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Abstract. New concepts of rough natural number systems are intro-
duced in this research paper from both formal and less formal perspec-
tives. These are used to improve most rough set-theoretical measures
in general Rough Set theory (RST) and to represent rough semantics.
The foundations of the theory also rely upon the axiomatic approach
to granularity for all types of general RST recently developed by the
present author. The latter theory is expanded upon in this paper. It is
also shown that algebraic semantics of classical RST can be obtained
from the developed dialectical counting procedures. Fuzzy set theory is
also shown to be representable in purely granule-theoretic terms in the
general perspective of solving the contamination problem that pervades
this research paper. All this constitutes a radically different approach to
the mathematics of vague phenomena and suggests new directions for a
more realistic extension of the foundations of mathematics of vagueness
from both foundational and application points of view. Algebras corre-
sponding to a concept of rough naturals are also studied and variants are
characterised in the penultimate section.
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Axiomatic Theory of Granules, Granulation, Granular Rough Semantics,
Algebraic Semantics, Rough Y-Systems, Cover Based Rough Set Theo-
ries, Rough Inclusion Functions, Measures of Knowledge, Contamination
Problem.

1 Introduction

Rough and Fuzzy set theories have been the dominant approaches to vague-
ness and approximate reasoning from a mathematical perspective. Some re-
lated references are [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] . In rough set theory
(RST),vague and imprecise information are dealt with through binary relations
(for some form of indiscernibility) on a set or covers of a set or through more
abstract operators. In classical RST [17], starting from an approximation space
consisting of a pair of a set and an equivalence relation over it, approximations
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of subsets of the set are constructed out of equivalence partitions of the space
(these are crisp or definite) that are also regarded as granules in many senses.
Most of the developments in RST have been within the ZFC or ZF set-theoretic
framework of mathematics. In such frame works, rough sets can be seen as pairs
of sets of the form (A, B), with A ⊆ B or more generally as in the approaches of
the present author as collections of ”some sense definite elements” of the form

{a1, a2, . . . an, b1, b2, . . . br}

subject to ais being ’part of’ of some of the bjs (in a Rough Y -system) [18].
Relative RST, fuzzy set theory may be regarded as a complementary approach

or as a special case of RST from the membership function perspective [19].
Hybrid rough-fuzzy and fuzzy-rough variants have also been studied. In these
a partitioning of the meta levels can be associated for the different types of
phenomena, though it can be argued that these are essentially of a rough set
theoretic nature. All of these approaches have been confined to ZFC or ZF or the
setting of classical mathematics. Exceptions to this trend include the Lesniewski-
mereology based approach [20]. Though Rough Y -systems have been introduced
by the present author in ZF compatible settings [18], they can be generalised
to semi-sets and variants in a natural way. This semi-set theoretical variant is
work in progress. Note that the term ’theory’ in RST is being used in the loose
sense of the literature on the subject. It matters because the paper has strong
connections with logical systems and philosophy.

The granular computing paradigm can be traced to the mid nineties and has
been used in different fields including fuzzy and rough set theories. An overview
is considered in [21]. The dominant interpretation of the paradigm within RST
has been that granularity is a context-dependent notion that gets actualized in
a quasi inductive way (see [22] for example). A few axiomatic approaches for
specific rough set theories are known in the literature [23], while in some others
like [24] different types of granules have been used in tolerance approximation
spaces. The axiomatic theory [18] developed by the present author is the most
general one in the context of general RSTs. [25] considers ’ontology driven formal
theory of granules’ for application to biological information systems, related
specifications and logic programming. The motivations and content are mostly
orthogonal to the concerns of the present research paper.

As classical RST is generalised to more general relations and covers, the
process of construction and definition of approximations becomes more open
ended and draws in different amounts of arbitrariness or hidden principles. The
relevant concept of ’granules’, the things that generate approximations, may
also become opaque in these settings. To address these issues and for semantic
compulsions, a new axiomatic theory of granules has been developed over a RYS
in [18] and other recent papers by the present author. This theory has been used
to formalise different principles, including the local clear discernibility principle
in the same paper. In this research, it is extended to various types of general RST
and is used to define the concepts of discernibility used in counting procedures,
generalised measures and the problems of representation of semantics.



Many types of contexts involving vagueness cannot be handled in elegant
way through standard mathematical techniques. Much of RST and FST are not
known to be particularly elegant in handling different measures like the degree
of membership or inclusion. For example, these measures do not determine the
semantics in clear terms or the semantics do not determine the measures in a
unique way. But given assumptions about the measures, compatible semantics
[26] in different forms are well known. This situation is due to the absence of
methods of counting collections of objects including relatively indiscernible ones
and methods for performing arithmetical operations on them. However in the
various algebraic semantics of classical RST some boundaries on possible opera-
tions may be observed.

The process of counting a set of objects, given the restriction that some of
these may be indiscernible within themselves, may appear to be a very contextual
matter and on deeper analysis may appear to bear no easy relationship with any
fine structure concerning the vagueness of a collection of such elements or the
rough semantics (algebraic or frame). This is reflected in the absence of related
developments on the relationship between the two in the literature and is more
due to the lack of developments in the former.

It should be noted that the convenience of choice between concepts of formal
logics (in axiomatic or sequent calculus form) preceding algebraic semantics or
the converse depend on the context. For many classes of logics, the absence of real
distinction is well-known [27,28]. Any intention to deal with models automati-
cally comes with an ontological commitment to the proof-theoretical approach
and vice versa. The literature on rough sets shows that the converse works bet-
ter – for example the rough algebra semantics [29], the double stone algebra
semantics [30] and super rough semantics [31] were developed from a ’semantic
viewpoint’. The modal perspective originated from both a semantic viewpoint
and an axiomatic viewpoint (not proof-theoretic). The more important thing to
be noted is that full application contexts of rough sets come with many more
kinds of problems (like the reduct problem) that are not represented in rough
logics or semantics, since the focus is on reasoning. This means fragments of the
full process are abstracted for the formulation of rough logics in proof-theoretical
or model-theoretical terms. When I speak of semantics of RST, I mean such an
abstraction necessarily. More clarifications are provided in the section on seman-
tic domains and the contamination problem.

In this research, theories of vague numbers or rather procedures for count-
ing collections of objects including indiscernible ones have been introduced by
the present author and have been applied to extend various measures of RST.
The extended measures have better information content and also supplement the
mereological theory from a quantitative perspective. Proper extension of these
to form a basis of RST within ZF/ZFC is also considered in this research paper.
Here, by a ’basis of RST’, I mean a theory analogous to the theory of numbers
from which all mathematics of exact phenomena can be represented. Throughout
this paper, the theory may be seen to be restricted to ZF/ZFC set theoretical
setting, though a naive or a second order reading will not be problematic. Relax-



ation of the ZF axioms given the dialectical interpretation of semantic domain
will be taken up in subsequent papers, but the philosophical motivations for such
a paradigm shift will be considered in later sections. From a purely vagueness
perspective, the goal is also to enlarge the scope of mathematical perspective of
vagueness.

Notation and terminology are fixed in the second section. In the third sec-
tion, the basic orientation of object and meta levels used, and the relation with
concepts is elucidated. The concept of contamination of information across meta-
levels is introduced and described in the next section. In the fifth section, the
reason for using a fragment of mereology as opposed to the Polkowski-Skowron
mereology is explained. Some non-standard (with respect to the literature on
RST) examples motivating key aspects of the axiomatic approach to granules
are presented in the sixth section. In the next section, the entire structure of
the proposed program and aspects of the measures used in RST are discussed.
In the following section, aspects of counting in domains of vague reasoning are
explained in a novel perspective. In the ninth section, the axiomatic theory of
granules over rough Y -systems is extended. In the following two sections this is
applied to relation-based and cover-based rough set theories. The ninth, tenth
and eleventh sections may also be found in a forthcoming paper by the present
author and have been included for completeness. Dialectical counting processes
are introduced next. These are used to generalise rough inclusion functions, de-
grees of knowledge dependency and other measures in the following section. In
the fourteenth section, possible representation of different types of counts is de-
veloped. An application to rough semantics and integration of granularity with a
method of counting is considered in the fifteenth section. In the following section,
I show how fuzzy set theory can be viewed as a particular form of granularity
in the perspective of the contamination problem. The relation with earlier ap-
proaches is also indicated. Subsequently I consider the problem of improving
the representation of counts in a low-level perspective and develop the algebra
of rough naturals in detail. Further directions are mentioned in the eighteenth
section.

2 Some Background, Terminology

A Tolerance Approximation Space TAS [32] is a pair S = 〈S, T 〉, with S being a
set and T a tolerance relation over it. They are also known as similarity and as
tolerance approximation spaces (conflicting the terminology introduced in [33]).
For each x ∈ S, the associated set of T -related elements is given by [x]T =
{y ; (x, y) ∈ T}. Some references for extension of classical RST to TAS are [33],
[34], [35] and [36]. In [24] specific granulations are considered separately in TAS,
but many types of duality and connections with logics are not considered. The
actual body of work in the field is huge and no attempt to mention all possibly
relevant references will be made.

An approach [34] has been to define a new equivalence θ0 on S via (x, y) ∈
θ0 if and only if domT (x) = domT (y) with domT (z) = ∩{[x]T : z ∈ [x]T }.



This is an unduly cautious ’clear perspective’ approach. A generalization of the
approximation space semantics using T -related sets (or tolerance sets) can be
described from the point of view of generalised covers (see [37]). This includes
the approach to defining the lower and upper approximation of a set A as

Al =
⋃
{[x]T ; [x]T ⊆ A},

and
Au =

⋃
{[x]T ; [x]T ∩ A 6= ∅, x ∈ A}.

A bited modification proposed in [38], valid for many definable concepts of gran-
ules, consists in defining a bited upper approximation. Algebraic semantics of the
same has been considered by the present author in [39]. It is also shown that a
full representation theorem is not always possible for the semantics.

The approximations

Al∗ = {x ; (∃y) (x, y) ∈ T, [y]T ⊆ A},

and
Au∗ = {x ; (∀y) ((x, y) ∈ T −→ [y]T ∩ A 6= ∅)} = (Ac)l∗c

were considered in [40,35]. It can be shown that, for any subset A,

Al ⊆ Al∗ ⊆ A ⊆ Au∗ ⊆ Au.

In the BZ and Quasi-BZ algebraic semantics [41], the lower and upper rough
operators are generated by a preclusivity operator and the complementation
relation on the power set of the approximation space, or on a collection of sets
under suitable constraints in a more abstract setting. Semantically, the BZ-
algebra and variants do not capture all the possible ways of arriving at concepts
of discernibility over similarity spaces.

Let S be a set and S = {Ki}n1 : n < ∞ be a collection of subsets of it. We
will abbreviate subsets of natural numbers of the form {1, 2, . . . , n} by N(n).
For convenience, we will assume that K0 = ∅, Kn+1 = S. 〈S, S〉 will also be
referred to as a Cover Approximation System (CAS).

Cover-based RST can be traced to [42], where the approximations Al and
Au are defined over the cover {[x]T ;x ∈ S}. A 1-neighbourhood [43] n(x) of an
element x ∈ S is simply a subset of S. The collection of all 1-neighbourhoods
N of S will form a cover if and only if (∀x)(∃y)x ∈ n(y) (anti-seriality). So
in particular a reflexive relation on S is sufficient to generate a cover on it. Of
course, the converse association does not necessarily happen in a unique way.

If S is a cover of the set S, then the Neighbourhood [44] of x ∈ S is defined
via,

nbd(x) =
⋂
{K : x ∈ K ∈ S}.

The sixth type of lower and upper approximations [45,43] of a set X are then
defined by

X$ = {x : nbd(x) ⊆ X},



and
X$ = {x : nbd(x) ∩ X 6= ∅}.

The minimal description of an element x ∈ S is defined to be the collection

Md(x) = {A : x ∈ A ∈ S, ∀B(x ∈ B →∼ (A ⊂ B))}.

The Indiscernibility (or friends) of an element x ∈ S is defined to be

Fr(x) =
⋃
{K : x ∈ K ∈ S}.

The definition was used first in [40], but has been redefined again by many others
(see [46]). An element K ∈ S will be said to be Reducible if and only if

(∀x ∈ K)K 6= Md(x).

The collection {nbd(x) : x ∈ S} will be denoted by N . The cover obtained by
the removal of all reducible elements is called a covering reduct. The terminology
is closest to [45] and many variants can be found in the literature (see [46]).

If X ⊆ S, then let

(i) X l1 =
⋃
{Ki : Ki ⊆ X, i ∈ {0, 1, ..., n}}.

(ii) X l2 =
⋃
{∩i∈ I(S \Ki) : ∩i∈ I(S \ Ki) ⊆ X, I ⊆ N(n+ 1)}; the union is

over the I’s.
(iii) Xu1 =

⋂
{∪i∈ IKi : X ⊆ ∪i∈ I Ki, I ⊆ N(n+ 1)}; the intersection is over

the I’s.
(iv) Xu2 =

⋂
{S \ Ki : X ⊆ S \ Ki, i ∈ {0, ..., n}}.

The pair (X l1, Xu1) is called an AU -rough set by union, while (X l2, Xu2)
an AI-rough set by intersection (in the present author’s notation [47]). In the
notation of [37], these are (F∪∗ (X), F∗∪(X)) and (F∩∗ (X), F∗∩(X)), respectively.
I will also refer to the pair 〈S, K〉 as an AUAI-approximation system.

Theorem 1. The following hold in AUAI approximation systems:

(i) X l1 ⊆ X ⊆ Xu1; X l2 ⊆ X ⊆ Xu2; ∅l1 = ∅l2 = ∅,
(ii) (∪K = S −→ Su1 = Su2 = S) ; (∪K = S −→ ∅u2 = ∅, Sl1 = S),

(iii) (∩K = ∅ −→ ∅u1 = ∅, Sl2 = S),
(iv) (X ∩ Y )l1 ⊆ X l1 ∩ Y l1 ; (X ∩ Y )l2 = X l2 ∩ Y l2,
(v) (X ∪ Y )u1 = Xu1 ∪ Y u1 ; Xu2 ∪ Y u2 ⊆ (X ∪ Y )u2,

(vi) (X ⊆ Y −→ X l1 ⊆ Y l1, X l2 ⊆ Y l2, Xu1 ⊆ Y u1, Xu2 ⊆ Y u2),
(vii) If (∀i 6= j)Ki∩Kj = ∅ then (X ∩ Y )l1 = X l1 ∩ Y l1, (X ∪ Y )u2 = Xu2 ∪ Y u2,

(viii) X l1 ∪ Y l1 ⊆ (X ∪ Y )l1 ; X l2 ∪ Y l2 ⊆ (X ∪ Y )l2,
(ix) (X ∩ Y )u1 ⊆ Xu1 ∩ Y u1 ; (X ∩ Y )u2 ⊆ Xu2 ∩ Y u2,
(x) (S \ X)l1 = S \ Xu2 ; (S \ X)l2 = S \ Xu1,

(xi) (S \ X)u1 = S \ X l2 ; (S \ X)u2 = S \ X l1,
(xii) (X l1)l1 = X l1 ; (X l2)l2 = X l2 ; (Xu1)u1 = Xu1,

(xiii) (Xu2)u2 = Xu2 ; (X l1)u1 = X l1 ; (Xu2)l2 = Xu2,
(xiv) X l2 ⊆ (X l2)u2, (Xu1)l1 ⊆ Xu1,



(xv) (K∩j (X))u2 = K∩j (X), j = 1, 2, ..., t1 ; (K∪j (X))l1 = K∪j (X), j = 1, 2, ..., t2.

In this, (K∪j (X)) is the minimal union of sets of the form Ki that include X
(for j being in the indicated range) and (K∩j (X)) is the maximal intersection of
sets of the form Kc

i that are included in X.

All of the above concepts can be extended to covers with an arbitrary num-
ber of elements. The concepts of indiscernibility, neighbourhood and minimum
description can be extended to subsets of S. The concept of a Neighbourhood
Operator has been used in the literature in many different senses. These can
be relevant in the context of the sixth type (l6+, u6+) (see the sixth section)
approximations for dealing with covers generated by partially reflexive relations
[47]. A large number of approximations in the cover-based approximation con-
text have been studied in the literature using a far larger set of notations. An
improved nomenclature is also proposed in the eleventh section.

Cover-based RST is more general than relation-based RST and the question
of when covers over a set correspond to relations over the set is resolved through
duality results. It is well known that partitions correspond to equivalences and
normal covers to tolerances. The approach based on neighbourhoods [43] provides
many one way results. A more effective way of reducing cover-based RST to
relation-based RST is in [48].

3 Semantic Domains, Meta and Object Levels

This section is intended to help with the understanding of the section on the
contamination problem, the definition of RYS and clarify the terminology about
meta and object levels among other things. In classical RST (see [17]), an approx-
imation space is a pair of the form 〈S, R〉, with R being an equivalence on the
set S. On the power set ℘(S), lower and upper approximation operators, apart
from the usual Boolean operations, are definable. The resulting structure consti-
tutes a semantics for RST (though not satisfactory) from a classical perspective.
This continues to be true even when R is some other type of binary relation.
More generally (see fourth section) it is possible to replace ℘(S) by some set
with a parthood relation and some approximation operators defined on it. The
associated semantic domain in the sense of a collection of restrictions on possible
objects, predicates, constants, functions and low level operations on those will
be referred to as the classical semantic domain for general RST. In contrast, the
semantics associated with sets of roughly equivalent or relatively indiscernible
objects with respect to this domain will be called the rough semantic domain.
Actually many other semantic domains, including hybrid semantic domains, can
be generated (see [49], [39] [31]) for different types of rough semantics, but these
two broad domains will always be - though not necessarily with a nice correspon-
dence between the two. In one of the semantics developed in [39], the reasoning
is within the power set of the set of possible order-compatible partitions of the
set of roughly equivalent elements. The concept of semantic domain is therefore



similar to the sense in which it is used in general abstract model theory [50]
(though one can object to formalisation on different philosophical grounds).

Formal versions of these types of semantic domains will be useful for clarifying
the relation with categorical approaches to fragments of granular computing [51].
But even without a formal definition, it can be seen that the two approaches
are not equivalent. Since the categorical approach requires complete descrip-
tion of fixed type of granulations, it is difficult to apply and especially when
granules evolve relative particular semantics or semantic domains. The entire
category ROUGH of rough sets in [51], assumes a uniform semantic domain
as evidenced by the notion of objects and morphisms used therein. A unifying
semantic domain may not also be definable for many sets of semantic domains
in our approach. This means the categorical approach needs to be extended to
provide a possibly comparable setting.

The term object level will mean a description that can be used to directly
interface with fragments (sufficient for the theories or observations under con-
sideration) of the concrete real world. Meta levels concern fragments of theories
that address aspects of dynamics at lower meta levels or the object level. Im-
portantly, we permit meta level aspects to filter down to object levels relative
different object levels of specification. So it is always possible to construct more
meta levels and expressions carry intentions.

Despite all this, two particular meta levels namely Meta-C (or Meta Classi-
cal), Meta-R (or Meta Rough) and an object level will be used for comparing key
notions introduced with the more common approaches in the literature. Meta-R is
the meta level corresponding to the observer or agent experiencing the vagueness
or reasoning in vague terms (but without rough inclusion functions and degrees
of inclusion), while Meta-C will be the more usual higher order classical meta
level at which the semantics is formulated. It should be noted that rough mem-
bership functions and similar measures are defined at Meta-C, but they do not
exist at Meta-R. A number of meta levels placed between Meta-R and Meta-C
can possibly be defined and some of these will be implicit in the section on rough
naturals.

Many logics have been developed with the intent of formalising ’rough sets’ as
’well-formed formulae’ in a fixed language. They do not have a uniform domain
of discourse and even ones with category theoretically equivalent models do
not necessarily see the domain in the same way (though most meanings can
be mapped in a bijective sense). For example, the regular double stone algebra
semantics and complete rough algebra semantics correspond to different logical
systems of classical RST (see [52,53]). The super rough algebra semantics in [31]
actually adds more to the rough algebra semantics of [29]. It is possible to express
the ability of objects to approximate in the former, while this is not possible in
the latter. This is the result of a higher order construction used for generating
the former.

The relation of some rough semantics and topology mentioned in the previous
section is again a statement about the orientation of the semantic domains in
the respective subjects formulated in more crude mathematical terms.



3.1 Granules and Concepts

In [54] for example, concepts of human knowledge are taken to consist of an
intensional part and an extensional part. The intension of a concept is the col-
lection of properties or attributes that hold for the set of objects to which the
concept applies. The extension is to consist of actual examples of the object.
Yao writes, ’This formulation enables us to study concepts in a logic setting in
terms of intensions and also in a set-theoretic setting in terms of extensions’.
The description of granules characterise concepts from the intensional point of
view, while granules themselves characterise concepts from the extensional point
of view. Granulations are collections of granules that contain every object of the
universe in question. In a seemingly similar context, in [55] (or [3]) the authors
speak of extensional granules and intensional granules that are respectively re-
lated to objects and properties. In my opinion the semantic domains in use are
different and these are not conflicting notions, though it is equally well to call the
latter a more strong platonic standpoint. Yao does not take sides on the debate
in what a concept is and most of it is certainly nonclassical and non empiricist
from a philosophical point of view.

In modern western philosophy, intentions and extensions are taken to be
possessed by linguistic expressions and not by concepts. Thus, for example, from
Frege’s point of view, the intension is the concept expressed by the expression,
and the extension is the collection of items to which the expression applies.
In this perspective, the concept applies to the same collection of items. It also
follows that concepts, in this perspective, must be tied to linguistic expressions
as well.

Concepts are constituents of thinking containing the meaning of words or
intended action or response. As such a linguistic expression for such concepts
may not be supplied by the reasoner. Apparently the Fregean point of view
speaks of concepts with associated linguistic expression alone. Even if we use a
broad-sense notion of ’linguistic expression’, this may fall short of the concept
mentioned in the former viewpoint. Another key difference is that the former
version of concepts are bound to be more independent of interpreters (or agents)
than the latter. The concept of granules actually evolves across the temporal
space of the theory and may be essentially a priori or a posteriori (relative
to the theory or semantics) in nature. Because of these reasons, I will not try
to map the two concepts into each other in this paper at least. In the present
paper, a priori granules will be required in an essential way.

It is only natural that possible concepts of granules are dependent on the
choice of semantic domain in the contexts of RST. But a priori granules may
even be identified at some stage after the identification of approximations.

4 Contamination Problem

Suppose the problem at hand is to model vague reasoning in a particular context
and relative to the agents involved in the context. It is natural for the model



to become contaminated with additional inputs from a classical perspective im-
posed on the context by the person doing the modelling. In other words, meta
level aspects can contaminate the perception of object level features. From an
algebraic perspective, if the model concerns objects of specific types like ’roughly
equivalent objects in some sense’, then the situation is relatively better than a
model that involves all types of objects. But the operations used in the algebra
or algebraic system can still be viewed with suspicion.

By the contamination problem, I mean the problem of minimising or elim-
inating the influences of the classicist perspective imposed on the context. In
other words, the problem is to minimize the contamination of models of meta-R
fragments by meta-C aspects. One aspect of the problem is solved partially in
[56] by the present author. In the paper, a more realistic conception of rough
membership functions and other measures of RST have been advanced from a
minimalist perspective avoiding the real-valued or rational-valued rough mea-
sures that dominate the rough literature. Most of the rough measures based
on cardinalities are of course known to lack mathematical rigour and have the
potential to distort the analysis.

In the mathematics of exact phenomena, the natural numbers arise in the
way they do precisely because it is assumed that things being counted are well-
defined and have exact existence. When a concrete collection of identical balls
on a table are being counted, then it is their relative position on the table that
helps in the process. But there are situations in real life, where

• such identification may not be feasible,
• the number assigned to one may be forgotten while counting subsequent

objects,
• the concept of identification by way of attributes may not be stable,
• the entire process of counting may be ’lazy’ in some sense,
• the mereology necessary for counting may be insufficient.

Apart from examples in [56], the most glaring examples for avoiding the
measures comes from attempts to apply rough sets to modelling the development
of human concepts. The ’same’ concept X may depend on ten other concepts in
one perspective and nine other concepts in another perspective and concepts of
knowing the concept X and gradation does not admit a linear measure in general.
Using one in fields like education or education research would only encourage
scepticism. The quality of measures like ’impact factor’ of journals [57] provide
a supportive example.

The underlying assumptions behind rough measures are much less than in a
corresponding statistical approach (subject to being possible in the first place in
the application context in question) and do not make presumptions of the form
-’relative errors should have some regularity’. Still the contamination problem is
relevant in other domains of application of RST and more so when the context
is developed enough to permit an evaluation of semantic levels.

There may be differences in the semantic approach of proceeding from alge-
braic models to logics in sequent calculus form in comparison to the approach of
directly forming the logic as a sequent calculus, or the approach of forming the



logic in Kripke-like or Frame-related terminology, but one can expect one to feed
the other. It should also be noted that this has nothing to do with supervalua-
tionary perspectives [58], where the goal is to reduce vagueness by improving the
language. Moreover the primary concerns in the contamination problem are not
truth-values or gaps in them. The contamination problem is analogous to the
problem of intuitionist philosophers to find a perfect logic free from problematic
classicist assumptions. A difficult approach to the latter problem can be found
in [59]. The important thing to note in [59] is the suggestion that it is better
to reason within a natural deduction system to generate ’pure logic’. In case of
the contamination problem, general understanding stems from model theoretic
interpretations and so should be more appropriate.

If a model-theoretic perspective is better, then it should be expected to pro-
vide justification for the problem. The problems happen most explicitly in at-
tempts to model human reasoning, in conceptual modelling especially (in learn-
ing contexts), in attempts to model counting processes in the presence of vague-
ness and others. In applications to machine intelligence, an expression of con-
tamination would be ’are you blaming machines without reason?’

5 Formalism Compatibility and Mereology

In the literature various types of mereologies or theories of part-whole relation-
ships [60,61] are known. For the axiomatic theory, I used a minimal fragment
derived from set-theory compatible mereology in [62]. This fragment may also be
argued to be compatible with even Lesniewskian mereology - but such arguments
must be founded on scant regard of Lesniewski’s nominalism and the distortions
of his ideas by later authors. Such distortion is used as the base for generalization
in all of ’Lesniewski ontology-based rough mereology’. This is evident for exam-
ple, from section-2.1 of [63]. Even the perspective of Gregoryck [64] is accepted -
’theorems of ontology are those that are true in every model for atomic Boolean
algebras without a null element’. Other papers by the same author, confirm the
pragmatic excesses as classical rough set theory is shown to be embedded in
the rough mereological generalisation as well [65]. New problems/conflicts of a
logical/philosophical nature are bound to crop up if the theory is applied to
model reasoning and attempts are made to link it to Lesniewski’s approach.
In my opinion, it would be better to term the Polkowski-Skowron approach a
’Lesniewski-inspired’ mereology rather than a ’Lesniewski-ontology-based’ one.

The reader can find a reasonable re-evaluation of formal aspects of the mere-
ology of Lesniewski from a ’platonized perspective’ in [66]. Importantly, it high-
lights difficulties in making the formalism compatible with the more common
languages of modern first order or second order logic. The correct translation of
expression in the language of ontology to a common language of set theory (mod-
ulo simplifying assumptions) requires many axiom schemas and the converse
translation (modulo simplifying assumptions) is doubtful (see pp 184-194,[66]).
I am stressing this because it also suggests that the foundational aspects of [20]
should be investigated in greater detail in relation to:



• the apparent stability of the theory in related application contexts, and
• the exact role of the rough parthood relation and role of degrees of member-

ship and t-norms in diluting logical categories.

I will not go into detailed discussion of the philosophical aspects of the points
made above since it would be too much of a deviation for the present paper.

One of the eventual goals of the present approach is also to extend general
RST to semi-set theoretical contexts [67,68] (or modifications thereof). Semiset
theory has been in development since the 1960s and its original goals have been
to capture vagueness and uncertainty, to be clear about what exactly is avail-
able for reasoning, to understand the infinite as ’something non-transparent’, to
impose a more sensible constraint on the relation between objects and proper-
ties and to require that any grouping or association is actualized (i.e. available
at our disposal). It can be formalised as a conservative extension of ZFC, but
irrespective of this aspect, the philosophical framework can be exploited in other
directions. However, it is obviously incompatible with the Lesniewski ontology
and nominalism. This is another reason for using a fragment of set-theoretically
compatible mereology in the definition of a general rough Y-system. In this pa-
per, I will continue to do the theory over ZFC-compatible settings, since most
of the present paper will be relevant for all types of rough theorists.

In summary, the differences with the Polkowski-Skowron style mereological
approach are:

(i) The mereology is obviously distinct. The present approach is compatible
with Godel-Bernays classes.

(ii) No assumptions are made about the degree of inclusion or of ’x being an
ingredient of y to a degree r’.

(iii) Concepts of degree are expected to arise from properties of granules and
’natural ways’ of counting collections of discernible and indiscernible objects.

6 Motivating Examples for RYS

Motivating examples for the general concept of RYS introduced in [18] are pro-
vided in this section. These examples do not explicitly use information or decision
tables though all of the information or decision table examples used in various
RSTs would be naturally relevant for the general theory developed. Other gen-
eral approaches like that of rough orders [69] and abstract approximation spaces
[70] are not intended for directly intercepting approximations as envisaged in
possible applications. They would also be restrictive and problematic from the
point of view of the contamination problem. Here the focus is on demonstrating
the need for many approximation operators, choice among granules and conflict
resolution.

Example-1:

Consider the following statements associable with the description of an apple
in a plate on a table:



(i) Object is apple-shaped; Object has maroon colour,
(ii) Object has vitreous skin; Object has shiny skin,
(iii) Object has vitreous, smooth and shiny skin,
(iv) Green apples are not sweet to taste,
(v) Object does not have coarse skin as some apples do,
(vi) Apple is of variety A; Apple is of variety X.

Some of the individual statements like those about shape, colour and nature
of skin may be ’atomic’ in the sense that a more subtle characterization may
not be available. It is also obvious that only some subsets of these statements
may consistently apply to the apple on the table. This leads to the question of
selecting some atomic statements over others. But this operation is determined
by consistency of all the choices made. Therefore, from a RST perspective, the
atomic statements may be seen as granules and then it would also seem that
choice among sets of granules is natural. More generally ’consistency’ may be
replaced by more involved criteria that are determined by the goals. A nice way
to see this would be to look at the problem of discerning the object in different
contexts - discernibility of apples on trees require different kind of subsets of
granules.

Example-2:

In the literature on educational research [71] it is known that even pre-school
going children have access to powerful mathematical ideas in a form. A clear de-
scription of such ideas is however not known and researchers tend to approximate
them through subjective considerations. For example, consider the following ex-
ample from [71]:

Four-year-old Jessica is standing at the bottom of a small rise in the preschool
yard when she is asked by another four-year-old on the top of the rise to come
up to her.

• No, you climb down here. Its much shorter for you.

The authors claim that ”Jessica has adopted a developing concept of com-
parison of length to solve at least for her - the physical dilemma of having to
walk up the rise”. But a number of other concepts like ’awareness of the effects
of gravitational field’, ’climbing up is hard’, ’climbing up is harder than climb-
ing down’, ’climbing down is easier’, ’climbing up is harder’, ’others will find
distances shorter’, ’make others do the hard work’ may or may not be supple-
mented by linguistic hedges like developing or developed and assigned to Jessica.
The well known concept of concept maps cannot be used to visualise these con-
siderations, because the concept under consideration is not well defined. Of these
concepts some will be assuming more and some less than the actual concept used
and some will be closer than others to the actual concept used. Some of the pro-
posals may be conflicting, and that can be a problem with most approaches of



RST and fuzzy variants. The question of one concept being closer than another
may also be dependent on external observers. For example, how do ’climbing up
is harder’ and ’climbing up is harder than climbing down’ compare?

The point is that it makes sense to:

(i) accommodate multiple concepts of approximation,

(ii) assume that subsets of granules may be associated with each of these ap-
proximations,

(iii) assume that disputes on ’admissible approximations’ can be resolved by ad-
mitting more approximations.

It is these considerations and the actual reality of different RST that moti-
vates the definition of Rough Y -systems.

7 Objectivity of Measures and General RST

In RST, different types of rough membership and inclusion functions are defined
using cardinality of associated sets. When fuzzy aspects are involved then these
types of functions become more controversial as they tend to depend on the
judgement of the user in quantifying linguistic hedges and other aspects. These
types of functions are also dependent on the way in which the evolution of
semantics is viewed. But even without regard to this evolution, the computation
of rough inclusion functions invariably requires one to look at things from a
higher meta level - from where all objects appear exact. In other words an
estimate of a perfect granular world is also necessary for such computations and
reasoning.

Eventually, this leads to mix up (contamination) of information obtained
from perceiving things at different levels of granularity. I find all this objection-
able from the point of view of rigour and specific applications too. To be fair such
a mix up seems to work fine without much problems in many applications. But
that is due to the scope of the applications and the fact that oversimplifications
through the use of cardinality permits a second level of ’intuitive approximation’.

In applications of RST that start from information or decision tables includ-
ing information about values associated with attributes (and possibly decisions)
for different objects, the evolution of the theory adheres to the following depen-
dency schemas:



In the above two figures, ’rough semantics’ can be understood to be in alge-
braic or in proof-theoretic sense. The intended reading is - ’components at arrow
heads depend on those at the tail’ and multiple directed paths suggest that ’com-
ponents in alternate paths may be seen in weaker forms relatively’. These figures
do not show the modified information system that invariably results due to the
computation of reducts of different kinds, as the entire picture merely gets re-
freshed to the refined scenario. The Lesniewski-style ontology-based mereological
approach of [20,26] fits into type-1 schemas. Rule discovery approaches would
fall within type-2 schemas.



The approach of the present paper is aimed at using measures that are more
natural in the rough setting and to use fewer assumptions about their evolu-
tion at the meta level. Eventually this is likely to result in changes on methods
of reduct computation in many cases. The theory is also aimed at tackling the
so-called inverse problems of [31] and later papers, which is essentially ’Given a
collection of definite objects and objects of relatively less definite objects with
some concepts of approximations (that is result of vague and possibly biased
considerations), find a description of the context from a general rough perspec-
tive’. From a semantic perspective these may reduce to abstract representation
problems. The following dependency schema shows how the different parts fit in.

The link between ’Rough Semantics’ and ’Rough Measures’ should be read
as ’possibly related’.

8 Numbers and their Generalization

The problems with using natural numbers for counting collections of objects
including indiscernibles have been mentioned in the fourth section. It was pointed
out that there are situations in real life, where

(i) the discernibility required for normal counting may not be feasible,
(ii) the number assigned to one may be forgotten while counting subsequent

objects,
(iii) the concept of identification by way of attributes may not be stable,
(iv) the entire process of counting may be ’lazy’ in some sense,
(v) the mereology necessary for counting may be insufficient.

Some specific examples of such contexts are:

1. Direct counting of fishes in a lake is difficult and the sampling techniques used
to estimate the population of fishes do not go beyond counting samples and



pre-sampling procedures. For example some fishes may be caught, marked
and then put back into the lake. Random samples may be drawn from the
mixed population to estimate the whole population using proportion related
statistics. The whole procedure however does not involve any actual counting
of the population.

2. In crowd management procedures, it is not necessary to have exact informa-
tion about the actual counts of the people in crowds.

3. In many counting procedures, the outcome of the last count (that is the total
number of things) may alone be of interest. This way of counting is known
to be sufficient for many apparently exact mathematical applications.

4. Suppose large baskets containing many varieties of a fruit are mixed together
and suppose an observer with less-than-sufficient skills in classifying the
fruits tries to count the number of fruits of a variety. The problem of the
observer can be interpreted in mereological terms.

5. Partial algebras are very natural in a wide variety of mathematics. For ex-
ample, in semigroup theory the set of idempotents can be endowed with a
powerful partial algebraic structure. Many partial operations may be seen to
originate from failure of standard counting procedures in specific contexts.

Various generalizations of the concept of natural numbers, integers and real
numbers are known in mathematics. These generalizations are known to arise
from algebraic, topological or mixed considerations. For example, a vast amount
of ring and semigroup theory arises from properties of the integers. These include
Euclidean Rings, UFD, Integral Domains, Positively totally ordered Semigroups
[72], and Totally Ordered Commutative Semigroups. Partial Well Orders and
Variants thereof [73] and Difference orders can also be seen in a similar perspec-
tive. In all these cases none of the above mentioned aspects can be captured in
any obvious way and neither have they been the motivation for their evolution.
Their actual motivations can be traced to concrete examples of subsets of real
numbers and higher order structures derived from real numbers having proper-
ties defining the structures. Further structures like these often possess properties
quite atypical of integers.

In counting collections of objects including relatively exact and indiscernible
objects, the situation is far more complex - the first thing to be modified would
be the relative orientation of the object and different meta levels as counting
in any sense would be from a higher meta level. Subsequently the concept of
counting (as something to be realised through injective maps into N) can be
modified in a suitable way. The eventual goal of such procedures should be the
attainment of order-independent representations.

Though not usually presented in the form, studies of group actions, finite and
infinite permutation groups and related automorphisms and endomorphisms can
throw light on lower level counting. In the mathematics of exact phenomena,
these aspects would seem superfluous because cardinality is not dependent on
the order of counting. But in the context of the present generalization somewhat
related procedures are seen to be usable for improving representation. A more
direct algebra of Meta-R counts is also developed in the penultimate section.



They can be regarded as a natural generalization of the ordered integral domain
associated with integers and was not considered in [56] by the present author.
The former approach does have feasibility issues associated. For one thing a
string of relatively discernible and indiscernible things may not be countable in
all possible ways in actual practice. The latter approach takes a more holistic
view and so the two approaches can be expected to complement each other.

9 Granules: An Axiomatic Approach

Different formal definitions of granules have been used in the literature on rough
sets and in granular computing. An improved version of the axiomatic theory of
granules introduced in [18] is presented here. The axiomatic theory is capable
of handling most contexts and is intended to permit relaxation of set-theoretic
axioms at a later stage. The axioms are considered in the framework of Rough Y-
Systems mentioned earlier. RYS maybe seen as a generalised form of rough orders
[69], abstract approximation spaces [70] and approximation framework [74]. It
includes relation-based RST, cover-based RST and more. These structures are
provided with enough structure so that a classical semantic domain and at least
one rough semantic domain of roughly equivalent objects along with admissible
operations and predicates are associable.

Within the domain of naive set theory or ZFC or second order ZFC, the
approximation framework of [74] is not general enough because:

(i) It assumes too much of order structure.
(ii) Assumes the existence of a De Morgan negation.
(iii) It may not be compatible with the formulations aimed at inverse problems.

That holds even if a flexible notion of equality is provided in the language.

An application to the context of example-2 in the previous section will clearly
show that there is no direct way of getting to a lattice structure or the negation
from information of the type in conjunction with knowledge base about concepts
represented in suitable way unless the context is very special.

As opposed to a lattice order in a rough order, I use a parthood relation
that is reflexive and antisymmetric. It may be non transitive. The justification
for using such a relation can be traced to various situations in which restrictive
criteria operating on inclusion of attributes happen. In many cases, these may
be dealt with using fuzzy methodologies. Contexts using the so-called rough-
fuzzy-rough approximations and extensions thereof [75] can be dealt with in
a purely rough way through such relations. The unary operations used in the
definitions of the structures are intended as approximation operators. More than
two approximation operators are common in cover-based RST [45], dynamic
spaces [76], Esoteric RST [47], multiple approximation spaces [77], in dialectical
rough set theory [39] and elsewhere. The requirement of equal number of upper
and lower approximation operators is actually a triviality and studies with non
matching number of operators can be traced to considerations on rough bottom
and top equalities [78]. Concrete examples are provided after definitions.



The intended concept of a rough set in a rough Y -system is as a collection
of some sense definite elements of the form {a1, a2, . . . an, b1, b2, . . . br} subject
to ais being ’part of’ of some of the bjs.

Both RYS+ and RYS can be seen as the generalization of the algebra formed
on the power set of the approximation space in classical RST. Pxy can be read as
’x is a part of y’ and is intended to generalise inclusion in the classical case. The
elements in S may be seen as the collection of approximable and exact objects -
this interpretation is compatible with S being a set. The description operator of
FOPL ι is used in the sense: ι(x)Φ(x) means ’the x such that Φ(x)’. It helps in
improving expression and given this the metalogical ′,′ can be understood as ∧
(which is part of the language). The description operator actually extends FOPL
by including more of the metalanguage and from the meaning point of view is
different, though most logicians will see nothing different. For details, the reader
may refer to [79].

For those understanding ’,’ as being part of the metalanguage, statements of
the form a + b = ι(x)Φ(x) can be safely read as a + b = z if and only if Φ(z).
It is of course admissible to read ’,’ as being in the metalanguage with ι being
part of the language - the resulting expression would be more readable.

Definition 1. A Rough Y System (RYS+) will be a tuple of the form

〈S, W, P, (li)
n
1 , (ui)

n
1 , +, ·, ∼, 1〉

satisfying all of the following (P is intended as a binary relation on S and
W ⊂ S, n being a finite positive integer. ι is the description operator of FOPL:
ι(x)Φ(x) means ’the x such that Φ(x) ’. W is actually superfluous and can be
omitted):

1. (∀x)Pxx ; (∀x, y)(Pxy, Pyx −→ x = y),
2. For each i, j, li, uj are surjective functions : S 7−→ W ,
3. For each i, (∀x, y)(Pxy −→ P(lix)(liy), P(uix)(uiy)),
4. For each i, (∀x) P(lix)x, P(x)(uix)),
5. For each i, (∀x)(P(uix)(lix) −→ x = lix = uix).

The operations +, · and the derived operations O, P, U, X, O will be assumed
to be defined uniquely as follows:

Overlap: Oxy iff (∃z) Pzx ∧ Pzy,
Underlap: Uxy iff (∃z) Pxz ∧ Pyz,
Proper Part: Pxy iff Pxy ∧ ¬Pyx,
Overcross: Xxy iff Oxy ∧ ¬Pxy,
Proper Overlap: Oxy iff Xxy ∧ Xyx,
Sum: x+ y = ιz(∀w)(Owz ↔ (Owx ∨Owy)),
Product: x · y = ιz(∀w)(Pwz ↔ (Pwx ∧Pwy)),
Difference: x− y = ιz(∀w)(Pwz ↔ (Pwx ∧ ¬Owy)),
Associativity: It will be assumed that +, · are associative operations and so the

corresponding operations on finite sets will be denoted by ⊕, � respectively.



Remark:

W can be dropped from the above definition and it can be required that the
range of the operations ui, lj are all equal for all values of i, j.

Definition 2. In the above definition, if we relax the surjectivity of li, ui, require
partiality of the operations + and ·, weak associativity instead of associativity and
weak commutativity instead of commutativity, then the structure will be called a
General Rough Y-System (RYS). In formal terms,

Sum1: x+ y = ιz(∀w)(Owz ↔ (Owx ∨Owy)) if defined
Product1: x · y = ιz(∀w)(Pwz ↔ (Pwx ∧Pwy)) if defined

wAssociativity x ⊕ (y ⊕ z)
ω∗
= (x ⊕ y) ⊕ z and similarly for product. ’

ω∗
=’

essentially means if either side is defined, then the other is and the two
terms are equal.

wCommutativity x⊕ y ω∗
= y ⊕ x; x · y ω∗

= y · x

Both RYS and a RYS+ are intended to capture a minimal common fragment
of different RSTs. The former is more efficient due to its generality. Note that the
parthood relation P, taken as a general form of rough inclusion (in a suitable
semantic domain), is not necessarily transitive. Transitivity of P is a sign of
fair choice of attributes (at that level of classification), but non transitivity may
result by the addition of attributes and so the property by itself says little about
the quality of classification.

The meaning of the equality symbol in the definition of RYS depends on the
application domain. It may become necessary to add additional stronger equalities
to the language or as a predicate in some situations. In this way, cases where
any of conditions 1, 3, 4, 5 appear to be violated can be accommodated. All weaker
equalities are expected to be definable in terms of other equalities.

For example, using the variable precision RST procedures [80,81], it is pos-
sible to produce lower approximations that are not included in a given set and
upper approximations of a set that may not include the set. In [47], methods
for transforming the VPRS case are demonstrated. But nothing really needs to
be done for accommodating the VPRS case - the axioms can be assumed. The
predicate P would become complicated as a consequence, though we can have
(∀x, y)(x ⊆ y −→ Pxy). A stronger equality should be added to the language
if required.

Vague predicates may be involved in the generation of RYS and RYS+. Sup-
pose crowds assembling at different places are to be comparatively studied in
relation to a database of information on ’relevant’ people and others through
audiovisual information collected by surveillance cameras. Typically automatic
surveillance equipment will not be able to identify much, but information about
various subsets of particular crowds and even ’specific people’ can be collected
through surveillance cameras. Processing information (so called off-line process-
ing) using the whole database with classical rough methods will not work because
of scalability issues and may be just irrelevant. Suppose that data about different
gatherings have been collected at different times. The collection of the observed



subsets of these crowds can be taken as S. The operations li, ui can originate
on the basis of the capabilities of the surveillance equipment like cameras. If
one camera can see better in infra-red light, another may see better in daylight,
cameras do not have uniform abilities to move and finally placement of the in-
dividual camera in question will affect its sight. Definite abstract collections of
people may be also taken as approximations of subsets of the crowds based on
information from the database and the set of these may form the W of RYS+
or this may be a RYS. These can be used to define predicates like ’vaguely sim-
ilar’ between subsets of the crowd. Because of difficulties in scalability of the
computation process of identification, the collections S of possible subsets of the
crowd should be considered with a non-transitive parthood relation-based on a
criteria derived from inclusion of ’relevant’ people and others (possibly number
of people with some gross characteristics), instead of set inclusion. The latter
would naturally lead to aggravation of errors and so should not be used. As of
now automated surveillance is imperfect at best and so the example is very real.
RYS+ can also be used to model classical rough set theory and some others close
to it, but not esoteric RST [47] as approximations of ’definite objects’ may not
necessarily be the same ’definite objects’. RYS on the other hand can handle
almost all types of RST.

In the above two definitions, the parthood relation is assumed to be reflexive
and antisymmetric, while the approximation operators are required to preserve
parthood. Further any of the lower approximations of an object is required to be
part of it and the object is required to be part of any of its upper approximations.
The fifth condition is a very weak form of transitivity. The Venn diagram way of
picturing things will not work with respect to the mereology, but some intuitive
representations may be constructed by modification. Two objects overlap if there
is a third object that is part of both the objects. Two objects underlap if both
are part of a third object. In general such an object may not exist, while in ZF
all sets taken in pairs will underlap. However if the considerations are restricted
to a collection of sets not closed under union, then underlap will fail to hold for
at least one pair of sets. Overcross is basically the idea of a third object being
part of two objects, with the first being not a part of the second. In the above
example a set of ’relevant people’ may be part of two subsets of the crowd (at
different times), but the first crowd may contain other people with blue coloured
hair. So the first crowd is not part of the second. If the second crowd contains
other people with their hair adorned with roses while such people are not to be
located in the first crowd then the two crowds have proper overlap.

From the purely mereological point of view a RYS+ is a very complicated
object. The sum, product and difference operations are assumed to be defined.
They do not follow in general from the conditions on P in the above. But do so
with the assumptions of closed extensional mereology or in other words of the
first five of the following axioms. They can also follow from the sixth (Top) and
part of the other axioms.

Transitivity (Pxy, Pyz −→ Pxz),
Supplementation (¬Pxy −→ ∃z(Pzx ∧ ¬Ozy)),



P5 Uxy → (∃z)(∀w)(Owz ↔ (Owz ∨ Owy)),
P6 Oxy → (∃z)(∀w)(Pwz ↔ (Pwz ∧ Pwy)),
P7 (∃z)(Pzx ∧ ¬Ozy) → (∃z)(∀w)(Pwz ↔ (Pwx ∧ ¬Owy)),
Top (∃z)(∀x)Pxz.

In classical RST, ’supplementation’ does not hold, while the weaker version
(¬Pxy −→ ∃z(Pzx ∧ ¬Ozy)) is trivially satisfied due to the existence of the
empty object (∅). Proper selection of semantic domains is essential for avoiding
possible problems of ontological innocence [82], wherein the ’sum’ operation may
result in non existent objects relative the domain. A similar operation results in
’plural reference’ in [65,26], and related papers. The Lesniewski ontology inspired
approach originating in [20] assumes the availability of measures beforehand for
the definition of the parthood predicate and is not always compatible with and
distinct from the present approach.

Examples of Non-Transitivity:

Example-1:

In the classical handle-door-house example, parthood is understood in terms
of attributes and a level of being part of. The latter being understood in terms
of attributes again. The example remains very suggestive in the context of ap-
plications of RST and specifically in the context of a RYS. The basic structure
of the example has the form:

• Handle is part of a Door,
• Door is part of a House,
• If ’part of’ is understood in the sense of ’substantial part of’ (defined in

terms of attributes), then the handle may not be part of the house.

From the application point of view all the concepts of ’Handle’, ’Door’ and
’House’ can be expected to be defined by sets of relatively atomic sensor (for
machines) or sense data. Additionally a large set of approximation related data
(based on not necessarily known heuristics) can also be expected. But if we are
dealing with sensor data, then it can be reasonable to assume that the data is
the result of some rough evolution. Finding one is an inverse problem.

Example-2:

• Let Information Set-A be the processed data from a grey scale version of a
colour image.

• Let ’Information-B’ be the processed data about distribution of similar
colours (at some level).

• In this situation, when ’Information set A’ is processed in the light of ’In-
formation set B’, then transitivity of the parthood relations about colour
related attributes can be expected to be violated.

This example is based on the main context of [75], but is being viewed from
a pure rough perspective. �



Example-3:

In processing information from videos in off-line or real time mode, it can be
sensible to vary the partitions on the colour space (used in analytics) across key
frames. �

Definition 3. In the above, two approximation operators ui and li will be said
to be S5-dual to each other if and only if

(∀A ⊂ S)Auili = Aui ; Aliui = Ali .

Throughout this paper it will not be assumed that the operators ui are S5-
dual or dual to the operators li in the classical sense in general. It is violated
in the study of the lower, upper and bitten upper approximation operators in a
tolerance space [39] as RYS. There it will also be required to take the identity
operator or repeat the lower approximation operator as a lower approximation
operator (as the number of lower and upper approximation are required to match
- a trivial requirement).

In almost all applications, the collection of all granules G forms a subset of
the RYS S. But a more general setting can be of some interest especially in a
semi-set theoretical setting. This aspect will be considered separately.

Definition 4. When elements of G are all elements of S, it makes sense to
identify these elements with the help of a unary predicate γ defined via, γx if
and only if x ∈ G. A RYS or a RYS+ enhanced with such a unary predicate will
be referred to as a Inner RYS (or γRYS for short) or a Inner RYS+ (γRYS+ for
short) respectively. γRYS will be written as ordered pairs of the form (S, γ) to
make the connection with γ clearer. (S, γ) should be treated as an abbreviation
for the algebraic system (partial or total)

〈S, P, γ, (li)
n
1 , (ui)

n
1 , +, ·, ∼, 1〉 .

Some important classes of properties possibly satisfiable by granules fall
under the broad categories of representability, crispness, stability, mereological
atomicity and underlap. If the actual representations are taken into account
then the most involved axioms will fall under the category of representability.
Otherwise the possible defining properties of a set of granules in a RYS include
the following (ti, si are term functions formed with +, ·, ∼, while p, r are finite
positive integers. ∀i, ∃i are meta level abbreviations.) Not all of these properties
have been considered in [18]:

Representability, RA ∀i, (∀x)(∃y1, . . . yr ∈ G) y1 + y2 + . . . + yr = xli and
(∀x)(∃y1, . . . yp ∈ G) y1 + y2 + . . .+ yp = xui ,

Weak RA, WRA ∀i, (∀x∃y1, . . . yr ∈ G) ti(y1, y2, . . . yr) = xli

and (∀x)(∃y1, . . . yr ∈ G) ti(y1, y2, . . . yp) = xui ,
Sub RA ∃i, (∀x)(∃y1, . . . yr ∈ G) y1 + y2 + . . .+ yr = xli

and (∀x)(∃y1, . . . yp ∈ G) y1 + y2 + . . .+ yp = xui ,



Sub TRA, STRA ∀i, (∀x∃y1, . . . yr ∈ G) ti(y1, y2, . . . yr) = xli

and (∀x)(∃y1, . . . yr ∈ G) ti(y1, y2, . . . yp) = xui ,
Lower RA, LRA ∀i, (∀x)(∃y1, . . . yr ∈ G) y1 + y2 + . . .+ yr = xli ,
Upper RA, URA ∀i, (∀x)(∃y1, . . . yp ∈ G) y1 + y2 + . . .+ yp = xui ,
Lower SRA, LSRA ∃i, (∀x)(∃y1, . . . yr ∈ G) y1 + y2 + . . .+ yr = xli ,
Upper SRA, USRA ∃i, (∀x)(∃y1, . . . yp ∈ G) y1 + y2 + . . .+ yp = xui ,
Absolute Crispness, ACG For each i, (∀y ∈ G) yli = yui = y,
Sub Crispness, SCG ∃i, (∀y ∈ G)yli = yui = y (In [18], this was termed

’weak crispness’),
Crispness Variants LACG, UACG, LSCG, USCG will be defined as for rep-

resentability,
Mereological Atomicity,MER ∀i, (∀y ∈ G)(∀x ∈ S)(Pxy, xli = xui =

x −→ x = y),
Sub MER,SMER ∃i, (∀y ∈ G)(∀x ∈ S)(Pxy, xli = xui = x −→ x = y) (In

[18], this was termed ’weak MER’),
Inward MER, IMER

(∀y ∈ G)(∀x ∈ S)(Pxy,
∧
i

(xli = xui = x) −→ x = y),

Lower MER, LMER ∀i, (∀y ∈ G)(∀x ∈ S)(Pxy, xli = x −→ x = y),
Inward LMER, ILMER (∀y ∈ G)(∀x ∈ S)(Pxy,

∧
i(x

li = x) −→ x = y),
MER Variants UMER, LSMER, USMER, IUMER will be defined as for rep-

resentability,
Lower Stability, LS ∀i, (∀y ∈ G)(∀x ∈ S) (Pyx −→ P(y)(xli)),
Upper Stability, US ∀i, (∀y ∈ G)(∀x ∈ S) (Oyx −→ P(y)(xui)),
Stability, ST Shall be the same as the satisfaction of LS and US,
Sub LS, LSS ∃i, (∀y ∈ G)(∀x ∈ S) (Pyx −→ P(y)(xli)) (In [18], this was

termed ’LS’),
Sub US, USS ∃i, (∀y ∈ G)(∀x ∈ S) (Oyx −→ P(y)(xui)) (In [18], this was

termed ’US’),
Sub ST, SST Shall be the same as the satisfaction of LSS and USS,
No Overlap, NO (∀x, y ∈ G)¬Oxy,
Full Underlap, FU ∀i, (∀x, y ∈ G)(∃z ∈ S)Pxz, Pyz, zli = zui = z,
Lower FU, LFU ∀i, (∀x, y ∈ G)(∃z ∈ S)Pxz, Pyz, zli = z,
Sub FU, SFU ∃i, (∀x, y ∈ G)(∃z ∈ S)Pxz, Pyz, zli = zui = z,
Sub LFU, LSFU ∃i, (∀x, y ∈ G)(∃z ∈ S)Pxz, Pyz, zli = z,
Unique Underlap, UU For at least one i,

(∀x, y ∈ G)(Pxz,Pyz, zli = zui = z, Pxb,Pyb, bli = bui = b −→ z = b),
Pre-similarity, PS (∀x, y ∈ G)(∃z ∈ G)P(x · y)(z),
Lower Idempotence, LI ∀i, (∀x ∈ G)xli = xlili ,
Upper Idempotence, UI ∀i, (∀x ∈ G)xui = xuiui ,
Idempotence, I ∀i, (∀x ∈ G)xui = xuiui , xli = xlili .

All of the above axioms can be written without any quantification over G
in an inner RYS or an inner RYS+. The letter ’I’ for ’Inner’ will be appended



to the axiom abbreviation in this situation. For example, I will rewrite LS as LSI:

LSI : ∃i, (∀x, y ∈ S) (γx, Pyx −→ P(y)(xli)).

Further, statements of the form (S, γ) |= RAI→ (S, γ) |= WRAI (|= being the
model satisfaction relation in FOPL) will be abbreviated by ’RAI � WRAI’.

Proposition 1. The following holds:

1. RAI � WRAI,
2. ACGI � SCGI,
3. MERI � SMERI,
4. MERI � IMERI,
5. FUI � LUI.

The axioms RA, WRA are actually very inadequate for capturing repre-
sentability in the present author’s opinion. Ideally the predicate relating the
set in question to the granules should be representable in a nice way. A hierar-
chy of axioms have been developed for a good classification by the present author
and will appear separately in a more complete study. But I will not digress to
this issue in the present paper.

In any RST, at least some of these axioms can be expected to hold for a given
choice of granules. In the following sections various theorems are proved on the
state of affairs.

9.1 Concepts Of Discernibility

In 1-neighbourhood systems, cover-based RST, relation-based RST and more
generally in a RYS various types of indiscernibility relations can be defined. In
most cases, indiscernibility relations that are definable by way of conditions using
term functions involving approximation operators are of interest. Some examples
of such conditions, in a RYS of the form specified in the third section, are:

(i) x ≈i y if and only if xli = yli and xui = yui for a specific i,
(ii) x ≈a y if and only if xli = yli and xui = yui for any i,

(iii) x ≈b y if and only if xli = yli and xui = yui for all i,
(iv) a ≈c y if and only if (∀g ∈ G)(Pgxα ↔ Pgyα) with α ∈ {li, ui} for a specific

i,
(v) a ≈e y if and only if (∀g ∈ G)(Pgxα ↔ Pgyα) with α ∈ {li, ui} for a specific

i,
(vi) a ≈f y if and only if (∀g ∈ G)(Pgxα ↔ Pgyα) with α ∈ {li, ui} for any i,

(vii) a ≈h y if and only if (∀g ∈ G)(Pgxα ↔ Pgyα) with α ∈ {li, ui} for all
specific i.

Note that the subscript of ≈ has been chosen arbitrarily and is used to
distinguish between the different generalised equalities. Weaker varieties of such
indiscernibility relations can also be of interest.



9.2 Relative- and Multi-Granulation

Concepts of relativised granulation have been studied in a few recent papers
[83,84], under the name ’Multi-Granulation’. These are actually granulations in
one application context considered relative the granulation of another application
context. For example if two equivalences are used to generate approximations
using their usual respective granulations, then ’multi-granulations’ have been
used according to authors. The relative part is not mentioned explicitly but that
is the intended meaning. In our perspective all these are seen as granulations.
Multiple approximation spaces, for example use ’multi-granulations’.

The relation between the two contexts has not been transparently formulated
in the mentioned papers, but it can be seen that there is a way of transforming
the present application context into multiple instances of the other context in
at least one perspective. In general it does not happen that approximations
in one perspective are representable in terms of the approximation in another
perspective (see [85]) and is certainly not a requirement in the definition of
multi-granulation. Such results would be relevant for the representation problem
of granules mentioned earlier.

10 Relation-Based Rough Set Theory

Theorem 2. In classical RST, if G is the set of partitions, then all of RA, ACG,
MER, AS, FU, NO, PS hold. UU does not hold in general

Proof. The granules are equivalence classes and RA, NO, ACG, PS follow from
the definitions of the approximations and properties of G. MER holds because
both approximations are unions of classes and no crisp element can be properly
included in a single class. If a class overlaps with another subset of the universe,
then the upper approximation of the subset will certainly contain the class by
the definition of the latter.

In esoteric RST [47], partial equivalence relations (symmetric, transitive and
partially reflexive relations) are used to generate approximations instead of
equivalence relations. In the simplest case, the upper and lower approxima-
tions of a subset A of a partial approximation space 〈S, R〉 are defined via
([x] = {y; (x, y) ∈ R} being the pseudo-class generated by x)

Al =
⋃
{[x]; [x] ⊆ A}; Au =

⋃
{[x]; [x] ∩A 6= ∅}.

Theorem 3. In case of esoteric RST [47], with the collection of all pseudo-
classes being the granules, all of RA, MER, NO, UU, US hold, but ACG may
not.

Proof. RA, NO follow from the definition. It is possible that [x] ⊂ [x]u, so ACG
may not hold. US holds as if a granule overlaps another subset, then the upper
approximation of the set would surely include the granule.



If we consider a reflexive relation R on a set S and define, [x] = {y :
(x, y) ∈ R} -the set of x-relateds and define the lower and upper approximation
of a subset A ⊆ S via

Al = ∪{[x] : [x] ⊆ A, x ∈ A} and

Au = ∪{[x] : [x] ∩A 6= ∅x ∈ A},

(Al ⊆ A ⊆ Au for a binary relation R is equivalent to its reflexivity [43,86]) then
we can obtain the following about granulations of the form {[x] : x ∈ S}:

Theorem 4. RA, LFU holds, but none of MER, ACG, LI, UI, NO, FU holds in
general.

Proof. RA holds by definition, LFU holds as the lower approximation of the union
of two granules is the same as the union. It is easy to define an artificial counter
example to support the rest of the statement.

Let 〈S, (Ri)i ∈ K〉 be a multiple approximation space [77], then the strong
lower, weak lower, strong upper and weak upper approximations of a set X ⊆ S
shall be defined as follows (modified terminology):

1. X ls =
⋂
iX

li,

2. Xus =
⋃
iX

ui,

3. X lw =
⋃
iX

li,

4. Xuw =
⋂
iX

ui.

Theorem 5. In a multiple approximation of the above form, taking the set of
granules to be the collection of all equivalence classes of the Ris, LSRA, USRA,
LSS, USS holds, but all variants of rest do not hold always.

Proof. X lw, Xus are obviously unions of equivalence classes. The LSS, USS part
for these two approximations respectively can also be checked directly. Coun-
terexamples can be found in [77]. But it is possible to check these by building on
actual possibilities. If there are only two distinct equivalences, then at least two
classes of the first must differ from two classes of the second. The ls approxima-
tion of these classes will strictly be a subset of the corresponding classes, so CG
will certainly fail for the (ls, us) pair. Continuing the argument, it will follow
that SCG, ACG cannot hold in general. The argument can be extended to other
situations.

Since multiple approximations spaces are essentially equivalent to special
types of tolerance spaces equipped with the largest equivalence contained in the
tolerance, the above could as well have been included in the following subsection.



10.1 Tolerance Spaces

In TAS of the form 〈S, T 〉, all of the following types of granules with correspond-
ing approximations have been used in the literature:

1. The collection of all subsets of the form [x] = {y : (x, y) ∈ T} will be
denoted by T .

2. The collection of all blocks, the maximal subsets of S contained in T , will be
denoted by B. Blocks have been used as granules in [35,31,87,24] and others.

3. The collection of all finite intersections of blocks will be denoted by A.
4. The collection of all intersections of blocks will be denoted by Aσ [24].
5. Arbitrary collections of granules with choice functions operating on them

[18].
6. The collection of all sets formed by intersection of sets in T will be denoted

by T I.

For convenience H0 = ∅, Hn+1 = S will be assumed whenever the collection
of granules G is finite and G = {H1, . . . Hn}.

In a TAS 〈S, T 〉, for a given collection of granules G definable approximations
of a set A ⊆ S include:

(i) AlG =
⋃
{H : H ⊆ A, H ∈ G},

(ii) AuG =
⋃
{H : H ∩A 6= ∅, H ∈ G},

(iii) Al2G =
⋃
{∩i∈I Hc

i : ∩i∈IHc
i ⊆ A, H ∈ G I ⊆ N(n+ 1)},

(iv) Au1G =
⋂
{∪i∈IHi : A ⊆ ∪i∈IHi, I ⊆ N(n+ 1)},

(v) Au2G =
⋂
{Hi

c : A ⊆ Hc
i , I ∈ {0, 1, . . . , n}}.

But not all approximations fit it into these schemas in an obvious way. These
include:

(i) Al+ = {y : ∃x(x, y) ∈ T, [x] ⊆ A} [35],
(ii) Au+ = {x ; (∀y) ((x, y) ∈ T −→ [y]T ∩ A 6= ∅)},
(iii) Generalised bitten upper approximation : Aubg = Aug \Aclg - this is a direct

generalisation of the bitten approximation in [39,38].

Theorem 6. In the TAS context, with T being the set of granules and restricting
to the approximations lT , uT , all of RA, MER, ST and weakenings thereof hold,
but others do not hold in general.

Proof. RA follows from definition. For MER, if A ⊆ [x] and AlT = AuT = A,
then as [x] ∩ A 6= ∅, so [x] ⊆ AuT = A. So A = [x]. Crispness fails because it is
possible that [x] ∩ [y] 6= ∅ for distinct x, y.

Theorem 7. If 〈S, T 〉 is a tolerance approximation space with granules T and
the approximations lT , l+, uT , u+, then RA, NO, ACG do not hold, but SRA,
SMER, SST, IMER, MER, US holds

Proof. RA does not hold due to l+, u+, ACG fails by the previous theorem.
’Sub’ properties have been verified in the previous theorem, while the rest can
be checked directly.



Theorem 8. In Bitten RST [39,38], (taking G to be the set of T-relateds and
restricting ourselves to the lower, upper and bitten upper approximations alone),
SRA does not hold for the bitten upper approximation if ’+, ·’ are interpreted
as set union and intersection respectively. MER, NO do not hold in general, but
IMER, SCG, LS, LU, SRA hold.

Proof. The proof can be found in [39]. If unions and intersections alone are used
to construct terms operations, then the bited upper approximation of a set of
the form [x]T (x being an element of the tolerance approximation space) may
not be representable as it is the difference of the upper approximation and the
lower approximation of the complement of [x]T . But if ∼, for set complements
is also permitted, then there are no problems with the representability in the
WRA sense.

In [24], a semantics of tolerance approximation spaces for the following the-
orem context are considered, but the properties of granules are not mentioned.

Theorem 9. Taking G to be Aσ and restricting ourselves to lower and bitten
upper approximations alone RA, ACG, NO do not hold while LRA, MER, LACG,
LMER, UMER, ST do hold.

Proof. If H is a granule, then it is an intersection of blocks. It can be deduced
that the lower approximation of H coincides with itself, while the bitten upper
approximation is the union of all blocks including H. LRA is obvious, but URA
need not hold due to the bitten operation. If a definite set is included in a granule,
then it has to be a block that intersects no other block and so the granule should
coincide with it. So MER holds.

11 Cover-Based Rough Set Theory

The notation for approximations in cover-based RST, is not particularly min-
imalistic. This is rectified for easy comprehension below. I follow superscript
notation strictly. ’l, u’ stand for lower and upper approximations and anything
else following those signify a type. If X ⊆ S, then let

(i) Xu1+ = X l1 ∪
⋃
{Md(x) : x ∈ X},

(ii) Xu2+ =
⋃
{K : K ∈ S,K ∩X 6= ∅},

(iii) Xu3+ =
⋃
{Md(x) : x ∈ X},

(iv) Xu4+ = X l1 ∪ {K : K ∩ (X \X l1) 6= ∅},
(v) Xu5+ = X l1 ∪

⋃
{nbd(x) : x ∈ X \X l1},

(vi) Xu6+ = {x : nbd(x) ∩X 6= ∅},
(vii) X l6+ = {x : nbd(x) ⊆ X}.

The approximation operators u1+, . . . , u5+ (corresponding to first, ..., fifth
approximation operators used in [45] and references therein) are considered with
the lower approximation operator l1 in general. Some references for cover-based



RST include [42,40,46,88,43,45,89,37,48]. The relation between cover-based RST
and relation-based RST are considered in [48,45]. For a cover to correspond to a
tolerance, it is necessary and sufficient that the cover be normal - a more general
version of this result can be found in [90]. When such reductions are possible,
then good semantics in Meta-R perspective are possible. The main results of [48]
provide a more complicated correspondence between covers and sets equipped
with multiple relations or a relation with additional operations. The full scope
of the results are still under investigation. So, in general, cover-based RST is
more general than relation-based RST. From the point of view of expression,
equivalent statements formulated in the former would be simpler than in the
latter.

It can be shown that:

Proposition 2. In the above context,

• Md(x) is invariant under removal of reducible elements,
• (nbd(x))l6+ = nbd(x),
• nbd(x) ⊆ (nbd(x))6+.

The following pairs of approximation operators have also been considered in
the literature (the notation of [46] has been streamlined; lp1, lm1 corresponds
to P 1, C1 respectively and so on).

(i) X lp1 = {x : Fr(x) ⊆ X},
(ii) Xup1 =

⋃
{K : K ∈ K, K ∩X 6= ∅},

(iii) X lp2 =
⋃
{Fr(x); Fr(x) ⊆ X},

(iv) Xup2 = {z : (∀y)(z ∈ Fr(y)→ Fr(y) ∩X 6= ∅)},
(v) X lp3 = X l1,
(vi) Xup3 = {y : ∀K ∈ K(y ∈ K → K ∩X 6= ∅)},

(vii) X lp4, Xup4 are the same as the classical approximations with respect to π(K)
- the partition generated by the cover K.

(viii) X lm1 = X l1 = X lp3,
(ix) Xum1 = Xu2,
(x) X lm2 = X l6+,
(xi) Xum2 = Xu6+,

(xii) X lm3 = {x; (∃u)u ∈ nbd(x), nbd(u) ⊆ X},
(xiii) Xum3 = {x; (∀u)(u ∈ nbd(x)→ nbd(u) ∩X 6= ∅)},
(xiv) X lm4 = {x; (∀x)(x ∈ nbd(u)→ nbd(u) ⊆ X)},
(xv) Xum4 = Xu6+ = Xum2,
(xvi) X lm5 = {x; (∀u)(x ∈ nbd(u)→ u ∈ X)},

(xvii) Xum5 =
⋃
{nbd(x); x ∈ X}.

Example-1:

Let S = {a, b, c, e, f, g, h, i, j},

K = {K1, K2, K3, K4, K5, K6,K7, K8, K9},



K1 = {a, b}, K2 = {a, c, e}, K3 = {b, f}, K4 = {j}, K5 = {f, g, h},

K6 = {i}, K7 = {f, g, j, a}, K8 = {f, g}, K9 = {a, j}.

The following table lists some of the other popular granules:

Element: x Fr(x) Md(x) nbd(x)
a S \ {h, i} {K1,K2,K3} {a}
b {a, b, f} {K3} {b}
c {a, c, e} {K2} {a, c, e}
e {a, c, e} {K2} {a, c, e}
f S \ {c, e, i} {K3,K8} {f}
g {a, f, g, h, j} {K8} {f, g}
h {f, g, h} {K5} {f, g, h}
i {i} {K6} {i}
j {a, f, g, j} {K4} {j}

The best approach to granulation in these types of approximations is to
associate an initial set of granules and then refine them subsequently. Usually a
refinement can be expected to be generable from the initial set through relatively
simple set theoretic operations. In more abstract situations, the main problem
would be of representation and the results in these situations would be the basis
of possible abstract representation theorems. The theorems proved below throw
light on the fine structure of granularity in the cover-based situations:

Theorem 10. In AUAI RST [37,47], with the collection of granules being K
and the approximation operators being (l1, l2, u1 and u2), WRA, LS, SCG, LU,
IMER holds, but ACG, RA, SRA, MER do not hold in general.

Proof. WRA holds if the complement, union and intersection operations are used
in the construction of terms in the WRA condition. ACG does not hold as the
elements of K need not be crisp with respect to l2. Crispness holds with respect
to l1, u1, so SCG holds. MER need not hold as it is violated when a granule is
properly included in another. IMER holds as the pathology negates the premise.
It can also be checked by a direct argument.

From the definition of the approximations in AUAI and context, it should be
clear that all pairings of lower and upper approximations are sensible generali-
sations of the classical context. In the following two of the four are considered.
These pairs do not behave well with respect to duality, but are more similar with
respect to representation in terms of granularity.

Theorem 11. In AUAI RST, with the collection of granules being K and the
approximation operators being (l1, u1), WRA, ACG, ST, LU holds, but MER, NO,
FU, RA do not hold in general.



Theorem 12. In AUAI RST, with the collection of granules being K and the
two approximation operators being (l2, u2), WRA, ST holds, but ACG, MER, RA,
NO do not hold in general.

Proof. If K ∈ K, K ⊆ X (X being any subset of S) and y ∈ Kl2, then y must
be in at least one intersection of the sets of the form S \Ki (for i ∈ I0, say) and
so it should be in each of these S \Ki ⊆ K ⊆ X. This will ensure y ∈ X l2. So
lower stability holds. Upper stability can be checked in a similar way.

Theorem 13. When the approximations are (lp1, up1) and with the collection
of granules being {Fr(x)}, all of MER, URA, UMER hold, but ACG, NO, LS do
not hold necessarily

Proof. For an arbitrary subsetX,X ⊆ Fr(x) for some x ∈ S andX lp1 = Xup1 =
X would mean that Fr(x) = X as Fr(x) ⊆ Xup1 would be essential. So UMER
and the weaker condition MER holds. URA is obvious from the definitions.

Theorem 14. When the approximations are (lp2, up2) and with the collection
of granules being {Fr(x)}, all of MER, LMER, RA, LCG hold, but ACG, NO, LS
do not hold necessarily

Proof. From the definition, it is clear that RA, LCG hold. If for an arbitrary
subset X, X ⊆ Fr(x) for some x ∈ S and X lp2 = X = Xup2, then X is a union
of some granules of the form Fr(y). If x ∈ X, then it is obvious that X = Fr(x).

If x ∈ Fr(x)\X and F (x) is an element of the underlying cover S, then again
it would follow that X = Fr(x). Finally if x ∈ Fr(x) \X and Fr(x) is a union
of elements of the cover intersecting X, then we would have a contradiction. So
MER follows.

If for an arbitrary subset X, X ⊆ Fr(x) for some x ∈ S and X lp2 = X and
x ∈ Fr(x) \X, then we will have a contradiction. So LMER holds.

Theorem 15. When the approximations are (lp3, up3) and with the collection
of granules being K, all of MER, RA, ST, LCG, LU hold, but ACG, NO do not
hold necessarily.

Proof. Both the lower and upper approximations of any subset of S is eventually
a union of elements K, so RA holds. Other properties follow from the definitions.
Counter examples are easy.

Theorem 16. When the approximations are (lp4, up4) and with the collection
of granules being π(K), all of RA, ACG, MER, AS, FU, NO, PS hold.

Proof. With the given choice of granules, this is like the classical case.

Theorem 17. When the approximations are (lp4, up4) and with the collection
of granules being K, all of WRA, ACG, AS hold, while the rest may not.

Proof. WRA holds because elements of π(K) can be represented set theoretically
in terms of elements of K. Lower and upper approximations of elements of K are
simply unions of partitions of the elements induced by π(K).



Theorem 18. When the approximations are (lm1, um1) and with the collection
of granules being K, all of WRA, LS, LCG hold, but RA, ST, LMER do not hold
necessarily. For WRA, complementation is necessary.

Proof. If K has an element properly included in another, then LMER will fail.
If complementation is also permitted, then WRA will hold. Obviously RA does
not hold. Note the contrast with the pair (lp3, up3) with the same granulation.

Theorem 19. When the approximations are (lm2, um2) and with the collection
of granules being N , all of LCG, LRA, ST, MER holds, but RA, ACG, LMER, NO
do not hold necessarily.

Proof. If y ∈ nbd(x) for any two x, y ∈ S, then nbd(y) ⊆ nbd(x) and it is
possible that x /∈ nbd(y), but it is necessary that x ∈ nbd(x). So (nbd(x))lm2 =
nbd(x), but (nbd(x))um2 need not equal nbd(x). LRA will hold as the lower
approximation will be a union of neighbourhoods, but this need happen in case
of the upper approximation. NO is obviously false. The upper approximation of
a neighbourhood can be a larger neighbourhood of a different point. So ACG will
not hold in general. MER can be easily checked.

Theorem 20. When the approximations are (l6+, u6+) and with the collection
of granules being N , all of LCG, LRA, ST, MER holds, but RA, ACG, LMER, NO
do not hold necessarily.

Proof. Same as above.

Theorem 21. When the approximations are (l1, u1+) and with the collection
of granules being K, all of ACG, RA, FU, LS holds, but MER, LMER, NO do not
hold necessarily.

Proof. RA holds as all approximations are unions of granules. For any granule
K, Kl1 = K and so Ku1+ = Kl = K. So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au1+ = A, but A 6= B. So MER, LMER cannot hold in
general.

Theorem 22. When the approximations are (l1, u2+) and with the collection
of granules being K, all of ACG, RA, FU, ST holds, but MER, LMER, NO do not
hold necessarily.

Proof. RA holds as all approximations are unions of granules. For any granule
K, Kl1 = K and so Ku1+ = Kl = K. So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au1+ = A, but A 6= B. So MER, LMER cannot hold in
general. If a granule K is included in a subset X of S, then it will be included in
the latter’s lower approximation. If K intersects another subset, then the upper
approximation of the set will include K. So ST holds.

Theorem 23. When the approximations are (l1, u3+) and with the collection
of granules being K, all of ACG, RA, FU, LS holds, but MER, LMER, NO do not
hold necessarily.



Proof. RA holds as all approximations are unions of granules. For any granule
K, Kl1 = K and so Ku1+ = Kl = K. So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au3+ = A, but A 6= B. So MER, LMER cannot hold in
general. The union of any two granules is a definite element, so FU holds.

Theorem 24. When the approximations are (l1, u4+) and with the collection
of granules being K, all of ACG, RA, FU, LS holds, but MER, LMER, NO do not
hold necessarily

Proof. RA holds as all approximations are unions of granules. For any granule
K, Kl1 = K and so Ku1+ = Kl = K. So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au3+ = A, but A 6= B. So MER, LMER cannot hold in
general. The union of any two granules is a definite element, so FU holds.

Theorem 25. When the approximations are (l1, u5+) and with the collection
of granules being K, all of ACG, RA, FU, LS holds, but MER, LMER, NO do not
hold necessarily.

Proof. RA holds as all approximations are unions of granules. For any granule
K, Kl1 = K and so Ku1+ = Kl = K. So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au3+ = A, but A 6= B. So MER, LMER cannot hold in
general. The union of any two granules is a definite element, so FU holds.

Apparently the three axioms WRA, LS, LU hold in most of the known theories
and with most choices of granules. This was the main motivation for the following
definition of admissibility of a set to be regarded as a set of granules.

Definition 5. A subset G of S in a RYS will be said to be an admissible set of
granules provided the properties WRA, LS and LU are satisfied by it.

In cover-based RSTs, different approximations are defined with the help of a
determinate collection of subsets. These subsets satisfy the properties WRA, LS
and FU and are therefore admissible granules. But they do not in general have
many of the nicer properties of granules in relation to the approximations. How-
ever, at a later stage it may be possible to refine these and construct a better set
of granules (see [48], for example) for the same approximations. Similar process
of refinement can be used in other types of RSTs as well. For these reasons, the
former will be referred to as initial granules and the latter as relatively refined
granules. It may happen that more closely related approximations may as well
be formed by such process.

11.1 Classification of Rough Set Theory

From the point of view of logic or rough reasoning associated, RST can be clas-
sified according to:

1. General context and definition of approximations.
2. Modal logic perspective from Meta-C (see [52]).



3. Frechet Space perspective from Meta-C [88].

4. Global properties of approximations viewed as operators at Meta-C (see for
example [43]).

5. Rough equality based semantic perspective at Meta-R (see for example [47]).

6. Granularity Based Perspective (this paper).

7. Algebraic perspectives at Meta-C.

8. Algebraic perspectives at Meta-R.

9. Others.

In general the meta-C classification is not coherent with meta-R features. The
problems are most severe in handling quotients induced by rough equalities.
In the algebraic perspective, the operations at meta-C level are not usually
preserved by quotients.

For algebraic approaches at Meta-C, the classification goes exactly as far
as duality (for formulation of logic ) permits. Modal approaches can mostly be
accommodated within the algebraic. But the gross classification into relation-
based, cover-based and more abstract forms of RST remains coherent with de-
sired duality. Of course, the easier cases that fit into the scheme of [88] can
be explored in more ways from the Meta-C perspective. The common algebraic
approaches to modal logics further justifies such a classification as:

• The representation problem of algebraic semantics corresponds most natu-
rally to the corresponding problems in duality theory of partially or lattice-
ordered algebras or partial algebras. Some of the basic duality results for
relation-based RST are considered in [91]. [92] is a brief survey of applications
of topology free duality. For studies proceeding from a sequent calculus or
modal axiomatic system point of view, the classification also corresponds to
the difficulty of the algebraization problem in any of the senses [3,52,93,94].

• The duality mentioned in the first point often needs additional topology
in explicit terms. The actual connection of the operator approach in RST
with point set topology is : Start from a collection with topological or pre-
topological operators on it, form possibly incompatible quotients and study
a collection of some of these types of objects with respect to a new topology
(or generalisations thereof) on it. This again supports the importance of the
classification or the mathematical uniqueness of the structures being studied.

The present axiomatic approach to granules does provide a level of classifica-
tion at Meta-C. But the way in which approximations are generated by granules
across the different cases is not uniform and so comparisons will lack the depth
to classify Meta-R dynamics, though the situation is definitely better than in
the other mentioned approaches. One way out can be through the representa-
tion problem. It is precisely for this reason that the classification based on the
present axiomatic approach is not stressed.

For those who do not see the point of the contamination problem, the ax-
iomatic theory developed provides a supportive classification for general RST.



12 Dialectical Counting, Measures

To count a collection of objects in the usual sense it is necessary that they be
distinct and well defined. So a collection of well defined distinct objects and
indiscernible objects can be counted in the usual sense from a higher meta level
of perception. Relative this meta level, the collection must appear as a set. In
the counting procedures developed, the use of this meta level is minimal and
certainly far lesser than in other approaches. It is dialectical as two different
interpretations are used simultaneously to complete the process. These two in-
terpretations cannot be merged as they have contradictory information about
relative discernibility. Though the classical interpretation is at a relatively higher
meta level, it is still being used in the counting process and the formulated count-
ing is not completely independent of the classical interpretation.

A strictly formal approach to these aspects will be part of a forthcoming
paper.

Counting of a set of objects of an approximation space and that of its power
set are very different as they have very different kinds of indiscernibility inherent
in them. The latter possess a complete evolution for all of the indiscernibility
present in it while the former does not. Counting of elements of a RYS is essen-
tially a generalisation of the latter. In general any lower level structure like an
approximation space corresponding to a 1-neighbourhood system [43] or a cover
need not exist in any unique sense. The axiomatic theory of granules developed
in the previous sections provides a formal exactification of these aspects.

Let S be a RYS, with R being a derived binary relation (interpreted as a
weak indiscernibility relation) on it. As the other structure on S will not be
explicitly used in the following, it suffices to take S to be an at most countable
set of elements in ZF, so that it can be written as a sequence of the form:
{x1, x2, . . . , xk, . . . , }. Taking (a, b) ∈ R to mean ’a is weakly indiscernible
from b’ concepts of primitive counting regulated by different types of meta level
assumptions are defined below. The adjective primitive is intended to express
the minimal use of granularity and related axioms.

Indiscernible Predecessor Based Primitive Counting (IPC)

In this form of ’counting’, the relation with the immediate preceding step of
counting matters crucially.

1. Assign f(x1) = 11 = s0(11).
2. If f(xi) = sr(1j) and (xi, xi+1) ∈ R, then assign f(xi+1) = 1j+1.
3. If f(xi) = sr(1j) and (xi, xi+1) /∈ R, then assign f(xi+1) = sr+1(1j).

The 2-type of the expression sr+1(1j) will be j. Successors will be denoted
by the natural numbers indexed by 2-types.

History Based Primitive Counting (HPC)

In HPC, the relation with all preceding steps of counting will be taken into
account.



1. Assign f(x1) = 11 = s0(11).
2. If f(xi) = sr(1j) and (xi, xi+1) ∈ R, then assign f(xi+1) = 1j+1.
3. If f(xi) = sr(1j) and

∧
k<i+1(xk, xi+1) /∈ R, then assign f(xi+1) = sr+1(1j).

In any form of counting in this section, if f(x) = α, then τ(α) will denote
the least element that is related to x, while ε(α) will be the greatest element
preceding α, which is related to α.

History Based Perceptive Partial Counting (HPPC)

In HPPC, the valuation set shall be N ∪ {∗} = N∗ with ∗ being an abbreviation
for ’undefined’.

1. Assign f(x1) = 1 = s0(1).
2. If (xi, xi+1) ∈ R, then assign f(xi+1) = ∗ .
3. If Maxk<if(xk) = sr(1) and

∧
k<i(xk, xi) /∈ R, then assign f(xi) = sr+1(1).

Clearly, HPPC depends on the order in which the elements are counted.

Indiscernible Predecessor Based Partial Counting (IPPC)

This form of counting is similar to HPPC, but differs in using the IPC method-
ology.

1. Assign f(x1) = 1 = s0(1).
2. If (xi, xi+1) ∈ R, then assign f(xi+1) = ∗ .
3. If Maxk<if(xk) = sr(1) and (xi−1, xi) /∈ R, then assign f(xi) = sr+1(1).

Definition 6. A generalised approximation space 〈S, R〉 will be said to be IPP
Countable (resp HPP Countable) if and only if there exists a total order on S,
under which all the elements can be assigned a unique natural number under the
IPPC (resp HPPC) procedure . The ratio of number of such orders to the total
number of total orders will be said to be the IPPC Index (resp HPPC Index).

These types of countability are related to measures, applicability of variable
precision rough methods and combinatorial properties. The counting procedures
as such are strongly influenced by the meaning of associated contexts and are
not easy to compare. In classical RST, HPC can be used to effectively formulate
a semantics, while the IPC method yields a weaker version of the semantics in
general. This is virtually proved below:

Theorem 26. In the HPC procedure applied to classical RST, a set of the form
{lp, 1q, . . . 1t} is a granule if and only if it is the greatest set of the form with
every element being related to every other and for any element α in it τ(α) =
fa(lp) and ε(α) = fa(1t) (for at least two element sets). Singleton granules
should be of the form {lp} with this element being unrelated to all other elements
in S.



Theorem 27. All of the following are decidable in a finite number of steps in
a finite AS by the application of the HPC counting method :

1. Whether a given subset A is a granule or otherwise.
2. Whether a given subset A is the lower approximation of a set B.
3. Whether a given subset A is the upper approximation of a set B.

Proof. Granules in the classical RST context are equivalence classes and elements
of such classes relate to other elements within the class alone.

Theorem 28. The above two theorems do not hold in the IPC context. The
criteria of the first theorem defines a new type of granules in totally ordered
approximation spaces and relative this the second theorem may not hold.

Proof. By the IPC way of counting, equivalence classes can be split up into many
parts and the numeric value may be quite deceptive. Looking at the variation of
the 2-types, the criteria of the first theorem above will define parts of granules,
that will yield lower and upper approximations distinct from the classical ones
respectively.

Extension of these counting processes to TAS for the abstract extraction of
information about granules, becomes too involved even for the simplest kind of
granules. However if the IPC way of counting is combined with specific parthood
orders, then identification of granules can be quite easy. The other way is to
consider entire collections of countings according to the IPC scheme.

Theorem 29. Among the collection of all IPC counts of a RYS S, any one with
maximum number of 1is occurring in succession determines all granules. If S is
the power set of an approximation space, then all the definite elements can also
be identified from the distribution of sequences of successive 1is.

Proof. • Form the collection I(S) of all IPC counts of S.
• For α, β ∈ I(S), let α � β if and only if β has longer strings of 1i s towards

the left and more number of strings of 1is of length greater than 1, than α.
• The maximal elements in this order suffice for this theorem.

Example

Let S = {f, b, c, a, k, i, n, h, e, l, g,m} and let R, Q be the reflexive and transitive
closure of the relation

{(a, b), (b, c), (e, f), (i, k), (l,m), (m,n), (g, h)}

and
{(a, b), (e, f), (i, k), (l,m), (m,n)}

respectively. Then 〈S, R〉 and 〈S, Q〉 are approximation spaces. This set can be
counted (relative R) in the presented order as follows:



IPC {11, 21, 12, 13, 23, 14, 24, 34, 15, 25, 16, 26},
HPC {11, 21, 12, 13, 23, 14, 15, 25, 16, 17, 18, 19},
HPPC {11, 21, ∗, ∗, 31, ∗, 41, 51, ∗, ∗, ∗, ∗},
HPC Relative Q: {11, 21, 31, 12, 22, 13, 23, 33, 14, 15, 25, 16}.

Now S|Q = {{a, b}, {c}, {e, f}, {i, k}, {l,m, n}, {g}, {h}} and the positive re-
gion of Q relative R is

POSR(Q) =
⋃

X∈S|Q

X l = {e, f, l,m, n} = {f, n, e, l,m}.

The induced HPC counts of this set are respectively {11, 25, 16, 17, 19} and
{11, 23, 14, 15, 16}.

13 Generalized Measures

According to Pawlak’s approach [17] to theories of knowledge from a classical
rough perspective, if S is a set of attributes and R an indiscernibility relation on
it, then sets of the form Al and Au represent clear and definite concepts. If Q
is another stronger equivalence (Q ⊆ R) on S, then the state of the knowledge
encoded by 〈S, Q〉 is a refinement of that of S = 〈S, R〉. The R-positive region
of Q is defined to be

POSR(Q) =
⋃

X∈S|Q

X lR ; X lR =
⋃
{[y]R; [y]R ⊆ X}.

The degree of dependence of knowledge Q on R δ(Q,R is defined by

δ(Q,R) =
Card(POSR(Q))

Card(S)
.

Definition 7. The granular dependence degree of knowledge Q on R, gk(Q,R)
will be the tuple (k1, . . . , kr), with the ki’s being the ratio of the number of gran-
ules of type i included in POSR(Q) to card(S).

Note that the order on S, induces a natural order on the granules (classes)
generated by R, Q respectively. This vector cannot be extracted from a single
HPC count in general (the example in the last section should be suggestive).
However if the granulation is taken into account, then much more information
(apart from the measure) can be extracted.

Proposition 3. If gk(Q,R) = (k1, k2, . . . , kr), then δ(Q,R) =
∑
ki.

The concepts of consistency degrees of multiple models of knowledge intro-
duced in [95] can also be improved by a similar strategy:

If δ(Q,R) = a and δ(R,Q) = b, then the consistency degree of Q and R,
Cons(Q,R) is defined by

Cons(Q,R) =
a+ b+ nab

n+ 2
,



where n is the consistency constant. With larger values of n, the value of the
consistency degree becomes smaller.

Definition 8. If gk(Q,R) = (k1, k2, . . . , kr) and gk(R,Q) = (l1, l2, . . . , lp) then
the granular consistency degree gCons(Q,R) of the knowledge represented by
Q,R, will be

gCons(Q,R) = (k∗1 , . . . , k
∗
r , l
∗
1, . . . , l

∗
p, nk

∗
1 l1, . . . nk

∗
r lp),

where k∗i = ki
n+2 for i = 1, . . . , r and l∗j =

lj
n+2 for j = 1, . . . , p.

The knowledge interpretation can be extended in a natural way to other
general RST (including TAS) and also to choice inclusive rough semantics [18].
Construction of similar measures is however work in progress. With respect to
the counting procedures defined, these two general measures are relatively con-
structive provided granules can be extracted. This is possible in many of the
cases and not always. They can be replaced by a technique of defining atomic
sub-measures based on counts and subsequently combining them.

Algebraic semantics for these and related measures have been developed in
[6] by the present author (after the writing of this paper). The reader is referred
to the same for a fuller treatment of this section.

13.1 Rough Inclusion Functions

Various rough inclusion and membership functions with related concepts of de-
grees are known in the literature (see [96] and references therein). If these are not
representable in terms of granules through term operations formed from the ba-
sic ones [18], then they are not truly functions/degrees of the rough domain. To
emphasize this aspect, I will refer to such measures as being non-compliant for
the rough context. I seek to replace such non-compliant measures by tuples sat-
isfying the criteria. Based on this heuristic, I would replace the rough inclusion
function

k(X,Y ) =


#(X ∩ Y )

#(X)
, if X 6= ∅,

1, else,

with

k∗(X,Y ) =

 (y1, y2, . . . , yr) if X l 6= ∅,(
1

r
, . . . ,

1

r

)
, else

where
#(Gi) · χi(X ∩ Y )

#(X l) = yi
, i = 1, 2, . . . r.

Here it is assumed that {G1, . . . , Gr} = G (the collection of granules) and
that the function χi is being defined via,

χi(X) =

{
1, ifGi ⊆ X,
0, else,



Similarly,

k1(X,Y ) =


#(Y )

#(X ∪ Y )
, if X ∪ Y 6= ∅,

1, else,

can be replaced by

k∗1(X,Y ) =

{
(h1, h2, . . . , hr) if X l 6= ∅,(
1
r , . . . ,

1
r

)
, else

where
#(Gi) · χi(Y )

#((X ∪ Y )l)
= hi ; i = 1, 2, ..., r,

and

k2(X,Y ) =
#(Xc ∪ Y )

#(S)
,

can be replaced by

k∗2(X,Y ) = (q1, q2, . . . , qr) ,

where
#(G1) · χ1(Xc ∪ Y )

#(S)
= qi, i = 1, 2, . . . , r.

This strategy can be extended to every other non-compliant inclusion func-
tion. Addition, multiplication and their partial inverses for natural numbers can
be properly generalised to the new types of numbers with special regard to mean-
ing of the operations on elements of dissimilar type. This paves the way for the
representation of these general measures in the new number systems (given the
granulation).

14 On Representation of Counts

In this section, ways of extending the representation of the different types of
counts considered in the previous section are touched upon. The basic aim is to
endow these with more algebraic structure through higher order constructions.
The generalised counts introduced have been given a representation that depend
on the order of arrangement of relatively discernible and indiscernible things
from a Meta-C perspective. A representation that accommodates all possible
arrangements is of natural interest from both concrete and abstract perspectives.
The global structure that corresponds to Z or N is not this and may be said
to correspond to rather superfluous implicit interpretations of counting exact
objects by natural numbers. From a different perspective a distinction is made
between the names of objects and the ’generalised numbers’ associated in all
this.

Consider the following set of statements:



A Set S has finite cardinality n.
B Set S can be counted in n! ways.
C The set of counts C(S) of the set S has cardinality n!.
E The set of counts C(S) of the set S bijectively corresponds to the permutation

group Sn.
F The set of counts C(S) can be endowed with a group operation so that it

becomes isomorphic to Sn.

Statements C, E and F are rarely explicitly stated or used in mathematical
practice in the stated form. To prove ’F’, it suffices to fix an initial count. From
the point of view of information content it is obvious that A ⊂ B ⊂ C ⊂ E ⊂ F .
It is also possible to replace ’set’ in the above statements by ’collection’ and then
from the axiomatic point of statements C, E, and F will require stronger axioms
(This aspect will not be taken up in the present paper). I will show that partial
algebraic variants of statement F correspond to IPC.

An important aspect that will not carry over under the generalisation is:

Proposition 4. Case F is fully determined by any of the two element generating
sets (for finite n).

14.1 Representation Of IPC

The group Sn can be associated with all the usual counting of a collection of
n elements. The composition operation can be understood as the action of one
counting on another. This group can be associated with the RYS being counted
and ’similarly counted pairs’ in the latter can be used to generate a partial
algebra. Formally, the structure will be deduced using knowledge of Sn and then
abstracted:

• Form the group Sn with operation ∗ based on the interpretation of the
collection as a finite set of n elements at a higher meta level,
• Using the information about similar pairs, associate a second interpretation
s(x) based on the IPC procedure with each element x ∈ Sn,
• Define (x, y) ∈ ρ if and only if s(x) = s(y).

On the quotient Sn|ρ, let

a ◦ b =

{
c if {z : x ∗ y = z, x ∈ a, y ∈ b}|ρ ∈ Sn|ρ,
∞ else.

The following proposition follows from the form of the definition.

Proposition 5. The partial operation ◦ is well defined.

Definition 9. A partial algebra of the form 〈Sn|ρ, ◦〉 defined above will be called
a Concrete IPC-partial Algebra (CIPCA)

A partially ordered set 〈F,≤〉 is a lower semi-linearly ordered set if and only
if:



• For each x, x ↓ is linearly ordered,
• (∀x, y)(∃z)z ≤ x ∧ z ≤ y.

It is easy to see that IPC counts form lower semi-linearly ordered sets. Struc-
tures of these types and properties of their automorphisms are all of interest and
will be considered in a separate paper.

15 Semantics from Dialectical Counting

An algorithmic method for deducing the algebraic semantics of classical RST
using the IPC method of counting is demonstrated in this section. Derivation of
semantics for other types of RST will be taken up in a separate paper.

Let S = 〈S, R〉 be an approximation space, then
〈
℘(S), ∪, ∩,l , u,c , 0, 1

〉
can be regarded as a RYS. 0, 1, corresponding to the empty set and S, can be
regarded as distinguished elements or defined through additional axioms. The
parthood operation corresponds to set inclusion and is definable using ∩, ∪.
Indiscernibility of any x, y ∈ ℘(S) will be assumed to be defined by the rough
equality;

x ≈ y iff xl = yl ∧ xu = yu.

If I(℘(S)) is the set of all IPC counts of the RYS, then by the last theorem of
section on dialectical counting it is clear that the granules and definite elements
can be identified. It remains to define the other operations on the identified
objects along the lines of [29]. The corresponding logics in modal perspective
can be found in [97]. So,

Theorem 30. The rough algebra semantics of classical RST can be deduced from
any one of the maximal elements of I(℘(S)) in the � order.

15.1 Rough Entanglement: Granular HPC

By the term Entangled, I mean to grasp the sharp increase in semantic content
that happens when counting processes are made to take aspects of the distribu-
tion of granules into account. For the following version of counting, it is assumed
that the set S is associated with a RYS S, generated by it according to some
process and that a collection of granules G is included in the RYS S. It is also
assumed that a total order on S is available relative the lower level classical
semantic domain. These assumptions can be relaxed. The following definitions
will also be used:

• For a, b ∈ S and G ∈ G, indG(a, b) if and only if a, b ∈ G.
• For a, b ∈ S disc(a, b) if and only if (∃G1, G2 ∈ G) a ∈ G1, b ∈ G2, a /∈
G2, b /∈ G1 (or the pair guarantees disc(a, b)).
• For a, b ∈ S pdisc(a, b) if and only if (∃G1, G2 ∈ G) a, b ∈ G1, b ∈ G2, a /∈ G2.

The granular part of the granular extension of HPC can be done as follows:



1. Assume a total order on G and form G2 \ ∆,
2. Form words with elements (alphabets) from G2 \ ∆ and order them lexico-

graphically,
3. A word that includes all instances of pairs that guarantee disc(a, b) will be

said to be complete for (a, b),
4. A word will be said to be reduced with respect to a pair (a, b) if and only if

no letter x in the word guarantees pdisc(a, b).
5. The existence of unique complete least reduced words (least with respect

to the lexicographic order, provided G is finite) for pairs of elements in S
permits simple valuation as a tuple and adds another dimension to HPC.

6. It suffices to adjoin the tuple corresponding to the encoded word between
the element and its predecessor in the counting procedure of HPC.

Theorem 31. Any two distinct elements a, b ∈ S generate a least unique com-
plete reduced word from G.

Proof. I will need to use transfinite induction in the absence of the finiteness
assumption. Otherwise, forming the set of complete words, and then extracting
the reduced words and finally ordering the rest by the lexicographic graphic
will yield the least element. A contradiction argument can be used to check the
uniqueness.

16 Connections Between Fuzzy and Rough Sets

In this section, I will use granularity-related features to establish a new trans-
formation between fuzzy sets and classical rough sets. The transformation can
be the basis for translations or transformations between different types of logics
associated with the corresponding semantics. In the literature of the different
attempts at connections between fuzzy and rough sets, the non granular ap-
proach via the Brouwer Zadeh MV algebras in [41] is somewhat related. The
exact connections with the present derivations, however, requires further inves-
tigation especially when rough membership functions in the classical sense are
not permitted into the discourse. The relation of this result to the connections
based on membership functions as developed in [98] and earlier papers are men-
tioned at the end of this section. The result is very important in the light of
the contamination problem and the generalised number systems of [56]. It shows
that both concepts of rough measures and ’fuzzy sets as maps’ are not needed
to speak of rough sets, fuzzy sets and possible connections between them.

A non-controversial definition of fuzzy sets, with the purpose of removing
the problems with the ’membership function formalism’, was proposed in [99].
I show that the definition can be used to establish interesting links between
fuzzy set theory and rough sets. The connection is essentially of a mathematical
nature. In my view, the results should be read as in a certain perspective, the
granularity of particular rough contexts originate from fuzzy contexts and vice
versa. The existence of any such perspective and its possible simplicity provides
another classification of general rough set theories.



Definition 10. A fuzzy subset (or fuzzy set) A of a set S is a collection of
subsets {Ai}i∈[0,1] satisfying the following conditions:

• A0 = S,
• (0 ≤ a < b ≤ 1→ Ab ⊆ Aa),
• Ab =

⋂
0≤a<bAa.

A fuzzy membership function µA : X 7→ [0, 1] is defined via µA(x) = Sup{a :
a ∈ [0, 1], x ∈ Aa} for each x. The core of A is defined by Core(A) = {x ∈
S : µA(x) = 1}. A is normalized if and only if it has non-empty core. The
support of A is defined as the closure of {x ∈ S; µA(x) > 0}. The height of A is
H(A) = Sup{µA(x); x ∈ S}. The upper level set is defined via U(µ, a) = {x ∈
S : µA(x) ≥ a}. The class of all fuzzy subsets of S will be denoted by F(S). The
standard practice is to refer to ’fuzzy subsets of a set’ as simply a ’fuzzy set’.

Proposition 6. Every fuzzy subset A of a set S is a granulation for S which is
a descending chain with respect to inclusion and with its first element being S.

The cardinality of the indexing set and the second condition in the definition
of fuzzy sets is not a problem for use as granulations in RST, but almost all
types of upper approximations of any set will end up as S. From the results
proved in the previous sections it should also be clear that many of the nice
properties of granulations will not be satisfied modulo any kind of approxima-
tions. I will show that simple set theoretic transformations can result in better
granulations. Granulations of the type described in the proposition will be called
phi-granulations.

Construction-1:

1. Let P = {0, p1, . . . pn−1, 1} be a finite set of rationals in the interval [0,1] in
increasing order.

2. From A extract the collection B corresponding to the index P .
3. Let B0 \Bp1 = C1, Bp1 \Bp2 = C2 and so on.
4. Let C = {C1, C2, . . . , Cn}.
5. This construction can be extended to countable and uncountably infinite P

in a natural way.

Theorem 32. The collection C formed in the fourth step of the above construc-
tion is a partition of S. The reverse transform is possible, provided P has been
selected in an appropriate way.

It has been shown that fuzzy sets can be corresponded to classical rough sets
in at least one way and conversely by way of stipulating granules and selecting
a suitable transform. But a full semantic comprehension of these transforms
cannot be done without imposing a proper set of restrictions on admissibility
of transformation and is context dependent. The developed axiomatic theory
makes these connections clearer.



The result also means that rough membership functions are not necessary to
establish a semantics of fuzzy sets within the rough semantic domain as consid-
ered in [98]. Further as noted in [98], the semantics of fuzzy sets within rough
sets is quite restricted and form a special class. The core and support of a fuzzy
set is realized as lower and upper approximations. Here this need not happen,
but it has been shown that any fuzzy set defined as in the above is essentially
equivalent to a granulation that can be transformed into different granulations
for RST. A more detailed analysis of the connections will appear separately.

17 Operations on Low-Level Rough Naturals

The operations that should be defined are those that have meaning and corre-
spond to semantic actions. An important aspect of the meaning relates to strings
associated with counts. In case of natural numbers, the number 2 may be asso-
ciated with two distinct objects, but an IPC count will have a Meta-C sequence
of objects which may be Meta-R distinct or indiscernible from their predeces-
sors and different kinds of operations can be performed on these. Addition for
example needs to be defined over strings and then corresponded to new IPC
counts.

As mentioned earlier, two different types of structures relative the classical
meta level can be associated with possible concepts of ’rough naturals’. With
respect to IPC for example, the raw IPC count may be seen as a rough natural
or the set of IPC counts of a collection of things may be seen as a rough natural.
I will refer to the former as the low-level concept of rough natural and the latter
as a high-level concept. Operations on the former can be expected to influence
the structure of the latter. In this section operations on collections of low-level
rough naturals will be considered.

of representing other possible operations in a easy way):
If x is an IPC count, then the string of relatively discernible and indiscernible

objects (abstract) associated with the count will be denoted by x. When I speak
of ’the string corresponding to x’, it can be understood as

• Any of the strings that have the same kind of distribution of discernible and
indiscernible objects with respect to their immediate predecessors, or

• the abstract classes associated, or
• a representative ’arbitrary’ object (I am not going into the philosophical

viewpoints on the issue in this paper).

Obviously this makes the appropriate concept of x for a method of counting
to depend on the method. Specifically, the IPC concept of x is not suitable for
getting nice structure in HPC contexts. The rough equality (indiscernibility or
similarity or whatever) relation will be denoted by ≈. The basic string operations
will then be defined as follows:

If Ik(x) is the Meta-R count of the Meta-C string formed by interchanging
xk and xk+1 in x.



ιk(x) =

{
x, if (xk, xk+1) ∈≈,
Ik(x) otherwise.

If y is the Meta-R count of the result of the Meta-C removal of xk from x, (
x 6= 0)

%k(x) =

{
y, if ¬(xk, xk+1) ∈≈ or¬(xk−1, xk) ∈≈,
x otherwise.

If z is the IPC count of the result of insertion of the string y between xk and
xk+1, then for non-zero x, y,

ηk(x, y) =

{
z, if (xk, xk+1) ∈≈,
x otherwise.

Definition 11. For any of the rough counts x, ν(x) will represent the length of
(cardinal associated with) x in Meta-C.

Note that ηk(x, y) does not include ⊕, but is very similar. In fact the two
operations are not distinct from the point of view of interpretation at Meta-C.

Definition 12. Basic arithmetical operations can be generalised to rough natu-
rals as follows:

(i) x⊕y: The count (at meta-R) of the ’object level string’ (relative meta-C)
defined as the x items followed by the y items.

(ii) x�y: The count (at meta-R) of the ’object level string’ defined as ν(y) copies
of x placed at each of the atomic y places.

(iii) µ(x, y): Form ν(y) copies of x at meta-C.
(iv) xc: Meta-R Count of x in reverse order.
(v) x⊗ y: The meta-R count of the string formed by the conditional substitution

of x at each of the y places subject to the rules:
(a) Replace y1 with x.
(b) Replace yk+1 with x if (yk, yk+1) /∈≈.
(c) If (yk, yk+1) ∈≈, then yk+1 should be dropped.

(vi) x 	 y: The meta-R count of the string formed by the deletion of y from x
from the right if defined. This definition can always be improved through the
%k operation.

Other more interesting definitions of subtraction can be obtained by imposing
conditions relating to discernibility on the target x and/or source y.

(i) The condition ’a sub-string will be removable from the target from the right
if and only if each letter in the sub-string is discernible from its successor or
predecessor’ will be corresponded to x	1∨2 y.

(ii) The condition ’a sub-string will be removable from the target from the right
if and only if each letter in the sub-string is discernible from its successor
and predecessor’ will be corresponded to x	12 y.



(iii) The condition ’a sub-string will be removable from the target from the right
if and only if each letter in the sub-string is discernible from its successor’
will be corresponded to x	1 y.

(iv) The condition ’a sub-string will be removable from the target from the right
if and only if each letter in the sub-string is discernible from its predecessor’
will be corresponded to x	2 y.

Definition 13. For any x, y, x � y if and only if x is obtainable from y in
Meta-R by a finite number of recursive applications of %k and ιk operations for
different values of k.

Definition 14. For any x, y,

x ≤⊕ y iff (∃z) (x⊕ z = y) ∨ (z ⊕ x = y).

Definition 15. For any x, y,

x ≤� y iff (∃z) (x� z = y).

Definition 16. For any x, y,

x ≤⊗ y iff (∃z) (x⊗ z = y).

Definition 17. For any x, y, x ≤p y in Meta-R if and only if ζ(x), ζ(y) and
ν(x) ≤ ν(y) in Meta-C (≤ being the usual total order on integers).

Definition 18. For any x, y, x E y if and only if ν(x) ≤ ν(y) in Meta-C (≤
being the usual total order on integers).

Definition 19. For any x, y, x v y in Meta-R if and only if x is obtainable
from y in Meta-R by a finite number of recursive applications of %k for different
values of k.

Using some of the different operations, many new partial algebras modelling
the essence of rough naturals at meta-R and meta-C are defined next. It should
be noted that the operations are well defined because IPC counts have an injec-
tive correspondence with distributions of relatively discernible and indiscernible
objects.

Definition 20. By a Rough IPC-Natural Algebra (RIPCNA) will be meant a
partial algebraic system of the form

S = 〈S, ζ,⊕,�,	1∨2, 0, 1, (1, 2, 2, 2, 0, 0)〉 ,

with the set S being the set of rough naturals formed according to the IPC schema
and with the above defined operations according to the IPC schema. 1 can be
treated as an abbreviation of 11, numbers of the form 1121...k1 can also be ab-
breviated by k. 0 will be understood as the IPC count of the empty string. ζ is a
one place predicate for indicating the usual integers:

ζ(x) iff (∃k)x = 1121...k1.



Theorem 33. In a RIPCNA of the form S = 〈S,⊕,�,	1∨2, 0, 1〉 of type
(2, 2, 2, 0, 0) all of the following hold:

1. (x⊕ y)⊕ z = x⊕ (y ⊕ z),
2. x⊕ 0 = x = 0⊕ x,
3. x⊕ x = x� 2,
4. (∀x, y, z)(x⊕ y = x⊕ z −→ y = z),
5. (∀x, y, z)(x⊕ z = y ⊕ z −→ x = y),
6. x� (y � z) = (x� y)� z,
7. (∀x, y, z)(x� y = z � y −→ x = z),
8. x� 1 = x; x	 x = 0,
9. x� (y ⊕ z) = (x� y)⊕ (x� z),

10. (x� x = x −→ (x = 0) ∨ (x = 1)),
11. (∀x, y, z)(x = y −→ x� z = x� z),
12. (∀x, y, z)(x⊕ y = z −→ z 	 y = x),
13. (∀x, y)(ζx, ζy −→ x⊕ y = y ⊕ x, x� y = y � x),
14. (∀x, y, z)(ζx, ζy, ζz −→ (x⊕ y)� z = (x� z)⊕ (y � z),
15. (∀x, y, z)(ζx, ζy −→ (x⊕ y)� z = (x� z)⊕ (y � z)).

Proof. 1. (x⊕ y)⊕ z = x⊕ (y ⊕ z) holds because either side is the IPC count
of the string formed by placing x, y and z in succession.

2. 0 by definition is the count of the empty string, so x⊕ 0 = x = 0⊕ x.
3. 2 is the same as 1121 and x� 2 would be the IPC count of the string formed

by placing two copies of x in 2 places. So x⊕ x = x� 2
4. If x ⊕ y = x ⊕ z holds then either side will be the IPC count of x⊕ y and

the count of the initial string x will be common to both. If y 6= z, then x⊕ y
cannot be equal to x⊕ z, so (∀x, y, z)(x⊕ y = x⊕ z −→ y = z)

5. Proof of (∀x, y, z)(x⊕ z = y ⊕ z −→ x = y) is similar to the above.
6. The length of the string y � z will be the same as the length of y multiplied

by the length of z. So x will be equally replicated during the IPC counting
operation corresponding to either side of x� (y � z) = (x� y)� z.

7. (∀x, y, z)(x�y = z�y −→ x = z) can be verified from the strings associated
and a contradiction argument.

8. x � 1 = x is obvious. If x is removed from x, then the result would be an
empty string. So x	 x = 0

9. The length of y ⊕ z is the same as the length of y plus that of z. So x� (y⊕
z) = (x� y)⊕ (x� z).

10. (x� x = x↔ (x = 0) ∨ (x = 1)) is easy to verify.
11. (∀x, y, z)(x = y −→ x�z = x�z) is easy to prove, but note that x⊕z = y⊕z

need not follow from x = y in general.
12. (∀x, y, z)(x⊕ y = z −→ z 	 y = x) follows from the definition of 	.
13. (∀x, y)(ζx, ζy −→ x⊕ y = y ⊕ x, x� y = y � x) follows from the properties

of integers.
14. (∀x, y, z)(ζx, ζy, ζz −→ (x ⊕ y) � z = (x � z) ⊕ (y � z) follows from the

properties of integers.
15. (∀x, y, z)(ζx, ζy −→ (x ⊕ y) � z = (x � z) ⊕ (y � z)) is again a statement

about integers.



Theorem 34. {x : ζ(x), x ∈ S} with the operations ⊕,�,	 is an integral
domain of characteristic 0 that is also a unique factorization domain. In fact it
is isomorphic to Z.

Proof. {x : ζ(x), x ∈ S} is in bijective correspondence with Z by definition.
The restrictions of the operations ⊕,�,	 to the domain coincide with usual
arithmetic operations on Z.

As � uses a certain level of knowledge of the natural numbers that is correctly
at Meta-C, the question of admissibility of such in some contexts can be a matter
of dispute. Relative this understanding ⊗ would be a better suited operation that
is at the same time a proper generalisation of usual multiplication and �.

Definition 21. By a Rough IPC Algebra (RIPCA) will be meant a partial al-
gebraic system of the form

S = 〈S, ζ,⊕,⊗,	1∨2, 0, 1, (1, 2, 2, 2, 0, 0)〉 ,

with the set S being the set of rough naturals formed according to the IPC schema
and with the above defined operations according to the IPC schema. 1 can be
treated as an abbreviation of 11, numbers of the form 1121...k1 will also be ab-
breviated by k. 0 will be understood as the IPC count of the empty string. ζ is a
one place predicate for indicating the usual integers:

ζ(x) iff (∃k)x = 1121...k1.

Of the orders v,�,≤�,≤⊗,≤⊕ and E, the last is basically a Meta-C order
corresponding to the usual order on integers. Among the other five, � is the
strongest with respect to inclusion, but not much can be said about comparisons
of their naturality in Meta-R. So it seems best to define ordered versions of the
partial algebras as follows:

Definition 22. By a R-Ordered Rough IPC Algebra (RORIPCA) will be meant
a partial algebraic system of the form

S = 〈S, ζ,v,�,≤⊗,≤⊕,⊕,⊗,	1∨2, 0, 1, (1, 2, 2, 2, 2, 2, 2, 2, 0, 0)〉 ,

with the set S being the set of rough naturals formed according to the IPC schema
and with

S = 〈S, ζ,⊕,⊗,	1∨2, 0, 1, (1, 2, 2, 2, 0, 0)〉 ,
being a RIPCA.

Definition 23. By a C-Ordered Rough IPC Algebra (CORIPCA) will be meant
a partial algebraic system of the form

S = 〈S, ζ,E,⊕,⊗,	1∨2, 0, 1, (1, 2, 2, 2, 2, 0, 0)〉 ,

with the set S being the set of rough naturals formed according to the IPC schema
and with

S = 〈S, ζ,⊕,⊗,	1∨2, 0, 1, (1, 2, 2, 2, 0, 0)〉 ,
being a RIPCA.



Definition 24. By a Full Ordered Rough IPC Algebra (FORIPCA) will be
meant a partial algebraic system of the form

S = 〈S, ζ,E,v,�,≤⊗,≤�≤⊕,≤p,⊕,⊗,�,	1∨2,	, 0, 1〉 ,

of type (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0) with the set S being the set of rough
naturals formed according to the IPC schema and with

S = 〈S, ζ,⊕,⊗,	1∨2, 0, 1, (1, 2, 2, 2, 0, 0)〉 ,

being a RIPCA.

Analogously, the concepts of FORIPCNA, CORIPCNA and RORIPCNA can
be defined.

Proposition 7. In a FORIPCA S, E is a quasi order that satisfies

E ∩ ζ2 =≤ .

Proof. It is easy to find elements x, y that violate possible antisymmetry of E.
The restriction to ζ2 is the same as the intersection with Z2. So on Z, the usual
order ≤ coincides with E. Strictly speaking this is a category theoretic result
involving S and Z.

Proposition 8. In a FORIPCA S, � is a quasi order. The class of any ele-
ment in {x ; ζ(x)x 6= 0} with respect to the equivalence induced by � includes
{x ; ζ(x)x 6= 0}.

Proof. Transitivity holds as if x is obtainable from y by the %k, etak operations
for different k and y is obtainable from z similarly, then x would be obtainable
from z.

If ζ(x), ζ(y), then x and y would be strings of discernibles and so x, y would
be transformable into each other by the %k, etak operations. Defining x ∼ y if
and only if x � y and y � x, it can be seen that ∼ is an equivalence and through
this all of the elements of {x ; ζ(x)x 6= 0} can be identified.

Theorem 35. In a FORIPCA S, the following implications between the differ-
ent orders hold:

1. (∀x, y)(x ≤� y −→ x ≤⊕ y),

2. (∀x, y)(x ≤⊕ y −→ x v y),

3. (∀x, y)(ζx, ζy −→ x E y ∨ y E x ∨ x = y),

4. (∀x, y)(x ≤p y −→ x E y),

5. (∀x, y)(x⊗ y ↔ x� y),

6. For any x, y, x ≤⊕ y does not not imply that x � y and neither does the
converse implication hold.



Proof. Most of the statements can be proved from the corresponding definitions.
≤p is a partial order that is coincides with the usual order when restricted to Z.
Statement 5 is ensured by the existence of elements corresponding to all possible
relative discernibility-indiscernibility patterns.

If z is a string of elements, some of which are indiscernible from x and y =
x⊕z, then x may not be obtainable from y. Concrete patterns can be constructed
at different levels of complexity. The easiest case corresponds to all elements of
z being indiscernible from those of x.

A useful visual representation of the computing process for a⊗ b is illustrated
below through a specific example. In the first line blank spaces are drawn for
the alphabets in b. The curved arrows are used to indicate discernibility. The
second figure represents a gross view of the strings in a ⊗ b.

a a a
−− −− −− −− −− −− .
� �

From the above, it can be deduced that a ⊗ b is equivalent to the count of

a a a
−− −− −− .

Key properties of the relatively difficult operation ⊗ are considered in the
following theorems:

Theorem 36. In a FORIPCA S, all of the following hold:

1. (∀a, b, c)(a ⊗ b) ⊗ c E a ⊗ (b ⊗ c),
2. (∀a, b, c)(ζ(b) −→ (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c)),
3. (∀a, b)(a 6= 0, a ⊗ b = a � b ↔ b 	12 b = 0).

Proof. 1. The length of a⊗ b is determined by the distribution of indiscernible
pairs in b. The proof can be done by considering the different cases of the
⊗ multiplication in the left and right side of the inequality corresponding to
the relation of the first and last element of the strings corresponding to a, b
and a⊗ b.

2. If ζ(b), then the string corresponding to it will have mutually discernible
elements of the length of b. In (a ⊗ b) ⊗ c, a ⊗ b will be repeated the same
number of times as b in b⊗ c. So the equality will hold.

3. If a ⊗ b = a � b, then as a is not 0, it is necessary that each object in b be
discernible from its immediate predecessor (that is for every admissible k,
(bk, bk+1) /∈≈). So b 	12 b = 0 must hold (irrespective of the length of b).
Note that for an arbitrary element x, it need not happen that x 	12 x = 0
in general.
For the converse, note that if b 	12 b = 0, then it will be necessary that for
every admissible k, (bk, bk+1) /∈≈. Both the multiplications of a with such
a b will be equal.



In the next theorem, the compatibility of the different orders defined are
considered:

Theorem 37. In a FORIPCA S, the following hold:

1. (∀a, b, c, e)(a E b, c E e −→ (c⊕ a) E (e⊕ b), (a� c) E (b� e)),
2. (∀a, b, c, e)(a ≤⊕ b, c ≤⊕ e −→ a⊕ c E b⊕ e),
3. (∀a, b, c)(a ≤⊕ b −→ c⊕ a ≤⊕ c⊕ b, or a⊕ c ≤⊕ b⊕ c),
4. (∀a, b)(a ≤⊕ b, a v b −→ b	1∨2 a v b),
5. (∀a, b, c, e)(a ≤� b, c ≤� e −→ a� c E b� e, a� c v b� e),
6. (∀a, b, c, e)(a v b, c ⊆ e −→ a⊕ c v b⊕ e, a� c v b� e, ).

Proof. 1. E corresponds to the meta-C interpretation by the length of associ-
ated. So the � and ⊕ part of the implication should be obvious. However
as c E e does not imply that the number of objects in c that are discernible
from their predecessor are less than the corresponding number in e. So ⊗
will not preserve E.

2. In general if a ≤⊕ b, c ≤⊕ e, then it need not happen that a⊕ c ≤⊕ b⊕ e,
because of the different possible relations between the objects at the terminal
and initial position of ⊕. But the gross length of a⊕ c will be ν(a) + ν(c).
So the implication holds.

3. Follows from the definition of ≤⊕.
4. If a ≤⊕ b, then there exists a c such that a ⊕ c = b or c ⊕ a = b. In either

case, if a is obtainable from b by a finite number of recursive applications of
ρk, then it is necessary that these operations must have been applied at one
end of b. This causes b	1∨2 a v b.

5. In a� c and b� e, a is repeated ν(c) times and b is repeated νe times. So
the length of a� c will be less than that of b� e. Further as a ≤� b and
c ≤� e, it will be possible to obtain a� c from b� e through a finite number
of applications of ρk for different values of k. So the result holds.

6. This follows from definition.

Interestingly it is not possible to define a unary negation operator from any
of the subtraction-like 	 operations and ⊕ in a consistent way. So the concept
of negative elements does not generalise well to the present contexts. The extent
to which a consistent definition is possible will be of natural interest.

18 Further Directions: Conclusion

The broad classes of problems that will be part of future work fall under:

(i) Improvement of the representation of different classes of counts. One class
of questions also relate to using morphisms or automorphisms in a more
streamlined way.

(ii) Extension of the algebraic approach (and the concept of rough natural num-
bers) of the last section to non IPC cases.

(iii) The contamination problem.



(iv) Description of other semantics of general RST in terms of counts. This is the
basic program of representing all types of general rough semantics in terms
of counts.

(v) Can the division operation be eliminated in the general measures proposed?
In other words, a more natural extensions of fractions (rough rationals) would
be of much interest. Obviously this is part of the representation problem for
counts.

(vi) How do algorithms for reduct computation get affected by the generalised
measures?

Apart from these a wide variety of combinatorial questions would be of natural
interest.

In this research paper, the axiomatic theory of granules and granulation de-
veloped by the present author has been extended to cover most types of general
RST and new methods of counting collections of well defined and indiscernible
objects have been integrated with it. These new methods of counting have been
shown to be applicable to the extension of fundamental measures of RST, rough
inclusion measures and consistency degrees of knowledge. The redefined mea-
sures possess more information than the original measures and have more re-
alistic orientation with respect to counting. The connections with semantic do-
mains, that are often never explicitly formulated, has been brought into sharp
focus through the approach.

The concept of rough naturals in the IPC perspective has also been developed
in this paper. The new program centred around the contamination problem
proposed in this paper can also be found in another forthcoming paper by the
present author on axiomatic theory of granules for RST. Here the direction is
made far more clearer through the integration with rough naturals.

By the mathematics of vagueness, I do not mean a blind transfer of the
results of the mathematics of exact contexts to inexact contexts. It is intended
to incorporate vagueness in more natural and amenable ways in the light of the
contamination problem. An essential part of this is achieved in this research
paper.
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