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Abstract. We define and study a calculus of discontinuity, a version
of displacement calculus, which is a logic of segmented strings in ex-
actly the same sense that the Lambek calculus is a logic of strings. Like
the Lambek calculus, the displacement calculus is a sequence logic free
of structural rules, and enjoys Cut-elimination and its corollaries: the
subformula property, decidability, and the finite reading property. The
foci of this paper are a formulation with a finite number of connectives,
and consideration of how to extend the calculus with defined connectives
while preserving its good properties.

1 Introduction: architecture of logical grammar

An argument in logic comprises some premises and a conclusion; for example:!

(1) a. All men are mortal. b. All men are mortal.
Socrates is a man. Socrates is mortal.
Socrates is mortal. Socrates is a man.

If in an argument the truth of the premises guarantees the truth of the conclusion,
the argument is logical. If the truth of the premises does not guarantee the truth
of the conclusion, the argument is not logical. The argument (la) is logical:
independently of the facts of the real world, who Socrates is, etc., if the premises
are true then the conclusion must be true. The argument (1b) is not logical:
again disregarding how the world actually is, it is possible for the premises to
be true but the conclusion false.

In a logical theory premises and conclusions are represented by formulas, and
we then call an argument a sequent. For example, corresponding to (1) there are
the sequents:

(2) a.Va(Hz — Mz),Hs = Ms
b.Ve(Hx — Mxz),Ms = Hs

! The research reported in the present paper was supported by DGICYT project
SESAAME-BAR (TIN2008-06582-C03-01).



If a sequent I" = A is logical we call it a theorem and write - I" = A. If it is not
logical it is not a theorem and we write I/ I" = A. Thus a logical theory takes
the form shown in Figure 1.

sequents

theorems

Fig. 1. Logic

A sentence comprises a string of words. Some strings of words are well-formed
as sentences and we say they are grammatical, for example John walks; others
are not well-formed as sentences and we say they are ungrammatical, for example
*walks John. Thus grammar takes the form shown in Figure 2.

strings
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Fig. 2. Grammar

Given a subset of a domain, such as the subset of sequents that are theorems
or the subset of strings that are sentences, there is the associated computational
decision problem of determining whether an element of the domain belongs to
the subset.

A reduction of one problem to another is an answer-preserving mapping from
the domain of the first problem to the domain of the second problem. Thus a
reduction sends members to members and nonmembers to nonmembers as shown
in Figure 3. The existence of a reduction from one problem to a second means
that the first problem can be solved by the composition of an algorithm for the
second problem with an algorithm computing the reduction.

Logical grammar is a reduction of grammar to logic: a string is a sentence
if and only if an associated sequent (or one of a set of associated sequents)
is a theorem, as shown in Figure 4. Hence in logical grammar, determining
grammatical properties is reduced to theorem-proving.
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Fig. 3. Reduction
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Fig. 4. Logical grammar

2 Logic of strings: the Lambek calculus L

Logic of strings is provided by the calculus of Lambek (1958)[4]. We consider a
variant L which is multiplicative intuitionistic noncommutative linear logic.

The types F of L are defined and interpreted as subsets of the set of strings
over a vocabulary as follows, where 0 is the empty string:

(3) Fu=F\F [A\C] = {s2]| Vs1 € [4],s1+s2 € [C]} under
F u=F/F [C/B] = {s1] Vs2 € [B], s1+s2 € [C]} over
F = FeoF [AeB] = {s1+s2| s1 € [4] & s2 € [B]} product
Fu=1 [I] = {0} product unit

The set O of configurations is defined as follows, where A is the empty string:?
4 O==A|F| 0,0

A sequent I' = A comprises an antecedent configuration I" and a succedent type
A. The sequent calculus of L is as shown in Figure 5, where A(I") signifies a
configuration A with a distinguished subconfiguration I

The Cut-elimination property of a logic is that every theorem has a Cut-free
proof. Lambek (1958)[4] proved Cut-elimination for L without the product unit
I; Lambek (1969)[5] showed that there is also Cut-elimination when the product
unit is included. Cut-elimination has a series of good consequences.

Firstly, Cut-elimination means that the calculus has the subformula property:
that every theorem has a proof containing only its subformulas. This is so because

2 Note that this grammar is ambiguous, but that this does not matter because the
product is associative.



. I'=A A(A) = B
id Cut
A=A Al = B

I'=A AC)=D AT=C

\L —\R
A(IA\C) = D I = A\C

I'=B A(C)=D I'B=C

/L — /R
A(C/B,I") = D I'=C/B

A(A,B) = D I'= A A= B

ol o R
A(AeB) = D I''A = AeB

IR

A(l) = A A=1

Fig. 5. Sequent calculus for L

every rule except Cut has the property that every type in the premises is either
the same as, or is an immediate subtype of, a type in the conclusion. Thus
every Cut-free proof has the subformula property, and by Cut-elimination every
theorem has a Cut-free proof.

Secondly, Cut-elimination means that the calculus is decidable. Cut-eliminat-
ion does not always have this consequence, for example full propositional linear
logic enjoys Cut-elimination but is not decidable. But it follows in the present
case because of the finiteness of the Cut-free search space without contraction.
Every rule except Cut has the property that when a sequent is matched against
the conclusions of the rule, there are only a finite number of premises from which
it could have been inferred by the rule. The space of Cut-free backward chaining
sequent proof search is finite. Thus, whether a sequent has a Cut-free proof can
be determined in finite time, and by Cut-elimination a sequent is a theorem if
and only if it has a Cut-free proof.

Thirdly, Cut-elimination means that the calculus has the finite reading prop-
erty. Again, this does not always hold, for example intuitionistic propositional
logic enjoys Cut-elimination but not the finite reading property. But here there
is no contraction. Curry-Howard categorial semantics compositionally associates
each proof with a derivational semantics which is its homomorphic image as an
intuitionistic proof or typed lambda term. Equivalence of such semantic readings
is preserved by Cut-elimination. Since the Cut-free sequent proof search space is
finite, every sequent can have only a finite number of nonequivalent proofs, and
hence only a finite number of semantic readings.

The Lambek calculus L thus has good proof-theoretic properties as a logic of
strings, but as is well known, logical syntax and semantics developed on this basis
does not accommodate non-peripheral discontinuities. For example, a relative
pronoun type R/(S/N) will produce unboundedly long-distance extraction from



clause-final positions, but not clause-medial extraction such as man who John
saw today. And a quantifier phrase type S/(IN\S) will produce subject position
quantification, and a further quantifier phrase type (S/N)\S will produce in
addition sentence-final quantification, but neither of these types will produce
sentence-medial quantification such as John introduced everyone to Mary.

Overall, the Lambek calculus cannot accommodate the syntax and semantics
of:

(5) Discontinuous idioms (Mary gave the man the cold shoulder). Quantification
(John gave every book to Mary; Mary thinks someone left; Fveryone loves
someone). VP ellipsis (John slept before Mary did; John slept and Mary
did too). Medial extraction (dog that Mary saw today). Pied-piping (moun-
tain the painting of which by Cezanne John sold for $10,000,000. Appos-
itive relativization (John, who jogs, sneezed). Parentheticals (Fortunately,
John has perseverance; John, fortunately, has perseverance; John has, for-
tunately, perseverance; John has perseverance, fortunately). Gapping (John
studies logic, and Charles, phonetics). Comparative subdeletion (John ate
more donuts than Mary bought bagels). Reflexivization (John sent himself
flowers).

Furthermore, since the Lambek calculus is context-free in generative power (Pen-
tus 1992)[15] it cannot generate cross-serial dependencies as in Dutch and Swiss-
German (Sheiber 1985[16]).

3 Logic of segmented strings: the displacement calculus D

By segmented strings we mean strings over a vocabulary containing a distin-
guished symbol 1 which we call the separator. We define the sort of a segmented
string as the number of separators it contains. Henceforth, by ‘string’ we shall
mean ‘segmented string’.

Morrill and Valentin (2010)[11] defines displacement calculus with k-ary
wrapping, k > 0, meaning wrapping around the kth separator. Here we consider a
variant D which is a logic of segmented strings which has continuous connectives
{\,/, e} for concatenation and discontinuous connectives { |, 11, Ok fre{>,<} for
left and right wrapping. The characteristic feature of this variant is that it has
only a finite number of connectives. We consider also here some defined connec-
tives for which rules are compiled.

The concatenation of a string of sort ¢ with a string of sort j is a string of
sort i+ 7. But in addition to concatenation, we define on (segmented) strings two
operations of intercalation or ‘wrap’. Where o and 3 are segmented strings and
the sort of « is at least 1, we define the left wrap of o around 3, a X~ (3 as the
result of replacing the leftmost separator in a by 3, and we define the right wrap
of o around 3, a X - 8 as the result of replacing the rightmost separator in a by
(. For example:

(6) before+1+left+1+slept x < the+man = before+1+left+the+man+ slept



The types of D are sorted into types JF; of sort ¢ interpreted as sets of strings
of sort 7 as shown in Figure 6 where k € {>, <}; the left hand column displays the
definition of the types in Backus-Naur form, and [A] where A is a type represents
the natural syntactical interpretation of a type in terms of (separated) strings.
The set O of configurations is defined as follows, where [] is the metalinguistic

Fj u= Fi\Fitj [A\C] = {s2| Vs1 € [A],s1+s2 € [C]} under
Fi = Fivji ) Fj [C/B] = {s1| Vs2 € [B],s1+s2 € [C]} over

Fiyj n= FioF; [AeB] = {si1+s2| s1 € [A] & s2 € [B]} product
Fou=1 [I] = {0} product unit

Fj o= fi-}—llk]:i-‘rj [AlkC
Fipr v=Figi T F; [CTeB
Fitj v=FiriOnF; [AOxB

F1 c=J [J

= {82‘ Vs1 € [A],81><k52 S [C}} infix

= {s1| Vs2 € [B], s1 xxs2 € [C]} extract

= {s1xrs2| s1 € [A] & s2 € [B]} disc. product
= {1} disc. prod. unit

Fig. 6. Types of the displacement calculus D and their interpretation

separator:
(7) O:=41 | H ‘ .7'-0 | fH_l{OO} | 0,0
i+1 O’s
A{A; :...: A,} interpreted syntactically is formed by strings ag+/51+a1+ - -+

Qp_1+0n+a, where ag+1+a1+---+a,_1+1+a, € Aand 81 € Aq,...,B, €
—

A,. Where A is a type we call its sort sA. The figure A of a type A is defined

by:

A if sA=0
) A= AM[:...:[]}ifsA>0

sA H’s

The sort of a configuration is the number of metalinguistic separators it contains.
Where I' and @ are configurations and the sort of I' is at least 1, I'|~ @ signifies
the configuration which is the result of replacing the leftmost separator in I" by
@, and I'| P signifies the configuration which is the result of replacing the right-
most separator in I" by . Where I is a configuration of sort ¢ and &4, ..., ®; are
configurations, the generalized wrap I' @ (Pq,...,P;) is the result of simultane-
ously replacing the successive separators in I" by @1, ...,®P; respectively. A(I")
abbreviates Ag(I" ® (Ay,...,4;)). Thus where the usual distinguished occur-
rence notation A(I") represents a subconfiguration I" with an external context
A, our distinguished hyperconfiguration notatation A(I") represents a subcon-
figuration I" with external context Ag and also internal contexts Ay, ..., A;. A
sequent I' = A comprises an antecedent configuration I" of sort ¢ and a succe-
dent type A of sort i. The sequent calculus for the calculus of displacement D
is as shown in Figure 7 where k € {>, <}. Like L, D has no structural rules.



Fig. 7. Sequent calculus for D
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AlT)y= A [l =



Morrill and Valentin (2010)[11] proves Cut-elimination for the k-ary displace-
ment calculus, & > 0, and the variant D considered here enjoys Cut-elimination
by the same reasoning since left wrap is the same as first wrap, and right wrap
is k-ary wrap with k£ the corresponding maximal sort; see Morrill, Valentin and
Fadda (forthcoming, appendix)[13]. As a consequence D, like L, enjoys in addi-
tion the subformula property, decidability, and the finite reading property. The
calculus of displacement provides basic analyses of all of the phenomena item-
ized in (5) (Morrill and Valentin 2010[11], Morrill 2010 chapter 6[14], Morrill,
Valentin and Fadda forthcoming[13]). Furthermore it analyses verb raising and
cross-serial dependencies (Morrill, Valentin and Fadda 2009)[12].

4 Examples

When s is of sort 1, s X~ s’ = s x . s/ which we may write s X s’. Hence, when
sA=1,A].C & A|_C, which we abbreviate A|C; and when sC — sB = 1,
C1<B < C7_B, which we may abbreviate C1B; and when sA =1, A®sB &
A® B, which we may write A®B.

Our first example is of a discontinuous idiom, where the lexicon has to assign
give .. .the cold shoulder a non-compositional meaning ‘shun’:

(9) mary+gave+the+man-+the+cold+shoulder : S

Lexical insertion yields the following sequent, which is labelled with the lexical
semantics:

(10) N :m,(N\S)IN{N/CN :1,CN : man} : shunned = S

This has a proof as follows.

CN = CN N = N N= N §=2S5
(11) /L \L
L

N/CN,CN = N N,N\S = S
N, (N\S)IN{N/CN,CN} = S

This delivers the semantics:
(12) ((shunned (v man)) m)
Consider medial extraction:
(13) dog+that+mary+saw-+today : CN
An associated semantically annotated sequent may be as follows:

(14) CN : dog,(CN\CN)/((STN)®I) : NMAABXC[(B C) A (mA C),N : m,
(N\S)/N : saw, (N\S)\(IV\S) : NAAB(today (A B)) = CN

This has the sequent derivation given in Figure 8. This yields semantics:

(15) AC[(dog C) A (today ((saw C) m))]



N = N S:>S\
L
N,N\S = § N =N S=2S8
R

N\S = N\S N,N\S = S
N = N N, N\S, (N\S)\(N\S) = S/L
N (N\S)/N, N, (NSNNS) = 8 .
N, (N\S)/N, ], (N\S)\(N\S) = STN > g NN aN s oN
N, (N\S)/N,(N\S)\(N\S) = (STN)oI CN,CN\CN = CN

CN,(CN\CN)/((STN)®I), N, (N\S)/N, (N\S)\(N\S) = CN

Fig. 8. Derivation of medial extraction

Consider medial quantification:
(16) john-+gavetevery+book+to+mary : S
An associated semantically annotated sequent may be as follows:

(17) N : 4, (N\S)/(NePP) : \A((gave mA) m1A), ((STN)|S)/CN :
AABYC[(A C) — (B C)], CN : book, PP/N : N\AA,N :m = S

This has the sequent derivation given in Figure 9. This yields semantics:

N = N PP = PP

N = N PP/N,N = PP /LN$N5$S
N,PP/N,N = NePP o N,N\S = S
N.(N\S)/(NePP) N PPIN.N = §
N, (N\S)/(NePP),[],PP/N,N = SIN S = 5
CN = ON N, (N\S)/(NePP),(STN)|S, PP/N,N = S

N, (N\S)/(NePP),((SIN)|S)/CN,CN,PP/N,N = S

L

/L

Fig. 9. Derivation of medial quantification

(18) VC|(book C) — (((gave m) C) 7)]



5 Defined nondeterministic continuous and discontinuous
connectives

Let us consider a categorial displacement calculus including additives (Girard
1987)[3] which we call displacement calculus with additives (DA):

(19) Fi = F&F; | FidF;

Ay =c IB)=cC
(20) ——L "~ &L, —— " &I,
I'(A&B) = C I'(A&B) = C

I'= A I'= B
I' = A&B

—

rNAy=c I(B)=C

oL
I'(AeB) = C

I'=A I'=B

- _ @Ll - @LQ
I = A®B I = A®B

Then we may define nondeterministic continuous and discontinuous connectives
as follows, where +(s1, s2,s3) if and only if s3 = s1+s2 or s3 = sa+s1, and
X (s1, 82, s3) if and only if s3 = 51 X $2 Or S35 = S3 X< s71.

(21) % =45 (A\B)&(B/A) {s| Vs' € A, s3,+(s,8",83) = s3 € B}
nondeterministic concatenation
A® B =4 (AeB)®(BeA) {s3] 3s1 € A, 52 € B,+(s1, 52,53)}
nondeterministic product
A@C =df (AJ,>C)&(A1<C) {82‘ Vs1 € A,Sg, X(Sl,SQ,Sg) = 83 € C}
nondeterministic infix
C'ﬂ‘B =df (OT>B)&(CT<B) {51‘ VSQ S B,Sg, X(Sl,SQ,Sg) = 83 € C}
nondeterministic extract
AeB =df (A@>B)@(A@<B) {83‘ 381 S A,SQ S B, X(81,82783)}
nondeterministic disc. product

These have the derived rules shown in Figure 10 where k € {>, <}. We call the
displacement calculus extended with nondeterministic connectives the nondeter-
ministic displacement calculus ND.

Concerning Cut-elimination for the nondeterministic rules, the usual Lambek-
style reasoning applies. For example, using the method and definition of Cut-
degree in Morrill and Valentin (2010)[11], here we mention how the nondeter-
ministic extract and discontinuous product behave in the Cut elimination steps.
We show one case of principal Cut and one case of permutation conversion. Ob-
serve that in the last conversion the logical rule and the Cut rule are permuted
by two Cuts and one logical rule, contrary to what is standard, but as required
both Cut-degrees are lower.
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r = A A(C) = D I = A A(C) = D

= -L1 = -L2
c c
A(D, =y = D A(=,I) = D
A A
A, = C ra=c
R
r = —
- = = =
A(A, By =D A(B,A) =D
QL
.
A(A®B) = D
o= A Iy = B r, = B Iy = A
®Rq —————— ®Rg
ry,I'y = A®B ry,I'y = AQ®B
r= A A(C) = D A|-I = C A|l.r=>cC
4L 4R
.
A(I'|, AUC) = D I = AlC
r=aB A(C) = D risB = cC r<B =cC
L TR
.
A(CHB|,T) = D r = C1B
A(A|SB)=> D A(A|By = D o= A Iy = B

®L — @R
|y = A®B

A(A@B) = D

Fig. 10. Derived rules for the defined nondeterministic continuous and discontinuous

connectives of ND

— 1) principal cut case:

AlsA = B AlcA = B = A o(B)
TR —_— 1L
A = BftA ©(BTA|RI) = C ~
Cut
e(A|,T) = C
Al A = B e(B) = C
Cut
r= A oAl A) = C
Cut
O(A| ) = C
— @ permutation conversion case:
A(B|sC) = A A(B|<C) = A
©®L
ABO®C) = A ©(A)y = D ~
Cut
o _eaBecy >Dp _
A(B|sT) = A e(A) = D A(B|<CT) = A e(A) = D
Cut Cut
©(A(B|sC)) = D ©(A(B|<C)) = D

©L

©(A(B®C)) = D

By way of linguistic applications, a functor of type % can concatenate with its
argument A either to the left or to the right to form a B. For example, in Catalan
subjects can appear either preverbally or clause-finally (Barcelona creixz or Creix
Barcelona “Barcelona expands/grows”). This generalization may be captured
by assigning a verb phrase such as creiz the type % And a nondeterministic



concatenation product type A® B comprises an A concatenated with a B or a B
concatenated with an A. For example, in English two prepositional complements
may appear in either order (talks to John about Mary or talks about Mary to
John). This generalization may be captured by assigning a verb such as talks
the type VP/(PPto @ PPabout)-

5.1 Embedding translation between ND and DA

We propose the following embedding translation (-)* : ND — DA which we
define recursively:3

(A)f = A for atomic types A

(BftA)F = B4, A&BY_ A"

(AB)" = A%|_Bi'&A%|_B"

(A@B)* = A"©. Bt @ A0 B

(B)F = AN\BigBE /A

(A® B)t = A" e B! @ B o A"

(A% B)® = A% x B% where % is any other binary connective
We have the following interesting result:

Lemma 1. The (-)% embedding is faithful.

Proof. From ND to DA, hypersequent derivations translate without any trou-
ble while preserving provability. Let us suppose now that we have a DA provable
hypersequent which corresponds to the image by (-)? of a ND hypersequent, i.e.
Af = AP where A and A are in the language of ND. We want to prove that
if A" = A" is DA-provable then A = A is ND provable. Since the Cut rule
is admissible in DA, we can assume only DA Cut-free provable hypersequents
AP = AP, The proof is by induction on the length (or height) of Cut-free DA
derivations. If the length is 0 there is nothing to prove. If the end-hypersequent
is derived by a multiplicative inference there is no problem. We analyze then the
cases where the last rule is an additive rule:*
o Left rules:

— Case where the additive active formula corresponds to (AftB)f =
AR, BY & AR _BES

_—
A%(A%_B*) = C*

&Loy

ANAYM BT & AM_BY) = C°

By induction hypothesis (i.h.), A(AT_B) = C is derivable in the system

without additives. Since AfB = AT_B is ND-provable, we can apply the
Cut rule as follows:

3 We assume a convention of precedence whereby the multiplicative connectives take
higher priority than the additives.

4 By way of example we only consider some cases of nondeterministic discontinuous
rules: nondeterministic |} and continuous connectives are similar.

5 The other case of the & left rule, i.e. &L, is completely similar.



AMB = Al_B  A(A]_B) = C
A(A(NB) = C

Cut

— Case where the additive active formula corresponds to (A@B)? = A% @
Bi® A' o, B%:

ANA®s B) = C*  AYAG. B) = ("
AYAGs B® Ao B) = C*

By i.h. A(A®s B) = C and A(A ©« B) = C are ND-provable. Moreover,
- =
the hypersequents A|, B = A ®y B for k € {>,<} are ND-provable. By

- = I —,
Cut we have A(A|< B) = C and A(A|<B) = C. Applying then the left
© rule we have:

— = — =
A(A|sB)=C A(A|.B)=cC
A(AeB) = C

©L

e Right rules:
— Case where the additive formula corresponds to (At B)f = AhT>Bt‘&A”T<Bh :

A= AN BT AT = AT B

&R
A% = A B'&A"_B

By i.h. we have that the hypersequents A = AT, B and A = AT_B are
ND-provable. We then apply the right {} rule:

A= A1.B A= Al_B
A= AB

— Case where the additive active formula corresponds to (A®@B)? = A% O
B A" o B%:S

eR

—_—
By ih. A = A ®< B. Now it is ND-provable that A ©« B = A®B. Then
by Cut:

—_—
A= AG.,B A6G.B= AGB
A= AeB

Cut

O

5 Without loss of generality we suppose that the instance of the last right @ rule is
DRs.



6 Defined unary connectives

We may define unary connectives as follows:

(22) >~1A =df J\A {S| 1+s € A}
right projection
alA=4 AJJ {s|s+1€ A}
left projection
bA =g JoA {l1+4s|se A}
right injection
<A =df AeJ {5+1| ERS A}
left injection
CA=g4 AT {s| sx>0e A}
first split
<A =df AT<I {Sl sxX<0e€ A}
last split
A =g AOST {s x5 0| s € A}
first bridge
CA=g AOI {s x. 0| s € A}
last bridge

The derived rules of inference can be compiled straightforwardly. Some interde-
finabilities are as follows:

(23) B o o771 ((BTA)]) when sB =1
A® B & («wAI)OB
A\B & >"1(B1.A)
B/A & a Y{(B1_A)

When sA = 0, ">A & “<A, which we abbreviate “A; and when sA = 1,
"> A & "<A, which we abbreviate "~ A. By way of linguistic application, to pro-
duce particle shift (rings up Mary or rings Mary up) we may assign rings—+1-+up
the type <~ 1(* VP{N).

7 Discussion

The defined connectives considered in this paper facilitate more concise lexical
entries, but since they are defined they do not in any way increase the expres-
sivity of the displacement calculus (with additives). But in addition, the use
of defined connectives with their derived rules can eliminate bureaucracy in se-
quent derivations in the case of the introduction of the additives. Consider the
two following derivations which are equal modulo some permutations:

A= A B{[]} = B A=A B{[]} = B
T> T>
Bl A{A:[]} = B c{[]} = C BT A{A:[]} = B
Dy + &L Dy - /L
(BT A)& (BT A){A:[]} = B c{lly = ¢ C/B,(BT>A){A:[]} = C
/L &L

C/B, (BT A)&(BT<A){A:[]} = C C/B,(BT>A)&(BT1A){A:[]} = C



Observe that both derivations D; and Dy are essentially the same. The only
(inessencial) difference is the permutations steps of the additive connective &
and the forward slash connective /. In D; the left rule &L precedes the left
rule /L, whereas in Dy the left rule /L precedes the left rule &L. These would
have the same corresponding derivation for defined connectives. It follows then
that derived or compiled rules for defined connectives eliminate some undesirable
bureaucracy in the derivations.

The displacement calculus has been formulated in this paper in terms of
first and last wrap, as opposed to the k-ary wrap, k > 0, of Morrill and Va-
lentin (2010)[11], and has a finite rather than an infinite number of connectives.
This last version of displacement calculus draws together ideas spanning three
decades:

(24) — Bach (1981, 1984)[1], [2]: the idea of categorial connectives for discon-

tinuity /wrapping; wrap, extract, infix.

— Moortgat (1988)[6]: first type logical account of extract and infix discon-
tinuous connectives (string interpretation and sequent calculus).

— Morrill and Merenciano (1996)[10]: sorts; bridge and split.

— Morrill (2002)[8]: separators; unboundedly many points of discontinuity.

— Morrill, Fadda and Valentin (2007)[9]: nondeterministic discontinuity.

— Morrill, Valentin and Fadda (2009)[12]: projection and injection.

— Morrill and Valentin (2010)[11]: product and discontinuous product units,
Cut-elimination.

This road to discontinuity has respected fully intuitionism, residuation, and nat-
ural algebraic string models. Further logical and mathematical properties of the
resulting system remain to be studied, and it also remains to be seen whether it
may be necessary to appeal to continuation semantics or classical (symmetric)
calculi (Moortgat 2009)[7].
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