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Preface

The title of this book, The Art of Turing Computability: Theory and Ap-
plications, emphasizes three very important concepts: (1) computability
(effective calculability); (2) Turing or classical computability in the sense of
Turing and Post; and (3) the art of computability: as a skill to be practiced,
but also emphasizing an esthetic sense of beauty and taste in mathematics.

The Art of Classical Computability

Mathematics is an art as well as a science. We use the word “art” in two
senses. First “art” means a skill or craft which can be acquired and im-
proved by practice. For example, Donald Knuth wrote The Art of Computer
Programming, a comprehensive monograph in several volumes on program-
ming algorithms and their analysis. Similarly, the present book is intended
to be a comprehensive treatment of the craft of computability in the sense of
knowledge, skill in solving problems, and presenting the solution in the most
comprehensible, elegant form. The sections have been rewritten over and
over in response to comments by hundreds of readers about what was clear
and what was not, so as to achieve the most elegant and easily understood
presentation.

However, in a larger sense this book is intended to develop the art of
computability as an artistic endeavor, and with appreciation of its math-
ematical beauty. It is not enough to state a valid theorem with a correct
proof. We must see a sense of beauty in how it relates to what came before,
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what will come after, the definitions, why it is the right theorem, with the
right proof, in the right place.

One of the most famous art treasures is Michelangelo’s statue of David
displayed in the Accademia Gallery in Florence. The long aisle to approach
the statue is flanked with the statues of Michelangelo’s unfinished slaves
struggling as if to emerge from the block of marble. There are practically
no details, and yet they possess a weight and power beyond their physical
proportions. Michelangelo thought of himself, not as carving a statue, but
as seeing the figure within the marble and then chipping away the marble
to release it. The unfinished slaves are perhaps a more revealing example
of this talent than the finished statue of David.

Similarly, it was Alan Turing in 1936 and 1939 who saw the figure of
computability in the marble more clearly than anyone else. Finding a for-
mal definition for effectively calculable functions was the first step, but
demonstrating that it captured computability was as much an artistic
achievement as a purely mathematical one. Gödel himself had expressed
doubt that it would be possible to do so. The other researchers thought
in terms of mathematical formalisms like recursive functions, λ-definable
functions, and arithmetization of syntax. It was Turing who saw the com-
puter itself in the marble, a simple intuitive device equipped with only a
finite program and using only a finite sequence of strokes at each stage in a
finite computation, the vision closest to our modern computer. Even more
remarkable, Turing saw how to explicitly demonstrate that this mechani-
cal device captured all effectively calculable processes. Gödel immediately
recognized this achievement in Turing and in no one else.

The first aim of this book is to present the craft of computability, but
the second and more important goal is to teach the reader to see the figure
inside the block of marble. It is to allow the reader to understand the nature
of a computable process, of a set which can be computably enumerated, of
the process by which one set B is computed relative to another set A, of a
method by which we measure the information content of a set, an algebraic
structure, or a model, and how we approximate these concepts at a finite
stage in a computable process.

The Great Papers of Computability

During the 1930’s, educators suggested that college students should read
the great books of Western culture in the original. At the University of
Chicago the principal proponents were President Robert Maynard Hutchins
and his colleague Professor Mortimer Adler. The curriculum relied on pri-
mary sources as much as possible and a discussion under the supervision
of a professor. For decades the Great Books Program became a hallmark
of a University of Chicago education.
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In the first two decades of Computability Theory from 1930 to 1950 the
primary sources were papers not books. Most were reprinted in the book by
Martin Davis [1965] The Undecidable: Basic Papers on Undecidable Propo-
sitions, Unsolvable Problems, and Computable Functions. Of course, all of
these papers are important, shaped the subject, and should be read by the
serious scholar. However, many of these papers are written in a compli-
cated mathematical style which is difficult for a beginner to comprehend.
Nevertheless, at least two of these papers are of fundamental importance
and are easily accessible to a beginning student. My criteria for selecting
these papers are the following.

1. The paper must have introduced and developed a topic of fundamen-
tal importance to computability.

2. The topic and its development must be as important today as then.

3. The paper must be written in a clear, informal style, so appealing
that any beginning student will enjoy reading it.

There are two papers in computability which meet these criteria.

Turing’s 1936 Paper, Especially §9
Turing’s 1936 paper is probably the single most important paper in com-
putability. It introduces the Turing machine, the universal machine, and
demonstrates the existence of undecidable problems. It is most often used
in mathematics and computer science to define computable functions. It is
perhaps Turing’s best known and most influential paper.

I am especially recommending Turing The Extent of the Computable
Numbers, §9, pp. 249–254 in Turing’s 1936 paper. Here Turing gives a
demonstration that the numbers computable by a Turing machine “in-
clude all numbers which would naturally be regarded as computable.” This
is a brilliant demonstration and is necessary for the argument. Without it
we do not know that we have diagonalized against all potential decidable
procedures and therefore we have no undecidable problems. Books on com-
putability rarely give this demonstration even though it is critical, perhaps
because of its nonmathematical nature. Every student of computability
should read this very short section.

Post’s 1944 Paper, Especially §11

Turing’s 1939 paper very briefly introduced the notion of an “oracle ma-
chine,” a Turing machine which could consult an oracle tape (database),
but he did not develop the idea. In his paper Recursively Enumerable
Sets of Positive Integers and Their Decision Problems, Emil Post in 1944
developed two crucial ideas, the structure and information content of com-
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putably enumerable (c.e.) sets, and the idea of a set B being reducible to
another set A.

Turing never thought of his oracle machine as a device for reducing one
set to another. It was simply a local machine interacting with an external
database as today a laptop might query the Internet. Post was the first to
turn the oracle machines into a reducibility of a set B to a set A, written
B ≤T A, which Post generously called Turing reducibility. Post’s entire pa-
per is wonderfully written and easily accessible to a beginner. He begins
with simpler reducibilities such as many-one reducibility and truth-table
reducibility and works up to Turing reducibility which was not understood
at the time.

The last section §11 General (Turing) Reducibility, is especially recom-
mended. Here Post explored informally the idea of a c.e. set B being Turing
reducible to another c.e. set A. For the next decade 1944–1954 Post contin-
ued to develop the notions of Turing reducibility and information content.
In 1948 Post introduced the idea of degrees of unsolvability, now called
Turing degrees, which are the key to measuring the information content of
a set or algebraic structure. Post gave his notes to Kleene before his death
in 1954. Kleene revised them and published the Kleene-Post 1954 paper,
introducing a finite forcing argument as in Chapter 6 to define Turing in-
comparable sets. These two notions, computability by Turing’s automatic
machine (a-machine) in 1936, and reducibility of one set B to another set A
in Turing’s 1939 paper and Post’s 1944 paper, are the two most important
ideas in computability theory. Therefore, these papers should be read by
anyone taking a course from this book.

Other excellent computability papers are reprinted in [Davis 1965], es-
pecially the Gödel Incompleteness Theorem in [Gödel 1931] with the
improvement by Rosser. Some of these papers may be difficult for a be-
ginner to read, but they will be more accessible after a first course in
computability. Gödel’s collected works can be found in the three volumes,
[Gödel 1986], [Gödel 1990], and [Gödel 1995].
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Turing Machines

A Turing machine (a-machine) is a kind of idealized typewriter with an
infinite tape and a reading head moving back and forth one cell at a time
(§1.4) according to a finite state program. In 1936 Turing demonstrated
convincingly that this mathematical model captured the informal notion
of effectively calculable. Turing’s model and analysis have been accepted
ever since as the most convincing model. It is the one on which we base
the results in this book.

Oracle Machines and Turing Reducibility

Immediately after this paper, Turing went to Princeton where he wrote a
PhD dissertation with Alonzo Church. The dissertation was mainly about
ordinal logics, a topic suggested by Church, but one page described an
oracle machine (o-machine) which is of the greatest importance in com-
putability theory. Turing’s oracle machine consisted of a Turing machine
connected to an “oracle” which it could query during the computation.
This is analogous to the modern model of a local server, such as a lap-
top computer, connected to a large database, such as the Internet which
contains too much information to be stored on the local server.

Turing’s oracle machine concept lay dormant for five years until Emil
Post’s extraordinary 1944 paper revived it, greatly expanded it, and cast
the subject in an informal, intuitive light. Post defined a set B to be Turing
reducible to a set A, written B ≤T A, if there is an oracle machine which
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computes B when the characteristic function of A is written on the oracle
tape. The oracle machines include the ordinary machines because if a set B
is computed by an ordinary Turing machine, then it is computed by an ora-
cle machine with A = ∅ on the oracle tape. But the oracle machines do much
more. Turing reducibility is a crucial concept because in computablility the-
ory and applications we rarely prove results about computable functions on
computable sets. We compare noncomputable (undecidable) sets B and A
with respect to their relative information content. We say that sets A and
B are Turing equivalent, written A ≡T B if A ≤T B and B ≤T A, in which
case we view A and B as coding the same information. Turing reducibility
gives us a precise measure of the information they encode relative to other
sets and the Turing degrees (§3.4) are equivalence classes containing sets
with the same information content.

Computable Enumerable Sets

In 1936 Church and Kleene introduced the concept of a computably enu-
merable (c.e) set, also called a recursively enumerable (r.e.) set, as one
which can be effectively listed, such as the theorems in a formal system
like Peano arithmetic. In 1944 Post realized the importance of these sets in
many areas of mathematics, and Post devoted much attention to studying
their information content. His work on the structure of these sets and their
information content under stronger reducibilities has had a great influence
on the topics in this book.

Of the effective listing of c.e. sets, {We}e∈ω Post reminded us that the
Gödel diagonal set K = {e : e ∈ We} is c.e. and noncomputable. The
famous Post Problem was to determine whether there is only one such set
up to Turing degree.

Bounded Turing Reductions

At first, Post did not make much progress on the general case of Turing
reducibility. To progress toward it, he considered various stronger reducibil-
ities called bounded reducibilities. A Turing reduction ΦAe = B witnessing
B ≤T A is a bounded Turing reduction, written B ≤bT A, if there is a com-
putable function h(x) bounding the use function, namely ϕAe (x) ≤ h(x),
where the use function ϕAe (x) is the maximum element used (scanned)
during the computation.

For example, every c.e. set B is many-one reducible to K, B ≤m K by
a computable function f , i.e., x ∈ B iff f(x) ∈ K. Post introduced several
structural properties of a c.e. set B in an attempt to prove incompleteness.
For example, he proved that a K 6≤m B for a simple set B. The varieties of
simple and nonsimple sets he introduced and his various bounded reducibil-
ities had a profound effect on the subject for decades and led indirectly to
most of the results in this book.
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Finally Understanding Turing Reducibility

Post realized that the bounded reducibilities would not solve his problem.
It required a deeper understanding of Turing reducibility. His understand-
ing increased over the next decade from 1944 until his death in 1954. Post
introduced the notion of degree of unsolvability to collect into one equiv-
alence class sets coding the same information content. He wrote notes on
his work. As he became terminally ill in 1954, Post gave them to Kleene
who expanded them and published it as [Kleene and Post 1954]. This pa-
per was a fundamental advance toward solving Post’s problem and toward
understanding Turing reducibility. The key idea was the continuity of Tur-
ing functionals that if ΦAe (x) = y then Φσe (x) = y for some finite initial
segment σ ≺ A, and that if B � σ then ΦBe (x) = y also.

Using this, Kleene and Post constructed sets A and B computable in
K such that A 6≤T B and B 6≤T A. Hence, ∅ <T A <T K. This did not
explicitly solve Post’s Problem because the sets were not c.e., but Kleene
and Post divided the conditions into requirements of the form ΦAe 6= B,
which could be arranged in a priority list of order type ω and processed
one at a time using the Use Principle. This became the model for most
arguments in the subject. It became the key step in the later solution
of Post’s Problem by Friedberg in 1957 and Muchnik in 1956 since they
combined this strategy with a computable approximation stage by stage.
From these ideas emerged the understanding that a Turing functional Φe
is continuous as a map on Cantor space 2ω and is not only continuous but
effectively continuous because the inverse image of a basic open set is the
computable union of basic open sets.

Priority Arguments

The Kleene-Post construction had produced finite initial segments σ ≺ A
and τ ≺ B such that for some x, Φσe (x) 6= τ(x). Hence ΦAe (x) 6= B(x). To
make the sets A and B computably enumerable, Muchnik and Friedberg
had to abandon the K-oracle and computably enumerate the sets, letting
As be the finite set of elements enumerated in A by the end of stage s and
likewise for Bs. They attempted to preserve strings σ ≺ As and τ ≺ Bs
when it seemed to give Φσe (x) 6= τ(x). This action might later be injured
because action by a higher priority requirement forces σ 6≺ As+1 causing
this condition for e to begin all over again. These results led to much more
complicated infinite injury arguments.

Other Parts of This Book

The introduction so far explains the background and motivation for most of
Part I up to finite injury priority arguments in Chapter 7. For the summary
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and motivation of the other parts see the next section about how to read
this book.



How to Read This Book

Part I: Foundations of Computability

The core of the subject is Part I, Chapters 1–7, from the definition of
Turing machines in Chapter 1 up to finite injury priority arguments in
Chapter 7. Traditionally, a beginning undergraduate or graduate course of
ten or fifteen weeks would go through the sections here one by one. Part I
has been streamlined, with more complicated chapters moved to later parts
in order to make this schedule feasible. After finishing Chapter 7 on finite
injury, the reader will have a firm grasp of the fundamental results and
methods of computability theory. One can also cover Part I more quickly
as an initial segment of an advanced computability course by concentrating
on the starred sections in Part I and then moving to other advanced topics.

Part II: Trees and Π0
1 Classes

A tree is a set of strings closed under initial segments and a Π0
1 class

is the set of paths through a computable binary tree. These classes play
an important role in model theory, extensions of Peano arithmetic, algo-
rithmic randomness, and other applications. We study open and closed
computable classes of reals, and basis and nonbasis theorems for Π0

1 classes.
We give a proof of the Superlow Basis Theorem, proved but not published,
by Jockusch and Soare about 1969. We also give a proof by Dzhafarov and
Soare of the Low Antibasis Theorem by Kent and Lewis. We show how Π0

1
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classes and their basis theorems are related to models of Peano arithmetic,
with results by Jockusch and Soare, Scott, Shoenfield, and Solovay. Finally,
we relate Π0

1 classes to Martin-Löf randomness, computably dominated
(hyperimmune-free) degrees, and to computably traceable sets.

Part III: Minimal Degrees

A Turing degree a is minimal if a > 0 but there is no degree b such that
0 < b < a. In Chapter 12 we present Spector’s proof of a minimal degree
a < 0′′. The proof uses a forcing argument like those in Chapter 6 but with
more complicated forcing conditions of perfect trees instead of finite strings.
In Chapter 13 we present the Sacks construction of a minimal degree a < 0′.
This is an approximation to Spector’s method and uses a finite injury
priority argument. We also sketch a limit computable (full approximation)
construction of a minimal degree below 0′ using a computable construction.
It can also be done below any nonzero computably enumerable degree,
thereby producing a low minimal degree. Chapters 6 and 7 are the only
prerequisites for this material.

Part IV: Games in Computability Theory

Games are very important in understanding the nature of computability,
how to prove theorems, and how to solve problems. In Chapter 14 we
present the classical Banach-Mazur games which are closely related to the
finite extension constructions of Chapter 6, Sections 1–3, and may be read
simultaneously with them and with Chapter 8 on open and closed classes
in Cantor space. Players I and II alternately construct strings σ2n and
σ2n+1, jointly constructing a point f = ∪nσn in Cantor space 2ω. There is
a predetermined class A ⊆ 2ω. Player I wins the game according to whether
f ∈ A or not. Winning strategies are described in terms of properties of A.
We also discuss the Cantor-Bendixson rank of points in a closed subclass
A ⊆ 2ω.

In Chapter 15 we make a very brief excursion into Gale-Stewart games.
We consider the complexity of the winning strategy for a very simple
computable game.

We finish in Chapter 16 by returning to the topic of more Lachlan games,
first introduced in §2.5. These games are the principal tool in proving
theorems and solving problems in computability theory.
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Symbols Marking Importance and Difficulty

In Part I we use the following notation for sections, theorems, and exercises.

?? Most important.

? Very important.

No Marking Average importance.

� Skim or defer on a first reading until needed in a later chapter.

� Difficult exercise, do not assign lightly.

�� Very difficult exercise.

How to Read This Book





Notation

Notation will be defined when introduced. We now summarize the most
common notation and definitions.

Notation for Sets

The universe is the set of nonnegative integers ω = {0, 1, 2, 3, . . . } which
sometimes appears in the literature as N. Most of the objects we study
can be associated with some n ∈ ω called a “code number” or “Gödel
number.” We can think of operations on these objects as being presented
by a corresponding function on these numbers and our functions will have
domain and range contained in ω.

Uppercase Latin letters A, B, C, D and X, Y , Z normally represent
subsets of ω = {0, 1, 2, 3, . . . } with the usual set operations A ∪ B, A ∩ B;
|A|, or card(A) denotes the cardinality of A; max(A) denotes the maximum
element x ∈ A if A is finite; A ⊆ B denotes that A is a subset of B, and
A ⊂ B that it is a proper subset; A − B denotes the set of elements in A
but not in B; A = ω −A, the complement of A; AtB denotes the disjoint
union, i.e., A ∪ B provided that A ∩ B = ∅ ; the symmetric difference is
A∆B = (A−B) ∪ (B −A); a, b, c, . . .x, y, z, . . . represent integers in ω;
A×B is the Cartesian product of A and B, the set of ordered pairs (x, y)
such that x ∈ A and y ∈ B; 〈x, y〉 is the integer that is the image of the
pair (x, y) under the standard pairing function from ω×ω onto ω; A ⊆∗ B
denotes that |A−B| <∞; A =∗ B denotes that A∆B is finite; A ⊂∞ B
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denotes that |B − A| = ∞. Given a simultaneous enumeration (see p. 46)
of A and B let A \ B denote the set of elements enumerated in A before B
and A ↘ B = (A \ B) ∩ B, the set of elements appearing in A and later
in B.

Logical Notation

We form predicates with the usual notation of logic where &, ∨, ¬, =⇒, ∃,
∀ denote respectively, and, or, not, implies, there exists, for all; (µx)R(x)
denotes the least x such that R(x) if it exists, and is undefined otherwise;
(∃∞x) denotes “there exist infinitely many x,” and (∀∞x) denotes “for
almost all x” as in Definition 3.5.1. These quantifiers are dual to each other.
The latter is written (∃x0)(∀x ≥ x0). We use x, y, z < w to abbreviate
x < w, y < w, and z < w. In a partially ordered set we let x | y denote
that x and y are incomparable, i.e., x 6≤ y and y 6≤ x. We often use the dot
convention to abbreviate brackets before and after the principal connective
of a logical expression. For example, if α and β are well-formed formulas,
then α . =⇒ . β abbreviates [ α ] =⇒ [ β ]. The algorithm is to
insert a right bracket just before =⇒ and then a matching left bracket
just before the first symbol in α. Do the corresponding algorithm for β.
The dots increase readability of a long expression. TFAE abbreviates “The
following are equivalent.”

We use the usual Church lambda notation for defining partial functions.
Suppose [. . . x . . .] is an expression such that for any integer x the expres-
sion has at most one corresponding value y. Then λx [. . . x . . .] denotes the
associated partial function θ(x) = y, for example λx [x2 ]. The expression
λx [ ↑ ] denotes the partial function which is undefined for all arguments.
We also use the lambda notation for partial functions of k variables, writ-
ing λx1x2 . . . xk in place of λx. An expression such as λx y [x+ y ], denotes
addition as a function of x and y. However, λx [x + y ] indicates that the
expression is viewed as a function of x with y as a parameter, such as
λx [x+ 2]. One advantage is that with an expression of several arguments,
such as in the s-n-m Theorem 1.5.5 (Parameter Theorem) we can make
clear which arguments are variables and which are parameters, for exam-
ple as explained in Remark 1.5.6. Define f(x) = 1 .− x to be 1 if x = 0
and 0 if x ≥ 1. We call this the monus function. It produces a 0-1 valued
function f(x) 6= x.

Lattices and Boolean Algebras

A lattice L = (L;≤,∨,∧) is a partially ordered set (poset) in which any
two elements a and b have a least upper bound (lub) a ∨ b and greatest
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lower bound (glb) a ∧ b. An upper semi-lattice has lub only. For example,
the Turing degrees under Turing reducibility form an upper semi-lattice.
If L contains a least element and greatest element these are called the
zero element 0 and unit element 1, respectively. In such a lattice a is the
complement of b if a ∨ b = 1 and a ∧ b = 0, and L forms a Boolean algebra
if every element has a complement. A nonempty subset I ⊆ L forms an
ideal I = (I;≤,∧,∨) of L if I satisfies the conditions:

(1) [a ∈ L & a ≤ b ∈ I] =⇒ a ∈ I, and

(2) [a ∈ I & b ∈ I] =⇒ a ∨ b ∈ I.

A filter F ⊂ L satisfies the dual conditions. For example, the subsets of ω
form a Boolean algebra with the finite sets as an ideal and the cofinite sets
as a filter.

Notation for Strings and Functionals

We let 2<ω denote the set of all finite sequences of 0’s and 1’s called strings
and denoted by σ, ρ, and τ. Let 2ω denote the set of all functions f from ω
to 2 = {0, 1}, and ωω the set of all functions f from ω to ω. The integers
n ∈ ω are type 0 objects, (partial) functions f ∈ 2ω or subsets A ⊆ ω
(which are identified with their characteristic function χ

A
∈ 2ω) are type

1 objects, a (partial) functional Ψ is a map from type 1 objects to type 1
objects, i.e., a map from 2ω to 2ω and is called a type 2 object. Identifying
a set A with its characteristic function χ

A
we often write A(x) for χ

A
(x).

Uppercase Latin letters A, B, C, . . . , represent subsets of ω. Script letters
A, B, C represent subsets of 2ω and are called classes to distinguish them
from sets.

Gödel Numbering of Finite Objects

In his Incompleteness Theorem [1931] Gödel introduced the method of
assigning a code number or Gödel number to every formal (syntactical)
object such as a formula, proof, and so on. We now present two ways to
effectively code a sequence of n-tuples of integers {a1, a2, . . . an}, define

(1) a = pa1+1
1 pa2+1

2 . . . pak+1
k

where pi is the ith prime number. Given a we can effectively recover the
prime power (a)i = ai + 1. This coding is injective but not surjective on ω.

The second method uses the following standard pairing function and
has the added advantage that the n-tuple coding below is an injective and
surjective map from ω onto ωn.

Notation
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Standard Pairing Function

(i) Let 〈x, y〉 denote the integer that is the image of the ordered pair (x, y)
under the standard pairing function 1

2 (x2 + 2xy + y2 + 3x + y) which is
a 1:1 computable function from ω × ω onto ω. Let π1 and π2 denote the
inverse pairing functions π1(〈x, y〉) = x, and π2(〈x, y〉) = y.

(ii) Let 〈x1, x2, x3〉 denote 〈〈x1, x2〉, x3〉. Let the n-ary pairing function be

(2) 〈x1, x2, . . . , xn〉 = 〈· · · 〈〈x1, x2〉, x3〉, . . . , xn〉.

(All these functions are clearly computable and even primitive recursive.)
If the sequences are all of fixed length n we may use method 2, the n-ary

pairing function of (2),

(3) f(a1, a2, . . . an) = 〈a1, a2, . . . an〉

Otherwise, we use the first method above of coding using prime powers.
There are many other coding algorithms. The important point for coding
is that the method be effective and invertible, but it is often useful to have
it surjective as well.

Note that both methods are effectively invertible. Let θ be any 1:1 com-
putable partial function. Then θ is effectively invertible on its range. Just
enumerate the pairs (u, v) with θ(u) = v until, if ever, a pair (x, y) is found
and then define ψ(y) = x. See also the Definition 2.1.7 of graph(θ) and the
Uniformization Theorem 2.1.8.

Effective Numbering of Finite Sets and Strings

Given a finite set F = {x1, x2, . . . xk} where x1 < x2 . . . xk we give F the
(strong) index y = 2x1 + 2x2 . . .+ 2xk and write that Dy = F . LetD0 = ∅.
Likewise, give every string σ ∈ 2ω an effective index from using either the
strong index coding or Gödel numbering so that from the index we can
recover the length k = |σ| and every component σ(i), for i < k. Such a
numbering of strings σz is given in Definition 2.3.6.

Partial Computable (P.C.) Functions

Let {Pe}e∈ω be an effective numbering of all Turing machine programs (as
in Definition 1.5.1). We write ϕe(x) = y if program Pe with input x halts
and yields output y, in which case we say that ϕe(x) converges (written
ϕe(x) ↓ ), and otherwise ϕe(x) diverges (written ϕe(x) ↑ ); {ϕe}e∈ω is an
effective listing of all partial computable (p.c.) functions; the domain and
range of ϕe are denoted by dom(ϕe) and rng(ϕe). A set A is computably
enumerable (c.e.) if it can be effectively listed, i.e., if A = dom(ϕe) for
some e.
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If dom(ϕe) = ω then ϕe is a total computable function (abbreviated
computable function); we let f , g, h, . . . denote total functions; f ◦ g or fg
denotes the composition of functions, applying first g to an argument x
and then applying f to g(x). Let f � x denote the restriction to elements
y < x and f �� x the restriction to elements y ≤ x.

Turing Functionals ΦA
e

Let {P̃e}e∈ω be an effective numbering of all Turing machine oracle pro-
grams, finite sets of sextuples defined in §3.2.1. Write ΦAe (x) = y if oracle

program P̃e with A on its oracle tape and input x halts and yields out-
put y. Let the use function ϕAe (x) be the greatest element z for which the
computation scanned the square A(z) on the oracle tape. We regard Φe
as a (partial) functional (type 2 object) from 2ω to 2ω mapping A to B if
ΦAe = B.

The use function ϕAe (x) has an exponent A to distinguish from the p.c.
function ϕ(x). They usually come in matched pairs, ΨA(x) and ψA(x),
ΘA(x) and θA(x), where the lowercase function denotes the use function
corresponding to the uppercase functional. See Definition 3.2.2 (vi) for a
function f as oracle in place of the set A.

Lachlan Notation

When E(As, xs, ys, . . .) is an expression with a number of arguments
subscripted by s denoting their value at stage s, Lachlan introduced the no-
tation E(A, x, y, . . .)[ s ] to denote the evaluation of E where all arguments
are taken with their values at the end of stage s.

(4) ΦAe (x) [ s ] denotes ΦAs
e,s (xs) and ϕAe (x) [ s ] denotes ϕAs

e,s(xs).

This Lachlan notation has become very popular and is now used in most
papers and books.

Notation
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