final structure. 
In this regard, it has been noticed that in the case of a Bayesian classifier learning 

structure, there exists one single central variable of a global interest called “class” 

variable. In this respect, we reckon to execute the processing of each cluster’s 



learning structure with the class variable, then, proceed by assembling the different 

various structures around this class variable as a next step. 

2.1 The variables’ clustering 

Regarding our present work, we have chosen to use the K-means algorithm, as it is 

the most popular and applied in the literature, added to fact that its algorithmic 

complexity is linear (O(n)) [14]. We also propose to use a hierarchical clustering 

algorithm along with the bootstrap technique to obtain the optimal number of 

clusters that will be introduced as entries in the K-means algorithm. To note, the 

databases that will be applied to test our approach, in the experimentation section, 

consist of categorical variables, and regarding the performance of clustering we will 

use the toolbox ClustOfVar with the software R [15]. In particular, we will use the 

variant K-means for categorical variables [16, 17] and the link-likelihood approach 

[18] (hierarchical clustering algorithm for categorical variables). To assess the 

stability of all possible partitions, 2 to p-1 (where p is the total number of variables) 
clusters from the hierarchical clustering, we will use a feature called "Stability" (also 

developed in the ClustOfVar toolbox) based on the "bootstrap" technique. The result 

is a graph which is then a tool to help to select the number of clusters. The user can be 

choosing the number K of clusters to the heights of the first increase in the stability. 

2.2 Structure learning   

A structure learning has been performed for each cluster of variables including the 
class variable. The ultimate structure would be the assembling of the n structures 

obtained from each cluster around the class variable. 

We will perform our tests via the K2 algorithm with, as input, the order obtained 

by applying the algorithm MWST (for the MWST algorithm, the initial node will be 

the class variable) [21]. In our study case, we would rather try to prove that the joint 

use of our approach together with the K2 algorithm can be beneficial in reducing the 

computational complexity without losing information.     

Note that in our work, we will use the BNT toolbox [22] running on the Matlab 

software (2010 version) to apply the MWST and K2 algorithms to structure learning. 

We will also apply the BNT toolbox for parameters learning and inference. 

3 Experimentations procedures 

3.1 Data-bases 

We first test our approach, on a car diagnosis database (Car Diagnosis 2). It has 18 

variables, among which is a status variable called “Car starts”, the Class variable. The 

parameters’ generating file of this data base is available on the site 

http://www.norsys.com/downloads/netlib/. According to these parameters, we have 

been able to generate 10.000 examples, among which 32 have been left aside for the 

references’ testing phase. We also apply our approach to a Lymphography diagnosis 



database (Lymphography). It is made up of 19 variables, among which is a status 

variable called “Diagnosis”, the Class variable. This lymphography domain has been 

obtained from the University Medical Centre, Institute of Oncology, Ljubljana, 

Yugoslavia (available on request on the site 

http://archive.ics.uci.edu/ml/datasets/Lymphography). Among the 148 instances of 

data, 32 have been left aside for the references’ testing phase. 

3.2 Clustering 

Regarding the clustering, we are going to use the stability function (bootstrap 

approach using the mean of corrected rand criterion [19]) of the toolbox ClustOfVar 

[16] after the application of an hirarchical ascendant algorithm, in order to estimate, 

approximately, the number of clusters to be entered in the algorithm K-means.  

Using the stability graphics, the optimal number of clusters selected, for “Car 

diagnosis 2” database, has been equal to three. 

Using the stability graphics, the optimal number of clusters selected, for 
“Lymphography” database, has been equal to two. 

3.3 The classical learning structure compared to our new heuristic     

For the “Car diagnosis 2” database, the execution time has been 3.45 seconds for 

the classical structure learning of the entire variables. The global execution time of 

our approach application has been 1.45 seconds (over 1.32 seconds for cluster 1; 0.05 

seconds for cluster 2 and 0.09 seconds for cluster 3). The sum of these executions’ 
time (1.45 seconds) remains significantly inferior to the structure learning of the 

entire variables simultaneously. 

For the “Lymphography” database, the sum of learning structure of “cluster 1” and 

“cluster 2” executions’ time (equal to 1.65 seconds) remains significantly inferior to 

the structure learning of the entire variables, simultaneously, which equals 2.67 

seconds. 

3.4 Both attained structures’ relevant inferences and result comparisons 

Our approach favors the preservation of data for the class variable’s sake, we will 

learn the parameters of the two structures found for each of the databases studied 

(structure found after learning all the variables simultaneously and structure found 

after assembling the various structures of the clusters around the class variables). For 

the class variable, we are going to calculate the probabilities of its different states; 

given the states of the networks other nodes in respect of the two obtained Bayesian 

classifiers structures. Thus, a 32 database will be used for experimenting the class 

variables of both databases. Naturally, the experimentation examples have been 

excluded during the structures’ learning. The statistical significance of difference 

between the obtained probabilities, with respect to both structures, will be measured 



via the “Z” test (comparing the two observed means belonging to two different 

samples) [23]. 

The two tested Class variables are “Car starts” of the “Car Diagnosis 2” database 

and “Diagnosis” of the “Lymphography” database. The results are presented in graphs 

form (See Fig. 1 and Fig. 2) showing the Z-test variation corresponding to each 

variable studied according to its different possible states. 

3.5 Discussion   

Based on the achieved experimental results, the pairs of probabilities for the 

variable “diagnosis” of the "Lymphography" database are identical; the preservation 

of information has been complete (see Fig. 2). As for the variable “Car Start” of “Car 

Diagnosis 2” database, the probabilities pairs are very similar but not identical; the 

hypothesis H0 has always been rejected, even with very small Z values, not exceeding 

the value of |0.46|, very distant from the threshold of |1.96|, as set by the Z test theory 

(see Fig. 1).  It can, therefore, be deduced that the inference results, regarding both of 
learning structures approaches, are very similar even at eye sight, and without 

applying any statistical tests to measure the difference’s significance. Through our 

approach, we have managed to reduce, considerably, the algorithmic complexity of 

the Bayesian classifier structure learning without any significant loss of information.  

 

Fig. 1 Z-test variation for the “Car starts” variable     Fig. 2 Z-test variation for the “Diagnosis” variable 

           (“Car Diagnosis 2” database).                              (“Lymphography”  database). 

4 Conclusion 

Within the scope of the present work, we have set up a new well-defined approach 

for the Bayesian Classifier structure learning from data-base, so useful that it can be 

jointly applied with the K2 algorithms in the aim to reduce the computational 

complexity of this process. we have proved that loss in data turns out to be so 

negligible that it does not affect the extracted Bayesian classifier stemming results 

during the inference stage, while saving a great deal of execution time. 
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