Skip to main content

Active Learning of Relational Action Models

  • Conference paper
Inductive Logic Programming (ILP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7207))

Included in the following conference series:

Abstract

We consider an agent which learns a relational action model in order to be able to predict the effects of his actions. The model consists of a set of STRIPS-like rules, i.e. rules predicting what has changed in the current state when applying a given action as far as a set of preconditions is satisfied by the current state. Here several rules can be associated to a given action, therefore allowing to model conditional effects. Learning is online, as examples result from actions performed by the agent, and incremental, as the current action model is revised each time it is contradicted by unexpected effects resulting from his actions. The form of the model allows using it as an input of standard planners.

In this work, the learning unit IRALe is embedded in an integrated system able to i) learn an action model ii) select its actions iii) plan to reach a goal. The agent uses the current action model to perform active learning, i.e. to select actions with the purpose of reaching states that will enforce a revision of the model, and uses its planning abilities to have a realistic evaluation of the accuracy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ade, H., Malfait, B., De Raedt, L.: Ruth: an ILP Theory Revision System. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 336–345. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  2. Benson, S.: Inductive learning of reactive action models. In: ICML 1995, pp. 47–54 (1995)

    Google Scholar 

  3. Biba, M., Ferilli, S., Esposito, F., Di Mauro, N., Basile, T.M.A.: A fast partial memory approach to incremental learning through an advanced data storage framework. In: Proceedings of the Fifteenth Italian Symposium on Advanced Database Systems, SEBD 2007, pp. 52–63 (2007)

    Google Scholar 

  4. Croonenborghs, T., Ramon, J., Blockeel, H., Bruynooghe, M.: Online learning and exploiting relational models in reinforcement learning. In: IJCAI, pp. 726–731 (2007)

    Google Scholar 

  5. Dabney, W., McGovern, A.: Utile distinctions for relational reinforcement learning. In: IJCAI, pp. 738–743 (2007)

    Google Scholar 

  6. Driessens, K., Ramon, J., Blockeel, H.: Speeding Up Relational Reinforcement Learning through the Use of an Incremental First Order Decision Tree Learner. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 97–108. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Machine Learning 43, 7–52 (2001)

    Article  MATH  Google Scholar 

  8. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M.A., Di Mauro, N.: Incremental learning and concept drift in inthelex. Intell. Data Anal. 8(3), 213–237 (2004)

    Google Scholar 

  9. Gil, Y.: Learning by experimentation: Incremental refinement of incomplete planning domains. In: ICML, pp. 87–95 (1994)

    Google Scholar 

  10. Hoffmann, J.: Ff: The fast-forward planning system. The AI Magazine (2001)

    Google Scholar 

  11. Jiménez, S., Fernández, F., Borrajo, D.: The pela architecture: integrating planning and learning to improve execution. In: 23rd National Conference on Artificial Intelligence, vol. 3, pp. 1294–1299. AAAI Press (2008)

    Google Scholar 

  12. Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial time. Machine Learning 49 (2002)

    Google Scholar 

  13. Lang, T., Toussaint, M., Kersting, K.: Exploration in Relational Worlds. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6322, pp. 178–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Li, L., Littman, M.L., Walsh, T.J.: Knows what it knows: a framework for self-aware learning. In: ICML, pp. 568–575 (2008)

    Google Scholar 

  15. Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory. Artif. Intell. 154(1-2), 95–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. McDermott, D.: The 1998 ai planning systems competition. AI Magazine 21(2), 35–55 (2000)

    Google Scholar 

  17. Otero, R.P.: Induction of the Effects of Actions by Monotonic Methods. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 299–310. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Otero, R.P.: Induction of the Indirect Effects of Actions by Monotonic Methods. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 279–294. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.: Learning symbolic models of stochastic domains. Journal of Artificial Intelligence Research (JAIR) 29, 309–352 (2007)

    MATH  Google Scholar 

  20. Pasula, H.M., Zettlemoyer, L.S., Pack Kaelbling, L.: Learning probabilistic planning rules. In: ICAPS, pp. 146–163 (2004)

    Google Scholar 

  21. Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause domain theories. Machine Learning 19, 95–131 (1995)

    Google Scholar 

  22. Rodrigues, C., Gérard, P., Rouveirol, C., Soldano, H.: Incremental learning of relational action rules. In: ICMLA (2010)

    Google Scholar 

  23. Settles, B.: Active Learning Literature Survey. Technical Report Technical Report 1648, University of Wisconsin-Madison (2009)

    Google Scholar 

  24. Shen, W.M.: Discovery as autonomous learning from the environment. Machine Learning 12(1-3), 143–165 (1993)

    Article  Google Scholar 

  25. Sutton, R.S.: Dyna, an integrated architecture for learning, planning, and reacting. SIGART Bull. 2, 160–163 (1991)

    Article  Google Scholar 

  26. Walsh, T.J., Littman, M.L.: Efficient learning of action schemas and web-service descriptions. In: AAAI, pp. 714–719 (2008)

    Google Scholar 

  27. Walsh, T.J., Szita, I., Diuk, M., Littman, M.L.: Exploring compact reinforcement-learning representations with linear regression. In: UAI, pp. 714–719 (2009)

    Google Scholar 

  28. Wang, X.: Learning by observation and practice: An incremental approach for planning operator acquisition. In: ICML, pp. 549–557 (1995)

    Google Scholar 

  29. Yang, Q., Wu, K.: Y Jiang. Learning action models from plan examples using weighted max-sat. Artificial Intelligence 171(2-3), 107–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodrigues, C., Gérard, P., Rouveirol, C., Soldano, H. (2012). Active Learning of Relational Action Models. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2011. Lecture Notes in Computer Science(), vol 7207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31951-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31951-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31950-1

  • Online ISBN: 978-3-642-31951-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics