
 More information about this series at http://www.springer.com/series/8819

Theory and Applications of Computability

In cooperation with the association Computability in Europe

Series Editors
Prof. P. Bonizzoni
Università degli Studi di Milano-Bicocca
Dipartimento di Informatica Sistemistica e Comunicazione (DISCo)
Milan
Italy
bonizzoni@disco.unimib.it

Prof. V. Brattka
Universit der Bundeswehr München

vasco.brattka@unibw.de

Prof. P. Panangaden

ät
Fakultät für Informatik
Neubiberg
Germany

Prof. E. Mayordomo
Universidad de Zaragoza
Departamento de Informática e Ingeniería de Sistemas
Zaragoza
Spain
elvira@unizar.es

McGill University
School of Computer Science
Montr alé

prakash@cs.mcgill.ca
Canada

Founding Editors: P. Bonizzoni, V. Brattka, S.B. Cooper, E. Mayordomo

mailto:bonizzoni@disco.unimib.it
mailto:vasco.brattka@unibw.de
mailto:elvira@unizar.es
mailto:prakash@cs.mcgill.ca
http://www.springer.com/series/8819

Books published in this series will be of interest to the research community and
graduate students, with a unique focus on issues of computability. The perspective
of the series is multidisciplinary, recapturing the spirit of Turing by linking theoretical
and real-world concerns from computer science, mathematics, biology, physics,
and the philosophy of science.

The series includes research monographs, advanced and graduate texts, and books
that offer an original and informative view of computability and computational
paradigms.

Series Advisory Board

Samson Abramsky, University of Oxford
Eric Allender Rutgers, The State University of New Jersey
Klaus Ambos-Spies, Universität Heidelberg

Jeremy Avigad, Carnegie Mellon University
Samuel R. Buss, University of California, San Diego
Rodney G. Downey, Victoria University of Wellington
Sergei S. Goncharov, Novosibirsk State University
Peter Jeavons, University of Oxford
Nataša Jonoska, University of South Florida, Tampa
Ulrich Kohlenbach, Technische Universität Darmstadt
Ming Li, University of Waterloo
Wolfgang Maass, Technische Universität Graz
Grzegorz Rozenberg, Leiden University and University of Colorado, Boulder
Alan Selman, University at Buffalo, The State University of New York
Wilfried Sieg, Carnegie Mellon University
Jan van Leeuwen, Universiteit Utrecht
Klaus Weihrauch, FernUniversität Hagen
Philip Welch, University of Bristol

Giorgio Ausiello, Università di Roma, “La Sapienza”

,

Robert I. Soare

Theory and Applications

Turing Computability

Robert I. Soare
Department of Mathematics
The University of Chicago
Chicago, Illinois, USA

03Dxx (Computability and recursion theory).

ISSN 2190-619X ISSN 2190-6203 (electronic)
Theory and Applications of Computability
ISBN 978-3-642-31932-7 ISBN 978-3-642-31933-4 (eBook)
DOI 10.1007/978-3-642-31933-4

Library of Congress Control Number:

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Cover illustration: Damir Dzhafarov designed the image of the Turing machine used in the book
cover.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

2016944469

I dedicate this book to my wife, Pegeen.

Contents

I Foundations of Computability 1

1 Defining Computability 3
1.1 Algorithmically Computable Functions 3

1.1.1 Algorithms in Mathematics 3
1.1.2 The Obstacle of Diagonalization and Partial Func-

tions . 4
1.1.3 The Quest for a Characterization 5
1.1.4 Turing’s Breakthrough 5

1.2 ?? Turing Defines Effectively Calculable 6
1.3 ?? Turing’s Thesis, Turing’s Theorem, TT 7
1.4 ?? Turing Machines . 7

1.4.1 Exercises on Turing Machines 9
1.5 ?? The Basic Results . 10

1.5.1 Numbering Turing Programs Pe 10
1.5.2 Numbering Turing Computations 10
1.5.3 The Enumeration Theorem and Universal Machine 11
1.5.4 The Parameter Theorem or s-m-n Theorem . . . 12

1.6 ?? Unsolvable Problems 13
1.6.1 Computably Enumerable Sets 13
1.6.2 Noncomputable C.E. Sets 13
1.6.3 The Index Set Theorem and Rice’s Theorem . . . 16
1.6.4 Computable Approximations to Computations . . 17

vii

viii Contents

1.6.5 Exercises . 18
1.7 ? Computable Permutations and Isomorphisms 19

1.7.1 Myhill Isomorphism Theorem 20
1.7.2 Acceptable Numberings 21
1.7.3 Exercises . 21

2 Computably Enumerable Sets 23
2.1 ?? Characterizations of C.E. Sets 23

2.1.1 The Σ0
1 Normal Form for C.E. Sets 23

2.1.2 The Uniformization Theorem 25
2.1.3 The Listing Theorem for C.E. Sets 26
2.1.4 The C.E. and Computable Sets as Lattices 26
2.1.5 Exercises . 27

2.2 ? Recursion Theorem (Fixed Point Theorem) 28
2.2.1 Fixed Points in Mathematics 28
2.2.2 Operating on Indices 28
2.2.3 ?? A Direct Proof of the Recursion Theorem . . . 29
2.2.4 A Diagonal Argument Which Fails 29
2.2.5 Informal Applications of the Recursion Theorem . 31
2.2.6 Other Properties of the Recursion Theorem . . . 31
2.2.7 Exercises . 32

2.3 Indexing Finite and Computable Sets 33
2.3.1 Computable Sets and ∆0 and ∆1 Indices 33
2.3.2 Canonical Index y for Finite Set Dy and String σy 34
2.3.3 Acceptable Numberings of Partial Computable Func-

tions . 35
2.3.4 Exercises . 37

2.4 ? Complete Sets and Creative Sets 38
2.4.1 Productive Sets 38
2.4.2 ?? Creative Sets Are Complete 39
2.4.3 Exercises . 40

2.5 ?? Elementary Lachlan Games 43
2.5.1 The Definition of a Lachlan Game 43
2.5.2 Playing Partial Computable (P.C.) Functions . . 44
2.5.3 Some Easy Examples of Lachlan Games 44
2.5.4 Practicing Lachlan Games 45
2.5.5 The Significance of Lachlan Games 45
2.5.6 Exercises on Lachlan Games 45

2.6 � The Order of Enumeration of C.E. Sets 46
2.6.1 Uniform Sequences and Simultaneous Enumerations 46
2.6.2 Static and Dynamic Properties of C.E. Sets . . . 47
2.6.3 Exercises . 48

2.7 � The Friedberg Splitting Theorem 49
2.7.1 The Priority Ordering of Requirements 49
2.7.2 Exercises . 50

Contents ix

3 Turing Reducibility 51
3.1 The Concept of Relative Computability 51

3.1.1 Turing Suggests Oracle Machines (o-Machines) . 51
3.1.2 Post Develops Relative Computability 51

3.2 ?? Turing Computability 52
3.2.1 An o-Machine Model for Relative Computability 52
3.2.2 Turing Computable Functionals Φe 53

3.3 ? Oracle Graphs of Turing Functional Φe 54
3.3.1 The Prefix-Free Graph Fe of Functional Φe . . . 54
3.3.2 The Oracle Graph Ge of Functional Φe 56
3.3.3 The Use Principle for Turing Functionals 57
3.3.4 Permitting Constructions 57
3.3.5 Lachlan Notation for Approximation by Stages . 57
3.3.6 Standard Theorems Relativized to A 58
3.3.7 Exercises . 59

3.4 ? Turing Degrees and the Jump Operator 60
3.4.1 The Structure of the Turing Degrees 60
3.4.2 The Jump Theorem 61
3.4.3 Exercises . 62

3.5 ? Limit Computable Sets and Domination 63
3.5.1 Domination and Quantifiers (∀∞ x) and (∃∞x) . 64
3.5.2 Uniformly Computable Sequences 64
3.5.3 Limit Computable Sets 65
3.5.4 Exercises . 66

3.6 ?? The Limit Lemma . 66
3.6.1 The Modulus Lemma for C.E. Sets 68
3.6.2 The Ovals of Σ1 and ∆2 Degrees 69
3.6.3 Reaching With the Jump: Low and High Sets . . 69
3.6.4 Exercises . 70

3.7 ? Trees and the Low Basis Theorem 71
3.7.1 Notation for Trees 71
3.7.2 ? The Low Basis Theorem for Π0

1 Classes 71
3.7.3 Exercises . 72

3.8 Bounded Reducibilities and n-C.E. Sets 73
3.8.1 A Matrix Mx for Bounded Reducibilities 73
3.8.2 Bounded Turing Reducibility 73
3.8.3 Truth-Table Reductions 74
3.8.4 Difference of C.E., n-c.e., and ω-c.e. Sets 75
3.8.5 Exercises . 77

4 The Arithmetical Hierarchy 79
4.1 Levels in the Arithmetical Hierarchy 79

4.1.1 Quantifier Manipulation 80
4.1.2 Placing a Set in Σn or Πn 82
4.1.3 Exercises . 83

x Contents

4.2 ?? Post’s Theorem and the Hierarchy Theorem 83
4.2.1 Post’s Theorem Relating Σn to ∅(n) 84
4.2.2 Exercises . 85

4.3 ? Σn-Complete Sets and Πn-Complete Sets 86
4.3.1 Classifying Σ2 and Π2 Sets: Fin, Inf, and Tot . . 86
4.3.2 Constructions with Movable Markers 87
4.3.3 Classifying Cof as Σ3-Complete 87
4.3.4 Classifying Rec as Σ3-Complete 88
4.3.5 Σ3-Representation Theorems 89
4.3.6 Exercises . 91

4.4 Relativized Hierarchy: Lown and Highn Sets 91
4.4.1 Relativized Post’s Theorem 92
4.4.2 Lown and Highn Sets 92
4.4.3 Common Jump Classes of Degrees 93
4.4.4 Syntactic Properties of Highn and Lown Sets . . 93
4.4.5 Exercises . 94

4.5 ? Domination and Escaping Domination 94
4.5.1 Domination Properties 95
4.5.2 Martin’s High Domination Theorem 96
4.5.3 Exercises . 97

4.6 Characterizing Nonlow2 Sets A ≤T ∅′ 98
4.6.1 Exercises . 98

4.7 Domination, Escape, and Classes of Degrees 99
4.8 Uniform Enumerations of Functions and Sets 99

4.8.1 Limits of Functions 100
4.8.2 A-uniform Enumeration of the Computable Func-

tions . 100
4.9 � Characterizing Low2 Sets A ≤T ∅′ 102

4.9.1 Exercises . 103

5 Classifying C.E. Sets 107
5.1 ? Degrees of Computably Enumerable Sets 107

5.1.1 Post’s Problem and Post’s Program 107
5.1.2 Dynamic Turing Reductions on C.E. Sets 108

5.2 ? Simple Sets and the Permitting Method 108
5.2.1 Post’s Simple Set Construction 109
5.2.2 The Canonical Simple Set Construction 110
5.2.3 Domination and a Complete Simple Set 111
5.2.4 Simple Permitting and Simple Sets 111
5.2.5 Permitting as a Game 112
5.2.6 Exercises . 113

5.3 ? Hypersimple Sets and Dominating Functions 113
5.3.1 Weak and Strong Arrays of Finite Sets 113
5.3.2 Dominating Functions and Hyperimmune Sets . . 114
5.3.3 Degrees of Hypersimple Sets and Dekker’s Theorem 115

Contents xi

5.3.4 Exercises . 116
5.4 ? The Arslanov Completeness Criterion 117

5.4.1 Effectively Simple Sets Are Complete 117
5.4.2 Arslanov’s Completeness Criterion for C.E. Sets . 118
5.4.3 Exercises . 119

5.5 � More General Permitting 122
5.5.1 Standard and General Permitting 122
5.5.2 Reverse Permitting 123
5.5.3 Building a Turing Functional ΘC = A 123

5.6 � Hyperimmune-Free Degrees 124
5.6.1 Two Downward Closure Properties of Domination 124
5.6.2 ∆2 Degrees Are Hyperimmune 125
5.6.3 Σ2 Approximations and Domination 127

5.7 Historical Remarks and Research References 127
5.7.1 � ∆2-Permitting 128

6 Oracle Constructions and Forcing 131
6.1 ? Kleene-Post Finite Extensions 131

6.1.1 Exercises . 133
6.2 Minimal Pairs and Avoiding Cones 134

6.2.1 Exercises . 136
6.3 ? Generic Sets . 137

6.3.1 1-Generic Sets . 137
6.3.2 Forcing the Jump 137
6.3.3 Doing Many Constructions at Once 138
6.3.4 Exercises . 138

6.4 ? Inverting the Jump . 139
6.4.1 Exercises . 141

6.5 Upper and Lower Bounds for Degrees 141
6.5.1 Exercises . 144

7 The Finite Injury Method 147
7.1 A Solution to Post’s Problem 147

7.1.1 The Intuition Behind Finite Injury 147
7.1.2 The Injury Set for Requirement Ne 148

7.2 ? Low Simple Sets . 149
7.2.1 The Requirements for a Low Simple Set A 149
7.2.2 A Computablê g(e, s) with g(e) = limŝ g(e, s) =

A′(e) . 150
7.2.3 The Construction of a Low Simple Set A 150
7.2.4 The Verification of a Low Simple Set A 151
7.2.5 The Restraint Functions r(e, s) as Walls 151
7.2.6 Exercises . 152

7.3 ? The Friedberg-Muchnik Theorem 152
7.3.1 Renumbering the Requirements 152

xii Contents

7.3.2 The Basic Module to Meet Re for e Even 153
7.3.3 The Full Construction 153
7.3.4 The Verification 154
7.3.5 Exercises . 154

7.4 ? Preservation Strategy to Avoid Upper Cones 156
7.4.1 The Notation . 156
7.4.2 The Basic Module for Requirement Ne 156
7.4.3 The Construction of A 158
7.4.4 The Verification 158

7.5 Sacks Splitting Theorem 158
7.6 Avoiding the Cone Above a ∆2 Set C >T 0 161

7.6.1 Exercises . 161

II Trees and Π0
1 Classes 163

8 Open and Closed Classes 165
8.1 Open Classes in Cantor Space 165
8.2 Closed Classes in Cantor Space 166
8.3 The Compactness Theorem 168
8.4 Notation for Trees . 168
8.5 Effective Compactness Theorem 169
8.6 Dense Open Subsets of Cantor Space 170
8.7 Exercises . 171

9 Basis Theorems 175
9.1 Bases and Nonbases for Π0

1-Classes 175
9.2 Previous Basis Theorems for Π0

1-Classes 176
9.3 Nonbasis Theorems for Π0

1-Classes 176
9.4 The Super Low Basis Theorem (SLBT) 177
9.5 The Computably Dominated Basis Theorem 178
9.6 Low Antibasis Theorem 179
9.7 Proper Lown Basis Theorem 181

10 Peano Arithmetic and Π0
1-Classes 183

10.1 Logical Background . 183
10.2 Π0

1 Classes and Completions of Theories 184
10.3 Equivalent Properties of PA Degrees 185

11 Randomness and Π0
1-Classes 189

11.1 Martin-Löf Randomness 189
11.2 A Π0

1 Class of ML-Randoms 190
11.3 Π0

1 Classes and Measure 191
11.4 Randomness and Computable Domination 192

Contents xiii

III Minimal Degrees 195

12 Minimal Degrees Below ∅′′ 197
12.1 Function Trees and e-Splitting Strings 197
12.2 The e-Splitting Lemmas 199
12.3 The Splitting Procedure 200
12.4 The Basic Module for Minimality 201
12.5 A Minimal Degree Below a ∅′′-Oracle 201
12.6 Exercises . 202

13 Minimal Degrees Below ∅′ 203
13.1 The Sacks Minimal Degree a < 0′ 203
13.2 The Basic Module for One Requirement Re 203
13.3 Putting the Strategies Together 204
13.4 A Subtle Point . 205
13.5 Constructing A to Meet Requirements {Re}e∈ω 205
13.6 A Limit Computable Minimal Degree 206

13.6.1 Meeting a Single Requirement Re 207
13.7 A Minimal Degree Below a Nonzero C.E. Degree 207

IV Games in Computability Theory 209

14 Banach-Mazur Games 211
14.1 Banach-Mazur Games and Baire Category 211

14.1.1 Meager and Comeager Sets 211
14.1.2 The Baire Category Theorem 212
14.1.3 Banach-Mazur Games 212
14.1.4 Exercises . 213

14.2 The Finite Extension Paradigm 214
14.2.1 Finite Extension Games 215
14.2.2 Exercises . 215

15 Gale-Stewart Games 217
15.1 Gale-Stewart Games and Open Games 217

15.1.1 Exercises . 218
15.1.2 Remarks on the Axiom of Determinacy 219

16 More Lachlan Games 221
16.1 Increasingly Complicated Constructions 221
16.2 Lachlan Games in Computability Theory 222

16.2.1 Playing Turing Reductions 222
16.3 Some Easy Examples of Lachlan Games 223

16.3.1 Theorem 5.2.3: Post’s Simple Set 223
16.3.2 Theorem 5.2.7: Permitting a Simple Set A ≤T C 223

xiv Contents

16.3.3 Theorem 7.4.1: A Simple Set A 6≥T C 223
16.3.4 Friedberg-Muchnik Theorem 7.3.1 224

V History of Computability 225

17 History of Computability 227
17.1 Hilbert’s Programs . 227
17.2 Gödel, Church, and Recursive Functions 228

17.2.1 The Concept of Recursion 229
17.2.2 The Primitive Recursive Functions 229
17.2.3 Nonprimitive Recursive Functions 231
17.2.4 Herbrand-Gödel Recursive Functions 232
17.2.5 Kleene’s µ-Recursive Functions 233
17.2.6 Gödel Remained Unconvinced 234

17.3 Turing’s Analysis . 235
17.3.1 Turing’s Discovery 235
17.3.2 Gödel Accepts Turing’s Analysis 236
17.3.3 Turing’s Thesis: Definition or Theorem 236
17.3.4 Turing’s Demonstration of Turing’s Thesis 237

17.4 Turing’s Oracle Machine (o-Machine) 238
17.4.1 An Extraordinary but Almost Incidental Discovery 238
17.4.2 Turing’s Use of Oracle Machines 239
17.4.3 Kleene’s Definition of “General Recursive In” . . 240

17.5 Emil Post’s Contributions 241
17.5.1 Post Production Systems 242
17.5.2 Post Considered the Complete Set K 242
17.5.3 Post Defined Relative Computability 243
17.5.4 Developing the Turing Jump 244

17.6 Finite Injury Priority Arguments 245
17.7 Computability and Recursion Terminology 245

17.7.1 Gödel Rejects Term “Recursive Function Theory” 246
17.7.2 Changing “Recursive” Back to “Inductive” 247

17.8 Additional References . 247

References 251

Preface

The title of this book, The Art of Turing Computability: Theory and Ap-
plications, emphasizes three very important concepts: (1) computability
(effective calculability); (2) Turing or classical computability in the sense of
Turing and Post; and (3) the art of computability: as a skill to be practiced,
but also emphasizing an esthetic sense of beauty and taste in mathematics.

The Art of Classical Computability

Mathematics is an art as well as a science. We use the word “art” in two
senses. First “art” means a skill or craft which can be acquired and im-
proved by practice. For example, Donald Knuth wrote The Art of Computer
Programming, a comprehensive monograph in several volumes on program-
ming algorithms and their analysis. Similarly, the present book is intended
to be a comprehensive treatment of the craft of computability in the sense of
knowledge, skill in solving problems, and presenting the solution in the most
comprehensible, elegant form. The sections have been rewritten over and
over in response to comments by hundreds of readers about what was clear
and what was not, so as to achieve the most elegant and easily understood
presentation.

However, in a larger sense this book is intended to develop the art of
computability as an artistic endeavor, and with appreciation of its math-
ematical beauty. It is not enough to state a valid theorem with a correct
proof. We must see a sense of beauty in how it relates to what came before,

xvii

xviii Preface

what will come after, the definitions, why it is the right theorem, with the
right proof, in the right place.

One of the most famous art treasures is Michelangelo’s statue of David
displayed in the Accademia Gallery in Florence. The long aisle to approach
the statue is flanked with the statues of Michelangelo’s unfinished slaves
struggling as if to emerge from the block of marble. There are practically
no details, and yet they possess a weight and power beyond their physical
proportions. Michelangelo thought of himself, not as carving a statue, but
as seeing the figure within the marble and then chipping away the marble
to release it. The unfinished slaves are perhaps a more revealing example
of this talent than the finished statue of David.

Similarly, it was Alan Turing in 1936 and 1939 who saw the figure of
computability in the marble more clearly than anyone else. Finding a for-
mal definition for effectively calculable functions was the first step, but
demonstrating that it captured computability was as much an artistic
achievement as a purely mathematical one. Gödel himself had expressed
doubt that it would be possible to do so. The other researchers thought
in terms of mathematical formalisms like recursive functions, λ-definable
functions, and arithmetization of syntax. It was Turing who saw the com-
puter itself in the marble, a simple intuitive device equipped with only a
finite program and using only a finite sequence of strokes at each stage in a
finite computation, the vision closest to our modern computer. Even more
remarkable, Turing saw how to explicitly demonstrate that this mechani-
cal device captured all effectively calculable processes. Gödel immediately
recognized this achievement in Turing and in no one else.

The first aim of this book is to present the craft of computability, but
the second and more important goal is to teach the reader to see the figure
inside the block of marble. It is to allow the reader to understand the nature
of a computable process, of a set which can be computably enumerated, of
the process by which one set B is computed relative to another set A, of a
method by which we measure the information content of a set, an algebraic
structure, or a model, and how we approximate these concepts at a finite
stage in a computable process.

The Great Papers of Computability

During the 1930’s, educators suggested that college students should read
the great books of Western culture in the original. At the University of
Chicago the principal proponents were President Robert Maynard Hutchins
and his colleague Professor Mortimer Adler. The curriculum relied on pri-
mary sources as much as possible and a discussion under the supervision
of a professor. For decades the Great Books Program became a hallmark
of a University of Chicago education.

xix

In the first two decades of Computability Theory from 1930 to 1950 the
primary sources were papers not books. Most were reprinted in the book by
Martin Davis [1965] The Undecidable: Basic Papers on Undecidable Propo-
sitions, Unsolvable Problems, and Computable Functions. Of course, all of
these papers are important, shaped the subject, and should be read by the
serious scholar. However, many of these papers are written in a compli-
cated mathematical style which is difficult for a beginner to comprehend.
Nevertheless, at least two of these papers are of fundamental importance
and are easily accessible to a beginning student. My criteria for selecting
these papers are the following.

1. The paper must have introduced and developed a topic of fundamen-
tal importance to computability.

2. The topic and its development must be as important today as then.

3. The paper must be written in a clear, informal style, so appealing
that any beginning student will enjoy reading it.

There are two papers in computability which meet these criteria.

Turing’s 1936 Paper, Especially §9
Turing’s 1936 paper is probably the single most important paper in com-
putability. It introduces the Turing machine, the universal machine, and
demonstrates the existence of undecidable problems. It is most often used
in mathematics and computer science to define computable functions. It is
perhaps Turing’s best known and most influential paper.

I am especially recommending Turing The Extent of the Computable
Numbers, §9, pp. 249–254 in Turing’s 1936 paper. Here Turing gives a
demonstration that the numbers computable by a Turing machine “in-
clude all numbers which would naturally be regarded as computable.” This
is a brilliant demonstration and is necessary for the argument. Without it
we do not know that we have diagonalized against all potential decidable
procedures and therefore we have no undecidable problems. Books on com-
putability rarely give this demonstration even though it is critical, perhaps
because of its nonmathematical nature. Every student of computability
should read this very short section.

Post’s 1944 Paper, Especially §11

Turing’s 1939 paper very briefly introduced the notion of an “oracle ma-
chine,” a Turing machine which could consult an oracle tape (database),
but he did not develop the idea. In his paper Recursively Enumerable
Sets of Positive Integers and Their Decision Problems, Emil Post in 1944
developed two crucial ideas, the structure and information content of com-

Preface

xx Preface

putably enumerable (c.e.) sets, and the idea of a set B being reducible to
another set A.

Turing never thought of his oracle machine as a device for reducing one
set to another. It was simply a local machine interacting with an external
database as today a laptop might query the Internet. Post was the first to
turn the oracle machines into a reducibility of a set B to a set A, written
B ≤T A, which Post generously called Turing reducibility. Post’s entire pa-
per is wonderfully written and easily accessible to a beginner. He begins
with simpler reducibilities such as many-one reducibility and truth-table
reducibility and works up to Turing reducibility which was not understood
at the time.

The last section §11 General (Turing) Reducibility, is especially recom-
mended. Here Post explored informally the idea of a c.e. set B being Turing
reducible to another c.e. set A. For the next decade 1944–1954 Post contin-
ued to develop the notions of Turing reducibility and information content.
In 1948 Post introduced the idea of degrees of unsolvability, now called
Turing degrees, which are the key to measuring the information content of
a set or algebraic structure. Post gave his notes to Kleene before his death
in 1954. Kleene revised them and published the Kleene-Post 1954 paper,
introducing a finite forcing argument as in Chapter 6 to define Turing in-
comparable sets. These two notions, computability by Turing’s automatic
machine (a-machine) in 1936, and reducibility of one set B to another set A
in Turing’s 1939 paper and Post’s 1944 paper, are the two most important
ideas in computability theory. Therefore, these papers should be read by
anyone taking a course from this book.

Other excellent computability papers are reprinted in [Davis 1965], es-
pecially the Gödel Incompleteness Theorem in [Gödel 1931] with the
improvement by Rosser. Some of these papers may be difficult for a be-
ginner to read, but they will be more accessible after a first course in
computability. Gödel’s collected works can be found in the three volumes,
[Gödel 1986], [Gödel 1990], and [Gödel 1995].

Introduction

Turing Machines

A Turing machine (a-machine) is a kind of idealized typewriter with an
infinite tape and a reading head moving back and forth one cell at a time
(§1.4) according to a finite state program. In 1936 Turing demonstrated
convincingly that this mathematical model captured the informal notion
of effectively calculable. Turing’s model and analysis have been accepted
ever since as the most convincing model. It is the one on which we base
the results in this book.

Oracle Machines and Turing Reducibility

Immediately after this paper, Turing went to Princeton where he wrote a
PhD dissertation with Alonzo Church. The dissertation was mainly about
ordinal logics, a topic suggested by Church, but one page described an
oracle machine (o-machine) which is of the greatest importance in com-
putability theory. Turing’s oracle machine consisted of a Turing machine
connected to an “oracle” which it could query during the computation.
This is analogous to the modern model of a local server, such as a lap-
top computer, connected to a large database, such as the Internet which
contains too much information to be stored on the local server.

Turing’s oracle machine concept lay dormant for five years until Emil
Post’s extraordinary 1944 paper revived it, greatly expanded it, and cast
the subject in an informal, intuitive light. Post defined a set B to be Turing
reducible to a set A, written B ≤T A, if there is an oracle machine which

xxi

xxii Introduction

computes B when the characteristic function of A is written on the oracle
tape. The oracle machines include the ordinary machines because if a set B
is computed by an ordinary Turing machine, then it is computed by an ora-
cle machine with A = ∅ on the oracle tape. But the oracle machines do much
more. Turing reducibility is a crucial concept because in computablility the-
ory and applications we rarely prove results about computable functions on
computable sets. We compare noncomputable (undecidable) sets B and A
with respect to their relative information content. We say that sets A and
B are Turing equivalent, written A ≡T B if A ≤T B and B ≤T A, in which
case we view A and B as coding the same information. Turing reducibility
gives us a precise measure of the information they encode relative to other
sets and the Turing degrees (§3.4) are equivalence classes containing sets
with the same information content.

Computable Enumerable Sets

In 1936 Church and Kleene introduced the concept of a computably enu-
merable (c.e) set, also called a recursively enumerable (r.e.) set, as one
which can be effectively listed, such as the theorems in a formal system
like Peano arithmetic. In 1944 Post realized the importance of these sets in
many areas of mathematics, and Post devoted much attention to studying
their information content. His work on the structure of these sets and their
information content under stronger reducibilities has had a great influence
on the topics in this book.

Of the effective listing of c.e. sets, {We}e∈ω Post reminded us that the
Gödel diagonal set K = {e : e ∈ We} is c.e. and noncomputable. The
famous Post Problem was to determine whether there is only one such set
up to Turing degree.

Bounded Turing Reductions

At first, Post did not make much progress on the general case of Turing
reducibility. To progress toward it, he considered various stronger reducibil-
ities called bounded reducibilities. A Turing reduction ΦAe = B witnessing
B ≤T A is a bounded Turing reduction, written B ≤bT A, if there is a com-
putable function h(x) bounding the use function, namely ϕAe (x) ≤ h(x),
where the use function ϕAe (x) is the maximum element used (scanned)
during the computation.

For example, every c.e. set B is many-one reducible to K, B ≤m K by
a computable function f , i.e., x ∈ B iff f(x) ∈ K. Post introduced several
structural properties of a c.e. set B in an attempt to prove incompleteness.
For example, he proved that a K 6≤m B for a simple set B. The varieties of
simple and nonsimple sets he introduced and his various bounded reducibil-
ities had a profound effect on the subject for decades and led indirectly to
most of the results in this book.

xxiii

Finally Understanding Turing Reducibility

Post realized that the bounded reducibilities would not solve his problem.
It required a deeper understanding of Turing reducibility. His understand-
ing increased over the next decade from 1944 until his death in 1954. Post
introduced the notion of degree of unsolvability to collect into one equiv-
alence class sets coding the same information content. He wrote notes on
his work. As he became terminally ill in 1954, Post gave them to Kleene
who expanded them and published it as [Kleene and Post 1954]. This pa-
per was a fundamental advance toward solving Post’s problem and toward
understanding Turing reducibility. The key idea was the continuity of Tur-
ing functionals that if ΦAe (x) = y then Φσe (x) = y for some finite initial
segment σ ≺ A, and that if B � σ then ΦBe (x) = y also.

Using this, Kleene and Post constructed sets A and B computable in
K such that A 6≤T B and B 6≤T A. Hence, ∅ <T A <T K. This did not
explicitly solve Post’s Problem because the sets were not c.e., but Kleene
and Post divided the conditions into requirements of the form ΦAe 6= B,
which could be arranged in a priority list of order type ω and processed
one at a time using the Use Principle. This became the model for most
arguments in the subject. It became the key step in the later solution
of Post’s Problem by Friedberg in 1957 and Muchnik in 1956 since they
combined this strategy with a computable approximation stage by stage.
From these ideas emerged the understanding that a Turing functional Φe
is continuous as a map on Cantor space 2ω and is not only continuous but
effectively continuous because the inverse image of a basic open set is the
computable union of basic open sets.

Priority Arguments

The Kleene-Post construction had produced finite initial segments σ ≺ A
and τ ≺ B such that for some x, Φσe (x) 6= τ(x). Hence ΦAe (x) 6= B(x). To
make the sets A and B computably enumerable, Muchnik and Friedberg
had to abandon the K-oracle and computably enumerate the sets, letting
As be the finite set of elements enumerated in A by the end of stage s and
likewise for Bs. They attempted to preserve strings σ ≺ As and τ ≺ Bs
when it seemed to give Φσe (x) 6= τ(x). This action might later be injured
because action by a higher priority requirement forces σ 6≺ As+1 causing
this condition for e to begin all over again. These results led to much more
complicated infinite injury arguments.

Other Parts of This Book

The introduction so far explains the background and motivation for most of
Part I up to finite injury priority arguments in Chapter 7. For the summary

Introduction

xxiv Introduction

and motivation of the other parts see the next section about how to read
this book.

How to Read This Book

Part I: Foundations of Computability

The core of the subject is Part I, Chapters 1–7, from the definition of
Turing machines in Chapter 1 up to finite injury priority arguments in
Chapter 7. Traditionally, a beginning undergraduate or graduate course of
ten or fifteen weeks would go through the sections here one by one. Part I
has been streamlined, with more complicated chapters moved to later parts
in order to make this schedule feasible. After finishing Chapter 7 on finite
injury, the reader will have a firm grasp of the fundamental results and
methods of computability theory. One can also cover Part I more quickly
as an initial segment of an advanced computability course by concentrating
on the starred sections in Part I and then moving to other advanced topics.

Part II: Trees and Π0
1 Classes

A tree is a set of strings closed under initial segments and a Π0
1 class

is the set of paths through a computable binary tree. These classes play
an important role in model theory, extensions of Peano arithmetic, algo-
rithmic randomness, and other applications. We study open and closed
computable classes of reals, and basis and nonbasis theorems for Π0

1 classes.
We give a proof of the Superlow Basis Theorem, proved but not published,
by Jockusch and Soare about 1969. We also give a proof by Dzhafarov and
Soare of the Low Antibasis Theorem by Kent and Lewis. We show how Π0

1

xxv

xxvi How to Read This Book

classes and their basis theorems are related to models of Peano arithmetic,
with results by Jockusch and Soare, Scott, Shoenfield, and Solovay. Finally,
we relate Π0

1 classes to Martin-Löf randomness, computably dominated
(hyperimmune-free) degrees, and to computably traceable sets.

Part III: Minimal Degrees

A Turing degree a is minimal if a > 0 but there is no degree b such that
0 < b < a. In Chapter 12 we present Spector’s proof of a minimal degree
a < 0′′. The proof uses a forcing argument like those in Chapter 6 but with
more complicated forcing conditions of perfect trees instead of finite strings.
In Chapter 13 we present the Sacks construction of a minimal degree a < 0′.
This is an approximation to Spector’s method and uses a finite injury
priority argument. We also sketch a limit computable (full approximation)
construction of a minimal degree below 0′ using a computable construction.
It can also be done below any nonzero computably enumerable degree,
thereby producing a low minimal degree. Chapters 6 and 7 are the only
prerequisites for this material.

Part IV: Games in Computability Theory

Games are very important in understanding the nature of computability,
how to prove theorems, and how to solve problems. In Chapter 14 we
present the classical Banach-Mazur games which are closely related to the
finite extension constructions of Chapter 6, Sections 1–3, and may be read
simultaneously with them and with Chapter 8 on open and closed classes
in Cantor space. Players I and II alternately construct strings σ2n and
σ2n+1, jointly constructing a point f = ∪nσn in Cantor space 2ω. There is
a predetermined class A ⊆ 2ω. Player I wins the game according to whether
f ∈ A or not. Winning strategies are described in terms of properties of A.
We also discuss the Cantor-Bendixson rank of points in a closed subclass
A ⊆ 2ω.

In Chapter 15 we make a very brief excursion into Gale-Stewart games.
We consider the complexity of the winning strategy for a very simple
computable game.

We finish in Chapter 16 by returning to the topic of more Lachlan games,
first introduced in §2.5. These games are the principal tool in proving
theorems and solving problems in computability theory.

xxvii

Symbols Marking Importance and Difficulty

In Part I we use the following notation for sections, theorems, and exercises.

?? Most important.

? Very important.

No Marking Average importance.

� Skim or defer on a first reading until needed in a later chapter.

� Difficult exercise, do not assign lightly.

�� Very difficult exercise.

How to Read This Book

Notation

Notation will be defined when introduced. We now summarize the most
common notation and definitions.

Notation for Sets

The universe is the set of nonnegative integers ω = {0, 1, 2, 3, . . . } which
sometimes appears in the literature as N. Most of the objects we study
can be associated with some n ∈ ω called a “code number” or “Gödel
number.” We can think of operations on these objects as being presented
by a corresponding function on these numbers and our functions will have
domain and range contained in ω.

Uppercase Latin letters A, B, C, D and X, Y , Z normally represent
subsets of ω = {0, 1, 2, 3, . . . } with the usual set operations A ∪ B, A ∩ B;
|A|, or card(A) denotes the cardinality of A; max(A) denotes the maximum
element x ∈ A if A is finite; A ⊆ B denotes that A is a subset of B, and
A ⊂ B that it is a proper subset; A − B denotes the set of elements in A
but not in B; A = ω −A, the complement of A; AtB denotes the disjoint
union, i.e., A ∪ B provided that A ∩ B = ∅ ; the symmetric difference is
A∆B = (A−B) ∪ (B −A); a, b, c, . . .x, y, z, . . . represent integers in ω;
A×B is the Cartesian product of A and B, the set of ordered pairs (x, y)
such that x ∈ A and y ∈ B; 〈x, y〉 is the integer that is the image of the
pair (x, y) under the standard pairing function from ω×ω onto ω; A ⊆∗ B
denotes that |A−B| <∞; A =∗ B denotes that A∆B is finite; A ⊂∞ B

xxix

xxx Notation

denotes that |B − A| = ∞. Given a simultaneous enumeration (see p. 46)
of A and B let A \ B denote the set of elements enumerated in A before B
and A ↘ B = (A \ B) ∩ B, the set of elements appearing in A and later
in B.

Logical Notation

We form predicates with the usual notation of logic where &, ∨, ¬, =⇒, ∃,
∀ denote respectively, and, or, not, implies, there exists, for all; (µx)R(x)
denotes the least x such that R(x) if it exists, and is undefined otherwise;
(∃∞x) denotes “there exist infinitely many x,” and (∀∞x) denotes “for
almost all x” as in Definition 3.5.1. These quantifiers are dual to each other.
The latter is written (∃x0)(∀x ≥ x0). We use x, y, z < w to abbreviate
x < w, y < w, and z < w. In a partially ordered set we let x | y denote
that x and y are incomparable, i.e., x 6≤ y and y 6≤ x. We often use the dot
convention to abbreviate brackets before and after the principal connective
of a logical expression. For example, if α and β are well-formed formulas,
then α . =⇒ . β abbreviates [α] =⇒ [β]. The algorithm is to
insert a right bracket just before =⇒ and then a matching left bracket
just before the first symbol in α. Do the corresponding algorithm for β.
The dots increase readability of a long expression. TFAE abbreviates “The
following are equivalent.”

We use the usual Church lambda notation for defining partial functions.
Suppose [. . . x . . .] is an expression such that for any integer x the expres-
sion has at most one corresponding value y. Then λx [. . . x . . .] denotes the
associated partial function θ(x) = y, for example λx [x2]. The expression
λx [↑] denotes the partial function which is undefined for all arguments.
We also use the lambda notation for partial functions of k variables, writ-
ing λx1x2 . . . xk in place of λx. An expression such as λx y [x+ y], denotes
addition as a function of x and y. However, λx [x + y] indicates that the
expression is viewed as a function of x with y as a parameter, such as
λx [x+ 2]. One advantage is that with an expression of several arguments,
such as in the s-n-m Theorem 1.5.5 (Parameter Theorem) we can make
clear which arguments are variables and which are parameters, for exam-
ple as explained in Remark 1.5.6. Define f(x) = 1 .− x to be 1 if x = 0
and 0 if x ≥ 1. We call this the monus function. It produces a 0-1 valued
function f(x) 6= x.

Lattices and Boolean Algebras

A lattice L = (L;≤,∨,∧) is a partially ordered set (poset) in which any
two elements a and b have a least upper bound (lub) a ∨ b and greatest

xxxi

lower bound (glb) a ∧ b. An upper semi-lattice has lub only. For example,
the Turing degrees under Turing reducibility form an upper semi-lattice.
If L contains a least element and greatest element these are called the
zero element 0 and unit element 1, respectively. In such a lattice a is the
complement of b if a ∨ b = 1 and a ∧ b = 0, and L forms a Boolean algebra
if every element has a complement. A nonempty subset I ⊆ L forms an
ideal I = (I;≤,∧,∨) of L if I satisfies the conditions:

(1) [a ∈ L & a ≤ b ∈ I] =⇒ a ∈ I, and

(2) [a ∈ I & b ∈ I] =⇒ a ∨ b ∈ I.

A filter F ⊂ L satisfies the dual conditions. For example, the subsets of ω
form a Boolean algebra with the finite sets as an ideal and the cofinite sets
as a filter.

Notation for Strings and Functionals

We let 2<ω denote the set of all finite sequences of 0’s and 1’s called strings
and denoted by σ, ρ, and τ. Let 2ω denote the set of all functions f from ω
to 2 = {0, 1}, and ωω the set of all functions f from ω to ω. The integers
n ∈ ω are type 0 objects, (partial) functions f ∈ 2ω or subsets A ⊆ ω
(which are identified with their characteristic function χ

A
∈ 2ω) are type

1 objects, a (partial) functional Ψ is a map from type 1 objects to type 1
objects, i.e., a map from 2ω to 2ω and is called a type 2 object. Identifying
a set A with its characteristic function χ

A
we often write A(x) for χ

A
(x).

Uppercase Latin letters A, B, C, . . . , represent subsets of ω. Script letters
A, B, C represent subsets of 2ω and are called classes to distinguish them
from sets.

Gödel Numbering of Finite Objects

In his Incompleteness Theorem [1931] Gödel introduced the method of
assigning a code number or Gödel number to every formal (syntactical)
object such as a formula, proof, and so on. We now present two ways to
effectively code a sequence of n-tuples of integers {a1, a2, . . . an}, define

(1) a = pa1+1
1 pa2+1

2 . . . pak+1
k

where pi is the ith prime number. Given a we can effectively recover the
prime power (a)i = ai + 1. This coding is injective but not surjective on ω.

The second method uses the following standard pairing function and
has the added advantage that the n-tuple coding below is an injective and
surjective map from ω onto ωn.

Notation

xxxii Notation

Standard Pairing Function

(i) Let 〈x, y〉 denote the integer that is the image of the ordered pair (x, y)
under the standard pairing function 1

2 (x2 + 2xy + y2 + 3x + y) which is
a 1:1 computable function from ω × ω onto ω. Let π1 and π2 denote the
inverse pairing functions π1(〈x, y〉) = x, and π2(〈x, y〉) = y.

(ii) Let 〈x1, x2, x3〉 denote 〈〈x1, x2〉, x3〉. Let the n-ary pairing function be

(2) 〈x1, x2, . . . , xn〉 = 〈· · · 〈〈x1, x2〉, x3〉, . . . , xn〉.

(All these functions are clearly computable and even primitive recursive.)
If the sequences are all of fixed length n we may use method 2, the n-ary

pairing function of (2),

(3) f(a1, a2, . . . an) = 〈a1, a2, . . . an〉

Otherwise, we use the first method above of coding using prime powers.
There are many other coding algorithms. The important point for coding
is that the method be effective and invertible, but it is often useful to have
it surjective as well.

Note that both methods are effectively invertible. Let θ be any 1:1 com-
putable partial function. Then θ is effectively invertible on its range. Just
enumerate the pairs (u, v) with θ(u) = v until, if ever, a pair (x, y) is found
and then define ψ(y) = x. See also the Definition 2.1.7 of graph(θ) and the
Uniformization Theorem 2.1.8.

Effective Numbering of Finite Sets and Strings

Given a finite set F = {x1, x2, . . . xk} where x1 < x2 . . . xk we give F the
(strong) index y = 2x1 + 2x2 . . .+ 2xk and write that Dy = F . LetD0 = ∅.
Likewise, give every string σ ∈ 2ω an effective index from using either the
strong index coding or Gödel numbering so that from the index we can
recover the length k = |σ| and every component σ(i), for i < k. Such a
numbering of strings σz is given in Definition 2.3.6.

Partial Computable (P.C.) Functions

Let {Pe}e∈ω be an effective numbering of all Turing machine programs (as
in Definition 1.5.1). We write ϕe(x) = y if program Pe with input x halts
and yields output y, in which case we say that ϕe(x) converges (written
ϕe(x) ↓), and otherwise ϕe(x) diverges (written ϕe(x) ↑); {ϕe}e∈ω is an
effective listing of all partial computable (p.c.) functions; the domain and
range of ϕe are denoted by dom(ϕe) and rng(ϕe). A set A is computably
enumerable (c.e.) if it can be effectively listed, i.e., if A = dom(ϕe) for
some e.

xxxiii

If dom(ϕe) = ω then ϕe is a total computable function (abbreviated
computable function); we let f , g, h, . . . denote total functions; f ◦ g or fg
denotes the composition of functions, applying first g to an argument x
and then applying f to g(x). Let f � x denote the restriction to elements
y < x and f �� x the restriction to elements y ≤ x.

Turing Functionals ΦA
e

Let {P̃e}e∈ω be an effective numbering of all Turing machine oracle pro-
grams, finite sets of sextuples defined in §3.2.1. Write ΦAe (x) = y if oracle

program P̃e with A on its oracle tape and input x halts and yields out-
put y. Let the use function ϕAe (x) be the greatest element z for which the
computation scanned the square A(z) on the oracle tape. We regard Φe
as a (partial) functional (type 2 object) from 2ω to 2ω mapping A to B if
ΦAe = B.

The use function ϕAe (x) has an exponent A to distinguish from the p.c.
function ϕ(x). They usually come in matched pairs, ΨA(x) and ψA(x),
ΘA(x) and θA(x), where the lowercase function denotes the use function
corresponding to the uppercase functional. See Definition 3.2.2 (vi) for a
function f as oracle in place of the set A.

Lachlan Notation

When E(As, xs, ys, . . .) is an expression with a number of arguments
subscripted by s denoting their value at stage s, Lachlan introduced the no-
tation E(A, x, y, . . .)[s] to denote the evaluation of E where all arguments
are taken with their values at the end of stage s.

(4) ΦAe (x) [s] denotes ΦAs
e,s (xs) and ϕAe (x) [s] denotes ϕAs

e,s(xs).

This Lachlan notation has become very popular and is now used in most
papers and books.

Notation

Acknowledgements

Among others I would like to thank colleagues and students for careful
reading of preliminary versions of this book and for their suggestions and
corrections.

This includes my University of Chicago colleagues, Denis Hirschfeldt,
Joseph Mileti, Antonio Montalban, and Maryanthe Malliaris; and former
students, Eric Astor, William Chan, Barbara Csima, Chris Conidis, David
Diamondstone, Damir Dzhafarov, Rachel Epstein, Kenneth Harris, Karen
Lange, Russell Miller, Jonathan Stephenson, and Matthew Wright.

It includes colleagues at other universities, Ted Slaman, Richard Shore,
Carl Jockusch, Douglas Cenzer, Leo Harrington, Manuel Lerman; and
colleagues at the University of Wisconsin, Steffen Lempp, Bart Kaster-
mans, Arnie Miller, Joe Miller, and Wisconsin students, Asher Kach, Dan
Turetsky, and Nathan Collins.

I am grateful to the students of Barbara Csima at the University of Wa-
terloo, Vladimir Soukharev, Jui-Yi Kao, Atul Sivaswamy, David Belanger,
and Carolyn Knoll; to Piet Rodenburg and Tom Sterkenbert in Amster-
dam and their students, including Frank Nebel; to Notre Dame colleagues
Julia Knight and Peter Cholak and their students, Joshua Cole, Yang Lu,
Stephen Flood, Quinn Culver and John Pardo; to Valentina Harizanov at
George Washington University and her students, Jennifer Chubb and Sarah
Pingrey; to Aaron Sterling at Iowa State University; to Russell Miller’s
student at Queens College CUNY, Rebecca Steiner; to Iraj Kalantari at
Northern Illinois University and his student, Abolfazi Karimi; to Rachel
Epstein and her students at Harvard who covered Part I of the book in de-
tail; to Damir Dzhafarov who drew the diagrams in tikz; to Linda Westrick

xxxv

xxxvi Acknowledgements

at the University of Connecticut. Carl Jockusch and Damir Dzhafarov read
some of the advanced chapters in detail and made a number of mathemat-
ical corrections and suggestions. Damir also designed the excellent cover
diagram of a Turing machine.

I am grateful to Ronan Nugent, Senior Editor at Springer-Verlag, who
read the manuscript in detail, made a number of corrections, and handled
the editing and production of this book.

	Contents
	Preface
	The Art of Classical Computability
	The Great Papers of Computability
	Turing's 1936 Paper, Especially §9
	Post's 1944 Paper, Especially §11

	Introduction
	Turing Machines
	Oracle Machines and Turing Reducibility
	Computable Enumerable Sets
	Bounded Turing Reductions
	Finally Understanding Turing Reducibility
	Priority Arguments
	Other Parts of This Book

	How to Read This Book
	Part I: Foundations of Computability
	Part II: Trees and Π01Classes
	Part III: Minimal Degrees
	Part IV: Games in Computability Theory
	Symbols Marking Importance and Di�culty

	Notation
	Notation for Sets
	Logical Notation
	Lattices and Boolean Algebras
	Notation for Strings and Functionals
	Gödel Numbering of Finite Objects
	Standard Pairing Function
	Effective Numbering of Finite Sets and Strings
	Partial Computable (P.C.) Functions
	Turing Functionals ΦAe
	Lachlan Notation

	Acknowledgements

