
k-Optimal: A Novel Approximate Inference
Algorithm for ProbLog

Joris Renkens, Guy Van den Broeck, and Siegfried Nijssen

joris.renkens@student.kuleuven.be

Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Abstract. ProbLog is a probabilistic extension of Prolog. Given the
complexity of exact inference under ProbLog’s semantics, in many ap-
plications approximate inference is necessary. Current approximate in-
ference algorithms for ProbLog however require either dealing with large
numbers of proofs or do not guarantee a low approximation error. In
this paper we introduce a new approximate inference algorithm which
addresses these shortcomings. Given a user-specified parameter k, this al-
gorithm approximates the success probability of a query based on at most
k proofs and ensures that the calculated probability p is (1 − 1/e)p∗ ≤
p ≤ p∗, where p∗ is the highest probability that can be calculated based
on any set of k proofs. Furthermore a useful feature of the set of calcu-
lated proofs is that it is diverse. We show that this type of inference is
in particular useful in solving decision problems.

1 Introduction

ProbLog [7] is a probabilistic extension of Prolog. It has been used to solve
learning problems in probabilistic networks as well as other types of probabilistic
data [8]. The key feature of ProbLog is its distribution semantics. Each fact in a
ProbLog program can be annotated with the probability that this fact is true in
a random sample from the program. The success probability of a query is equal
to the probability that the query succeeds in a sample from the program, where
facts are sampled independently from each other. Each such sample is also called
a possible world.

The main problem in calculating the success probability of a query in ProbLog
is the high computational complexity of exact inference. As multiple proofs for a
query can be true in a possible world, we cannot calculate the success probability
of a query based on the probabilities of the independent proofs; we need to deal
with a disjoint sum problem [7]. This problem becomes worse as the number of
proofs grows.

To deal with this computational issue, several approaches have been proposed
in the past. In [7] it was proposed to use Binary Decision Diagrams (BDDs) [2]
to deal with the disjoint sum problem. BDDs can be seen as a representation of

proofs from which the required success probability can be calculated in polyno-
mial time. Building a BDD for all proofs can however be intractable. In [7] it
was shown that for a given desired approximation factor ε, an iterative deepen-
ing algorithm can be used to approximate the success probability from a subset
of proofs. However, to reach reasonable approximation errors in practice, this
algorithm still needs to compile large numbers of proofs into a BDD [7].

A commonly used alternative which does not have this disadvantage is the
k-best strategy. In this case the k most likely proofs are searched for, where k
is a user-specified parameter; a BDD is constructed based on these proofs only.
Whereas this strategy avoids compiling many proofs, its disadvantage is that one
has few guarantees with respect to the quality of the calculated probability: it is
not clear whether any other set of k proofs would achieve a better approximation,
or how far the calculated probability is from its true value.

A further disadvantage of k-best is found in the use of ProbLog in solving
probabilistic decision problems [1]. An example of such decision problem is the
problem of targeted advertising in social networks: one wishes to identify a small
subset of nodes in a social network such that the expected number of people
reached is maximized. Such problems can be solved by defining an optimization
problem on top of a set of BDDs. To ensure that the calculation remains tractable
it is important that these BDDs are as small as possible while still carrying all
relevant information. As we will show, the k-best strategy selects a set of proofs
that is not optimal for this purpose. Intuitively the reason is that the k-best
proofs can be highly redundant with respect to each other.

In this paper we propose a new algorithm, k-optimal, for finding a set of at
most k proofs. The key distinguishing feature with respect to k-best is that it
ensures that the set of k proofs found is of provably good quality. In particular, if
p∗ is the best probability that can be calculated based on k proofs, our algorithm
will not calculate a probability that is worse than (1−1/e)p∗. At the same time,
our algorithm ensures that the resulting set of proofs is diverse, i.e., proofs are
less likely to use similar facts; the resulting set of proofs carries more of the
probability mass of the exact success probability.

The remainder of this paper is organized as follows: Section 2 introduces
ProbLog and discusses the drawbacks of k-best; Section 3 introduces the new
algorithm; Section 4 proves the quality of the resulting set of proofs; Section 5
reports on some experiments and finally Section 6 concludes.

2 ProbLog and k-Best

In Problog a program consists of two parts: a collection of probabilistic facts
and a collection of rules. The rules are written in standard Prolog syntax. The
syntax for the probabilistic facts is pi :: fi. Here pi denotes the probability of
the fact fi.

Example 1. This running example shows the implementation of the small prob-
abilistic network of Figure 1. Besides the network, the definition of a path in the
network is implemented.

1

2 3

4 5

6

0.5

0.6

0.9
0.9

0.9 0.9
0.6

0.5::edge(1,2).

0.6::edge(1,3).

0.9::edge(2,4).

0.9::edge(2,5).

0.6::edge(3,6).

0.9::edge(4,6).

0.9::edge(5,6).

path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

Fig. 1. A small probabilistic network and its ProbLog representation

The success probability of a query is calculated from the BDD representation
of its proofs. In our network, each proof reflects one set of edges that needs to be
present in a possible world in order for a path to exist. Worlds in which a path
between node 1 and 6 exists are hence characterized by the following formula in
disjunctive normal form (DNF):

(e(1, 2) ∧ e(2, 4) ∧ e(4, 6)) ∨ (e(1, 2) ∧ e(2, 5) ∧ e(5, 6)) ∨ (e(1, 3) ∧ e(3, 6)) (1)

Here the fact edge(X,Y) is represented by e(X,Y). In ProbLog this formula is
transformed into its BDD representation. A dynamic programming algorithm
allows to calculate the success probability from this BDD efficiently.

In cases in which building the BDD from all proofs is intractable, k-best [4]
approximates the success probability using only the k most probable proofs. We
show on our example that this is not always a good solution. We approximate
the probability of the query path(1, 6) in Figure 1 by using only the two most
probable proofs. In this case the proofs p1 = e(1, 2) ∧ e(2, 4) ∧ e(4, 6) and p2 =
e(1, 2)∧ e(2, 5)∧ e(5, 6) are selected. They both have a probability equal to 0.5 ·
0.9·0.9 = 0.405, while the third proof p3 has a probability equal to 0.6·0.6 = 0.36.
Based on these two proofs P(path(1, 6)) = 0.5× (1− (1−0.9×0.9)2) = 0.48195.

Avoiding redundancy in the proofs can lead to better results. When the two
proofs p1 and p3 are used, we get a much higher success probability, P(path(1, 6)) =
P(p1 ∨ p3) = 0.6192. This result is achieved even though the probability of p3
is lower than the one of proof p2, because there is a large overlap between the
possible worlds in which p1 and p2 are true.

3 k-Optimal

The problem that our algorithm addresses is the following.

Given the collection of all possible proofs for a goal (V) and a maximum number
of proofs which can be used (k).

Find a collection A = arg maxB⊆V,|B|≤k P(
∨

p∈B p).

The algorithm that we propose is a simple greedy algorithm in which in each
iteration the proof is added that increases the probability most, as given below.

Clearly, the main task that needs to be addressed is the efficient calculation of
arg maxp∈V P(A∪{p}). Let us first consider the problem of evaluating P(A∪{p})
for a particular proof p.

Algorithm 1 greedy solve(V)

A = ∅
for i = 1..k do

A = A ∪ arg maxp∈V P(A ∪ {p})
end for
return A

Calculating P(A ∪ {p}). In a näıve approach this would involve building the
BDD for A∪{p} from scratch for each p. Fortunately, we can avoid this. Let dnf
represent the DNF formula

∨
p′∈A p

′ for the set of proofs A and let p ≡
∧

i fi.
Then P(f1 ∧ · · · ∧ fn ∨ dnf) = P(f1 ∧ · · · ∧ fn) + P(¬f1 ∧ dnf) + P(f1 ∧ ¬f2 ∧
dnf) + · · ·+ P(f1 ∧ · · · ∧ fn−1 ∧¬fn ∧dnf). A term in this sum can be calculated
as follows:

P(f1∧· · ·∧fi−1∧¬fi∧dnf) = P(f1) . . .P(fi−1)(1−P(fi)) P(dnf |f1∧· · ·∧fi−1∧¬fi),

where we still need to specify how to calculate P(dnf |f1 ∧ · · · ∧ fi−1 ∧ ¬fi).
Fortunately, this term can be calculated efficiently if we already have the BDD
for the dnf formula. We reuse the algorithm of [7] for calculating P(dnf) from a
BDD, where during the traversal of the BDD, we assume that P(fj) = 1 for the
conditional facts j < i while setting P(fi) = 0 for the other facts.

Overall, our strategy is hence to compile the BDD for the set of proofs A at
the beginning of each iteration of the for-loop; when calculating the probability
of a set A ∪ {p}, we traverse this BDD once, calculating n terms for each node
of the BDD.

This computation can be optimized further by reusing computations; further-
more, facts in the proof which are not represented in the DNF can be ignored.
Overall, this means that we do not always need to traverse the BDD. The details
of these optimizations are omitted here.

Finding a proof. In each iteration we need to search for the proof that maxi-
mizes P(A ∪ {p}). To find such a proof without enumerating all proofs in V we
use a branch-and-bound search similar to that of k-best [7]. When a proof is
found, we calculate b = P(A∪{p})−P(A). We prune a proof {f1, . . . , fn} if the
individual probability P(f1) . . .P(fn) ≤ b∗, where b∗ is the best b value seen till
that moment. Here we exploit that arg maxp∈V P(A∪{p}) = arg maxp∈V (P(A∪
{p})− P(A)), while (P(A ∪ {p})− P(A)) ≤ P(f1) . . .P(fn).

4 Analysis

The quality of the result of our algorithm follows from the fact that the function
P(.) is submodular and monotone [3, 5].

Definition 1 (Submodular Function). A function f is submodular when
∀A ⊆ B ⊆ S, ∀x ∈ S : f(A ∪ x)− f(A) ≥ f(B ∪ x)− f(B).

 0

 0.5

 1

 0 0.5 1

 0

 0.5

 1

 0 0.5 1

 0

 0.5

 1

 0 0.5 1

 0

 0.5

 1

 0 0.5 1

Fig. 2. Ratio of probabilities by k-optimal and k-best, for k equal to 1, 7, 13 and 20

Definition 2 (Monotone Function). A function f is monotone when ∀A,B ⊆
S : A ⊆ B → f(A) ≤ f(B).

Clearly, adding a proof to a larger set of proofs will decrease its impact on
the overall probability: as more possible worlds will already be covered, a larger
set of proofs will result in a larger probability.

It was shown in [3] that for submodular and monotonic functions the iterative
greedy algorithm that we employ finds a solution for which the function value
is at least 1− 1

e times the one of the optimal solution.

5 Experiments
Three types of experiments have been executed. In the first experiment, the
results of k-optimal are compared with those of k-best. For this purpose, the
probabilistic network constructed in [6] is used. This network contains 15147
bidirectional edges, 5568 unidirectional edges and 5313 nodes. Furthermore 5371
pairs of nodes are given. For these pairs, k-best and k-optimal are used to calcu-
late the success-probability of a path between the pairs of nodes with a maximal
length of four. In Figure 2 the probabilities are shown for k = 1, k = 7, k = 13
and k = 20. The x-value is equal to the probability achieved with k-best. The
y-value is equal to the probability achieved with k-optimal. Only the pairs are
shown which have at least k+ 1 proofs. When this is not the case, all the proofs
are selected and k-best and k-optimal achieve the same result.

When k is equal to one, there is no difference between k-best and k-optimal.
In the other cases, k-optimal performs better than k-best. When k is low com-
pared to the number of available proofs (k = 7) k-optimal achieves better results.
Run time experiments (not shown) reveal that k-optimal is slower than k-best.

In the second experiment we evaluate a modified k-optimal algorithm (k-Θ-
optimal), in which the iterative loop is stopped early if no single proof can be
found that improves the probability with a user-specified threshold θ. The main
motivation is to reduce the size of the set of proofs further. Results are shown
in Figure 3, in which we plot the average probability in function of the average
number of used proofs. These numbers are calculated for k ∈ {1, . . . , 20}. k-Θ-
Optimal uses fewer proofs to calculate the probability. This does not result in
a large drop of the calculated success probability. We can conclude that k-Θ-
Optimal successfully avoids adding insignificant proofs.

The third experiment (also Figure 3) evaluates k-optimal and k-Θ-optimal
on a DTProbLog decision problem. In this problem we aim to select a subset of n
edges such that the expected number of connected pairs of nodes in a given set is

Fig. 3. Average utility and probability in function of the average number of used proofs

maximized [8]. We evaluate the solutions by calculating exact path probabilities
on the selected subnetworks. k-optimal finds a better solution.

6 Conclusions

We have introduced a new approximating inference-mechanism to calculate the
success-probability of a query in ProbLog. This mechanism uses k proofs to ap-
proximate the exact probability. As k-optimal searches for a proof that increases
the probability most, it minimizes the redundancy between the selected proofs.
An efficient calculation of this probability was proposed. In contrast to k-best
we could also show that it finds a proof set that is close to optimal for its size.

We presented an extension of k-optimal which avoids adding insignificant
proofs. This is easily possible in k-optimal as k-optimal computes the added
probability of a proof. k-Θ-Optimal produces fewer proofs, with only a small
loss of probability.

References
1. G. Van den Broeck, I. Thon, M. van Otterlo, and L. De Raedt. DTProbLog: A

Decision-Theoretic Probabilistic Prolog. AAAI, 2010.
2. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, 35:677–691, 1986.
3. G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to

optimize float: an analytic study of exact and approximate algorithms. Manage-
ment Science, 1977

4. A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt. On the
efficient execution of problog programs. ICLP, pages 175–189, 2008.

5. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions. Mathematical Programming, 14:265–294,
1978.

6. O. Ourfali, T. Shlomi, T. Ideker, E. Ruppin, and R. Sharan. Spine: a frame- work
for signaling-regulatory pathway inference from cause-effect experiments. Bioin-
formatics, 23(13):359–366, 2007.

7. L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and its
application in link discovery. IJCAI, pages 2462–2467, 2007.

8. L. De Raedt, A. Kimmig, B. Gutmann, K. Kersting, V. Santos Costa, and H.
Toivonen. Probabilistic inductive querying using ProbLog. Inductive Databases and
Constraint-Based Data Mining, pages 229–262, 2010.

9. C.-H. Yeang, T. Ideker, and T. Jaakkola. Physical network models. Journal of
Computational Biology, 11(2/3):243–262, 2004.

