
Reasoning about multi-process systems with the
box calculus

Greg Michaelson1 and Gudmund Grov2

1Heriot-Watt University

2University of Edinburgh

Abstract. The box calculus is a formalism for reasoning about the prop-
erties of multi-process systems which enables account to be taken of
pragmatic as well as computational concerns. It was developed for the
programming language Hume which explicitly distinguishes between co-
ordination, based on concurrent boxes linked by wires, and expressions,
based on polymorphic recursive functions. This chapter introduces Hume
expressions and surveys classic techniques for reasoning about functional
programs. It then explores Hume coordination and the box calculus, and
examines how Hume programs may be systematically transformed while
maintaining computational and pragmatic correctness.

1 Overview

Having constructed programs that meet their specifications, we often want to
change them to take advantage of changing operating environments. For exam-
ple, we might want to migrate a program from environments with smaller to
larger numbers of processors to improve performance, in particular as the num-
ber of cores grows in new generations of the same CPU architecture. In changing
programs, we want to ensure not only they still meet their original specifications,
but also that their pragmatic (i.e. time, space, sequencing) behaviours change in
well understood ways. In particular, in making what appear to be local improve-
ments to a program, for example by introducing parallelism, we want to avoid
unexpected global impacts that make overall performance worse, for example as
a result of unanticipated additional communication or scheduling costs. Thus,
we need some means of reasoning about changes to programs that can account
for pragmatic as well as computational program properties.

Most software is constructed in imperative programming languages; abstrac-
tions from von Neumann architectures1 based on sequences of state changes
mediated by mutable memory. Here, different program components interact
by manipulating the same memory areas. Thus, changing the order of com-
ponent execution often changes the sequence of memory manipulation, changing
what the program does. This complicates reasoning about imperative programs
because the state change sequencing must be made explicit in the reasoning

1 And also Harvard architectures.

rules. While there are mature systems like Floyd-Hoare logic[Hoa69] and weak-
est preconditions[Dij75] for establishing properties of imperative programs, they
require considerable mathematical sophistication, scale poorly with program size
and lack mature automated or semi-automated tool support.

In contrast, declarative languages do not have any notion of state change
through mutable memory. Instead, program components interact by passing each
other values. Thus, in principle, components may be executed in arbitrary order
without changing what the program does. This is alleged to make it simpler
to reason about declarative programs, compared with imperative ones, as the
reasoning rules do not require any notion of sequenced state change. Nonetheless,
reasoning about functional programs is not really much easier than for imperative
programs: once again, the mathematics is hard, scalability is poor and tools are
lacking.

The introduction of parallelism further complicates reasoning about pro-
grams. Parallelism requires interaction between processors, either through shared
mutable memory access or distributed memory message passing, and that inter-
action must take place in some order and at some additional performance cost.
The development of tools and technologies for reasoning about parallelism is
hampered by factors quite orthogonal to those constraining reasoning about se-
quential programs.

In particular, despite the explosive growth in deployment of multi-processor
architectures, there is effectively no standardisation of parallel programming
languages. This is hardly surprising. Given the vast investments in software tools
and technologies for sequential imperative languages, it is really hard to make a
commercial case for adapting unproven extensions to extant languages, let alone
new parallel languages: the rise and fall of occam[Inm88] is an object lesson.
Instead, extant languages tend to be augmented with libraries like MPI[MF94],
for message passing, and OpenMP[CJP07], for shared memory. As yet, there is
little formalisation of these libraries and so scant theoretical or practical support
for formal reasoning about practical parallelism.

There are, of course, mature formalisms for reasoning about abstract paral-
lelism, for example CSP[Hoa78], CCS[Mil82] and the π calculus[Mil99]. However,
while well suited to reasoning about coordination, these take little account of
the computations that are being coordinated, and share the same constraints as
sequential formalisms.

It has long been claimed [Weg68] that declarative programs are ideal for par-
allelism as the absence of sequences state change enables implicit parallelism at
all levels of programs. Indeed, parallelism formalisms share strong roots with
declarative languages. In practice, such implicit parallelism is almost invariably
too fine grain to be exploited efficiently. That is, the cost of the interaction be-
tween newly parallel program components outweighs any benefit from executing
them in parallel. Thus, there is considerable research into developing new declar-
ative languages for parallelism, such as Eden[BLOMP97], or extending extant
languages, such as Haskell[eAB+99], again without any wide adoption of a sin-
gle language or stable standardisation of extensions. Nonetheless, as we shall

see, declarative languages do offer valuable abstractions for parallelism in higher
order functions (HOFS) which generalise common patterns of computation en-
abling their efficient realisation as standard patterns of coordination.

Hume[HM03] is a general purpose programming language which was designed
to enable the construction and analysis of systems where strong assurances are
required that resource bounds are met. This language has deep roots in contem-
porary functional languages and is based on concurrent finite state automata
with transitions controlled by pattern matching over inputs to invoke recursive
expressions to generate outputs.

To meet Hume’s design objectives, an explicit distinction is made amongst
the expression, coordination and control layers:

– The expression layer is based on a strict, polymorphic functional language
with a rich type system, reminiscent of Standard ML[MTHM97] or Haskell.
This layer is used to define computations that return values for use in box
transitions.

– The coordination layer is based on concurrent generalised finite state au-
tomata consisting of boxes linked by wires. This layer is used to define boxes
and wiring, and box and wiring templates.

– The declaration layer is used to define common auxiliary constructs for use
throughout programs, for example: constants; functions; type aliases; type
signatures; exceptions and constructed data types.

To further facilitate resource analysis complementing system development,
Hume supports the notion of language level with different formal properties,
depending on the types of values on wires between boxes, and the forms of
expressions within boxes. Thus:

– full Hume is a Turing complete language with undecidable time and space
behaviour;

– PR-Hume restricts recursion to primitive recursion. Thus, time and space
are decidable though not necessarily well bound;

– Template-Hume prohibits user defined recursion but provides a repertoire
of higher order functions with well characterised behaviours. Here, time and
space bounds may be well bound.

– FSM-Hume corresponds to a richly typed finite state machine abstraction.
There is no recursion and all repetition is through iteration over boxes.
Furthermore, only types of known size may be passed on wires. FSM-Hume
enables accurate time and space analysis.

– HW-Hume is an impoverished language oriented to hardware at the bit lev-
els, supporting pattern matching on tuples of bits to produce tuples of bits.
HW-Hume enables precise time and space analysis.

It is unrealistic to expect programmers to restrict themselves to one level. In-
stead, Hume supports a methodology of transformational software development.
An initial system is built and analysed. If satisfactory bounds cannot be estab-
lished then problematic loci may be changed into a lower level, typically by mov-
ing activity from within boxes to between boxes. Clearly, reasoning about and

changing programs at the coordination layer almost invariably requires reasoning
and change at the expression layer. Thus, the box calculus strongly reflects this
language design, and is novel in enabling movements between layers in search of
optimal programs.

In the rest of this chapter we will:

– introduce the Hume expression layer;
– survey classical techniques for reasoning about functional programs;
– introduce the Hume coordination layer;
– explore the foundations of the box calculus;
– apply the box calculus to systematically deriving a range of multi-box pro-

grams from single box programs.

2 Hume expression language

2.1 Base types and expressions

Base types For our purposes, the main Hume base types are integer, floating
points, words, characters and booleans. All base types are sized, that is they
have fixed ranges of values which are related to the number of bits that instances
occupy. For numeric types, the size is specified explicitly. For example, the integer
type constructor is:

– int size - signed integer;

where size is some multiple of 82.

Type aliases In practice, it is usual to use type aliases, rather than raw type
constructors, of the form:

type id = type;

where id is an identifier composed of upper and lower case letters and digits,
starting with a letter or , and type is a type expression, in the first instance
a type constructor. Thereafter, id may be used in any context where a type
expression is appropriate. For example:

type integer = int 64;

defines integer to be an alias for int 64.

Base values Hume has the standard base value representations:

– integers are sequences of possibly negative decimal digits: e.g. 12345, -678910;
– floats are sequences of decimal digits separated by a decimal point: e.g.

123.456, -789.1011;
– words are sequences of hexadecimal digits preceded by 0x: e.g. 0xabcdef;
– characters are letters or escaped letters within single quotes: e.g. ’a’, ’\n’(newline);
– booleans are true or false.

2 In practice, current Hume implementations tie all sizes to some C equivalent.

Base expressions All expressions may be structured by brackets (...).
The integer infix operators are + (addition), - (subtraction), * (multiplica-

tion), div (division) and mod (remainder). All integer operators take two integer
operands. The precedence, in descending order, is: (...); unary -; +, -; *, mod,
div.

The float infix operators are + (addition), - (subtraction), * (multiplication)
and / (division). All float operators take two float operands. The precedence, in
descending order, is: (...); unary -; +, -; *, /.

The boolean operators are not (prefix negation), && (infix conjunction) and
|| (infix disjunction). All boolean operators take boolean operands. The prece-
dence, in descending order, is: (...), not, ||, &&.

The comparison operators are == (equals), != (not equals), < (less than),
<= (less than or equal), >= (greater than or equal) and > (greater than). All
comparison operators take operands of the same type.

Constant declaration Constants may be declared by:

id = expression;

Here, id is associated with the value of expression and may be used in subsequent
expressions. For example:

cost = 35;

quantity = 12;

total = cost * quantity;

associates cost with 35, quantity with 12 and total with 420.

2.2 Functions

Function declaration At simplest, Hume functions are declared as:

id pattern = expression;

where id names the function, pattern introduces formal parameters and expression
is the function body. To begin with, a pattern may just be an id. For example:

inc x = x+1;

isZero y = y==0;

declares inc to be function that increments its argument x and isZero to be a
function that checks if it’s argument y is zero.

Function type and type signature If pattern is type1 and expression is
type2 then id is: type1 -> type2.

Types may be nominated explicitly through a type signature of the form:

id :: type;

For example, we could make the types of inc and isZero explicit as:

inc :: int 32 -> int 32

isZero :: int 32 -> bool

Hume supports polymorphic type inference and it is not a requirement to
specify the function type if it is inferable from the context of declaration or
use. However, it may be necessary to provide a type signature to disambiguate
overloaded operators which may appear in different type contexts. For example:

sq :: integer -> integer;

sq x = x*x;

In sq, * is overloaded so x’s type cannot be inferred. Here, the type signature
makes it explicit that sq operates on integers so * must be an integer operator.

Explicit parameter type An alternative to deploying a type signature is to
explicitly nominate the type of a formal parameter using:

(pattern::type)

instead of pattern. For example:

sq (x::integer) = x*x;

makes it explicit that x is integer in sq.

Function call Functions are called with expressions of the form:

id expression

Here, id is a name associated with a function and expression is the actual
parameter. If id is associated with a type1->type2 function and expression is
type1 then the call returns a value of type2.

For a function call: where id’s function has formal parameter pattern, con-
sisting in the first instance of a single id1, and body expression1, then:

– the actual parameter expression is evaluated to value;
– value is matched with pattern i.e. id1 is bound to value;
– the function body expression1 is evaluated with all free occurrences of the

formal parameter id1
3 replaced by value.

Note that Hume does not support anonymous functions.
Note that this is a substitutive model of function call evaluation. For example:

1. inc 41

2. → x+1 with x bound to 41

3. → 41+1

3 i.e. occurrences outwith the scope of some other declaration of id1 in expression1

4. → 42

For example:

1. isZero (inc 3)

2. → x+1 with x bound to 3

3. → 3+1

4. → 4

5. → y==0 with y bound to 4

6. → 4==0

7. → false

A function call has precedence higher than numeric operators and lower than
(...).

2.3 Tuples

Tuple form A tuple is a fixed sized sequence of elements of possibly different
types. A tuple has the form:

(exp1,exp2...expN)

If expi is of typei then this tuple has type:

(exp1,exp2...expN) :: (type1,type2,...typeN)

For example:

(1,2.0,true) :: (int 32,float 32,bool)

(1,(2,3),4) :: (int 32,(int 32,int 32),int 32)

Tuple pattern Tuple patterns may be used for multi-parameter functions.
These take the form:

(patt1,patt2...pattN)

In:

id (patt1,patt2...pattN) = expression

if patti is typei and expression is typeN+1 then the function type is:

(type1,type2...typeN) -> typeN+1

Then, a function call:

id expression1

proceeds as:

– evaluate expression1 to:
(value1,value2...valueN)

– match patti with valuei i.e. bind idi from patti to valuei;

– evaluate the body expression with these bindings.

For example, given:

quad :: (integer,integer,integer,integer) -> integer;

quad (a,b,c,x) = a*x*x+b*x+c;

then:

1. quad (1,2,1,3)

2. → a*x*x+b*x*c with a=1, b=2, c=1 and x=3

3. → 1*3*3+2*3+1

4. → 16

2.4 Multi-case functions

Multi-case function declaration Multi-case functions may be declared as:

id pattern1 = expression1;
id pattern2 = expression2;
...

id patternN = expressionN;

All cases must have same id. All patterni must be same type1. All expressioni
must be the same type2. The function then has type: type1->type2.

As we shall see, case order is significant. The patterni should be disjoint and
cover all possible values of type1. Thus, it is usual, for functions that do not have
exhaustive cases, to provide a final case with a catch-all id pattern.

Constant pattern Patterns may include constant values in any positions where
id may appear. For example, we might define boolean negation as:

Not false = true;

Not true = false;

and natural number decrement as:

natDec 0 = 0;

natDec x = x-1;

For a constant pattern match to succeed, the same constant must appear in the
same structural position in the formal parameter pattern and actual parameter
value.

Multi-case function call For:

id expression

– expression is evaluated to some value;
– value is matched against each pattern in turn from first to last.
– if a match with patterni succeeds then expressioni is evaluated;

For example, for:

Not true

then:

1. try Not false - false does not match true;
2. try Not true - true matches true;
3. → false

For example, for:

natDec 3

then:

1. try natDec 0 - 0 does not match 3;
2. try natDec x - x binds to 3;
3. → x-1

4. → 3-1

5. → 2

2.5 Recursion

Recursive function declaration As in all functional languages, Hume func-
tions may call themselves. At simplest, a recursive function has the typical struc-
ture:

– base case match constant and return final value;
– recursion case match id and call function again with modified id.

The recursion case should make progress towards the base case by changing the
recursion parameter id.

For example, consider summing a sequence of integers from N to 0:

N + (N − 1) + ...+ 2 + 1 + 0

We can write this as:

sum 0;

sum N = n+sum (N-1);

so:

sum 3 → 3+sum 2 → 3+2+sum 1 → 3+2+1+sum 0 → 3+2+1+0 → 6

For example, consider summing a sequence of squares from N to 0:

N2 + (N − 1)2 + ...+ 22 + 12 + 0

We can write this as:

sumSq 0;

sumSq N = sq n+sumSq (N-1);

so:

sumSq 3 → sq 3+sumSq 2 → sq 3+sq 2+sumSq 1 →
sq 3+sq 2+sq 1+sumSq 0 → sq 3+sq 2+sq 1+0 → 9+4+1+0 → 14

2.6 Higher order functions 1

As a first definition, a higher order function takes other functions as parameters.
For example, consider summing some function f over the range from N to 0:

f N + f (N − 1) + ...f 2 + f 1 + 0

We may write this as:

sumF :: (integer->integer,integer)->integer;

sumF (f,0) = 0;

sumF (f,N) = f N+sumF (f,n-1);

Then we may sum squares from N to 0 with:

sumF (sq,3) → sq 3+sumF (sq,2) → sq 3+sq 2+sumF (sq,1) →
sq 3+sq 2+sq 1+sumF (sq,0) → sq 3+sq 2+sq 1+0 → 9+4+1+0 →
14

2.7 Curried functions

Functions with tuple formal parameters may be written as nested or Curried
functions. Thus:

id::(type1,type2...typeN)->type;
id (patt1,pat2...pattN) = expression;

has equivalent nested function:

id::type1->type2...typeN->type;
id patt1 patt2 ... pattN = expression;

For example:

quad::(integer,integer,integer,integer)->integer;

quad (a,b,c,x) = a*x*x+b*x+c;

⇔
quadC::integer->integer->integer->integer->integer;

quadC a b c x = a*x*x+b*x+c;

Curried functions are called as:

id exp1 exp2 ... expN

For example:

quadC 1 2 1 3;

Currying is a matter of style. It’s use lies in support for partial application
where a function of N parameters is applied to M < N parameters to return a
function of N −M parameters with the first M parameters bound to specific
values. However, Hume does not support partial application.

2.8 Constructed types 1

New types with distinct constant values may be declared by:

data id = id1 | id2 | ... ;

Here, id is the new type, and the idi are new constructors returning values idi
of type id.

For example:

data STATE = ON | OFF;

declares a new type STATE with values ON and OFF.
Type constructors may be used as constants in patterns. For example, to flip

STATE:

change ON = OFF;

change OFF = ON;

Here, change has type STATE->STATE.

2.9 Higher Order Functions 2

A second definition of a higher order function is one that returns a function. For
example, consider:

data FN = INC | SQ;

getFN :: FN -> (integer->integer);

getFN INC = inc;

getFN SQ = sq;

Here, getFN returns either inc or sq, depending on the actual parameter. Thus:

getFn SQ 3 → sq 3 → 9

As always, the functions returned in different cases must have the same type, in
this instance integer->integer.

2.10 Polymorphism

The ability to abstract over types is termed polymorphism, from the Greek for
“many forms”. In Hume, type expressions may include type variables with single
lower-case letter identifiers: a, b, c etc.

In a type expression, all occurrences of a type variable must be capable
of being replaced consistently with the same type. For example, consider the
identity function:

identity :: a -> a;

identity x = x;

In:

identity 42 → 42

the type variable a is replaced consistently by int 32. In:

identity (’a’,’b’,’c’) → (’a’,’b’,’c’)

the type variable a is replaced consistently by (char,char,char).

2.11 Lists

List representation A list is an arbitrary length sequence of the same type.
A list whose elements are of type has type [type].

Lists are formed using the infix concatenation operator : of effective type
(a,[a])->[a]. That is, if exp1 is of type and exp2 is a list of type, i.e. [type],
then exp1:exp2 is of type [type].

The empty list is [] of effective type [a] and must end every list.
For example:

1:2:3:[] :: [int 32]

(’a’,true):(’b’,false):(’c’,false):[] :: [(char,bool)]

inc:sq:[] :: [int 32->int 32]

In exp1:exp2, exp1 is called the list head and exp2 the list tail.
The simplified notation:

exp1:exp2:...:expN:[] ⇔ [exp1,exp2,...,expN]

is often used. For example:

1:2:3:[] ⇔ [1,2,3]

(’a’,true):(’b’,false):(’c’,false):[] ⇔
[(’a’,true),(’b’,false),(’c’,false)]

inc:sq:[] ⇔ [inc,sq]

Note that:

[exp] ⇔ exp:[]

List pattern and list recursion Formal parameter patterns may include the
forms:

patt1:patt2
[exp1,exp2...expN]

For both forms, the actual parameters must have corresponding structures. Then,
elements of the list pattern are matched against corresponding values in the
actual parameter.

List recursion then has the typical structure:

– base case [] - return final value;
– recursion case (id1:id2) - recurse on id2 and combine with modified id1.

For example, to find the length of a list:

Length :: [a] -> integer;

Length [] = 0;

Length (h:t) = 1+Length t;

so:

Length [1,2,3] → 1+Length [2,3] → 1+1+Length [3] → 1+1+1+Length

[] → 1+1+1+0 → 3

For example, to sum the elements of a list:

sumL [] = 0;

sumL (h:t) = h+sumL t;

so:

sumL [1,2,3] → 1+sumL [2,3] → 1+2+sumL [3] → 1+2+3+sumL []

→ 1+2+3+0 → 6

To square all in a list:

sqList [] = [];

sqList (h:t) = sq h:sqList t;

so:

sqList [1,2,3] → sq 1:sqList [2,3] → sq 1:sq 2:sqList [3] →
sq 1:sq 2:sq 3:sqList [] → sq 1:sq 2:sq 3:[] → 1:4:9:[] →
[1,4,9]

2.12 List higher order functions

We will now survey a number of list higher order functions which we will use in
later sections.

Sum function over list To sum a function over a list:

sumFL :: (a->integer)->[a]->integer;

sumFL f [] = 0;

sumFL f (h:t) = f h+sumFL f t;

so:

sumFL sq [1,2,3] → sq 1+sumFL sq [2,3] → sq 1+sq 2+sumFL sq

[3] → sq 1+sq 2+sq 3+sumFL sq [] → sq 1+sq 2+sq 3+0 → 1+4+9

→ 14

map To map a function over a list, that is apply a function to every element:

map :: (a->b)->[a]->[b];

map f [] = [];

map f (h:t) = f h:map f t;

so to square every element in a list:

map sq [1,2,3] → sq 1:map sq [2,3] → sq 1:sq 2:map sq [3] →
sq 1:sq 2:sq 3:map sq [] → sq 1:sq 2:sq 3:[] → 1:4:9:[] →
[1,4,9]

append To append one list onto another, that is join the lists end to end:

append :: [a]->[a]->[a];

append [] l2 = l2;

append (h1:t2) l2 = h1:append t1 l2;

For example:

append [1,2,3] [4,5,6] → 1:append [2,3] [4,5,6] → 1:append

[2,3] [4,5,6] → 1:2:append [3] [4,5,6] → 1:2:3:append [] [4,5,6]

→ 1:2:3:[4,5,6] → [1,2,3,4,5,6]

append l1 l2 may be written l1++l2.

2.13 String

A string is a sequence of letters within "...". For example:

"this is not a string"

The string type constructor is string. A string is the same as a list of char so:

"hello" ⇔ ’h’:’e’:’l’:’l’:’o’:[] ⇔ [’h’,’e’,’l’,’l’,’o’]

and:

"hello"++" "++"there" ⇔ "hello there"

2.14 Conditional expression

Pattern matching can only determine the presence or absence of a constant value.
To establish other properties of values a conditional expression may be used:

if expression1 then expression2 else expression3

expression1 must return a bool, and expression2 and expression3 must return
the same type.

expression1 is evaluated. If it is true then expression2 is evaluated. Other-
wise expression3 is evaluated.

For example, to select all the even values in an integer list:

isEven y = y div 2==0;

getEven [] = [];

getEven (h:t) =

if isEven h

then h:getEven t

else getEven t;

so:

getEven [1,2,3,4] → getEven [2,3,4] → 2:getEven [3,4] →
2:getEven[4] → 2:4:getEven [] → 2:4:[] → [2,4]

Filter For example, to find all the elements of a list satisfying some property:

filter :: (a->bool)->[a]->[a];

filter p [] = [];

filter p (h:t) =

if p h

then h:filter p t

else filter p t;

so:

filter isEven [1,2,3,4] → filter isEven [2,3,4] → 2:filter

isEven [3,4] → 2:filter isEven[4] → 2:4:filter isEven [] →
2:4:[] → [2,4]

2.15 Case expression

The case expression provides an expression form which is equivalent to a multi-
case function declaration. For:

case expression of

pattern1 -> expression1 |

pattern2 -> expression2 |

...

patternN -> expressionN

expression and all patterni must have the same type, and all expressioni must
have the same type. As with multi-case functions, the patterns should be disjoint
and there should be full coverage for the corresponding type, so a final case with
a catch-all variable pattern is common.

expression is evaluated and matched against each pattern in turn from 1 to
N . If the match with patterni succeeds then the value of expressioni is returned.

For example:

fib 0 = 1;

fib 1 = 1;

fib n = fib (n-1)+fib (n-2);

⇔
fib n =

case n of

0 -> 1 |

1 -> 1 |

n -> fib (n-1)+fin (n-2);

As we will see, the case expression is used in the box calculus to move activity
between functions and boxes.

2.16 Constructed types 2

The constructed type form is generalised to enable the declaration of structured
types. For:

data id = id1 type1 | id2 type2 | ... idN typeN;

each idi typei is a type constructor of typei->id.
The equivalent form idi patterni may then be used in patterns. For a match

to succeed, the actual parameter idj expressionj must have the same constructor
idj as idi and the expressionj must match patterni.

For example, to declare integer lists:

data LIST = NIL | CONS (integer,LIST);

Here, the new type is LIST with constant value NIL and structured values of the
form CONS (h,t) where h is an integer and t is a LIST. For example:

CONS(1,CONS(2,CONS(3,NIL)))

Then, we might declare a function to flatten a LIST into a [integer] as:

flatten NIL = [];

flatten (LIST(h,t)) = h:flatten t;

so:

flatten (CONS (1,CONS(2,CONS(3,NIL)))) →
1:flatten (CONS (2,CONS(3,NIL))) →
1:2:flatten (CONS(3,NIL)) →
1:2:3:flatten NIL → 1:2:3:NIL → [1,2,3]

3 Reasoning about functional programs

3.1 Introduction

Our starting point was that we have a correct program, that is one that satisfies
its specification, and we wish to change it in various ways without compromising
that correctness. In the widely used Floyd-Hoare paradigm, we assume that we
have proved that:

{P}program{Q}

That is, for some program, given a precondition P , which is true at the start of
the program, then we can prove that some post-condition Q is true at the end
of the program, using an appropriate proof theory. If we then change program
to program′ we then need to prove:

{P}program′{Q}

That is we must prove that the new program still satisfies the original specifica-
tion.

Proving program correctness requires considerable sophistication in both con-
structing the specification and deriving the proof. This is a very time consuming
process, despite partial automation through theorem provers.

An alternative is to deploy formal program transformation, using rules that
are known to preserve correctness. That is, given a transformation T , if we can
prove that:

∀ P ,Q,program: {P}program{Q} ⇒ {P}T (program){Q}

then we can deploy T to change programs without any further need to re-prove
the changes.

In practice, the deployment of transformation assumes referential trans-
parency [Qui64], that is that substitution of equalities preserves meaning. So,
mathematical or logical techniques are used to establish that transformations
establish equality and then the transformations may be applied to localised pro-
gram fragments.

For functional programs, reasoning about program transformation draws on
classical propositional and predicate calculi, set theory, Peano arithmetic and
the theory of computing. We will next survey these sources and then carry out a
number of proofs of basic transformations for use when we meet the box calculus
proper.

3.2 Propositional calculus

Inference Propositional calculus[Nid62] is a system for reasoning about truth
formula made up of:

– constants true and false;
– variables;

– operators such as: ¬ (not), ∧ (and), ∨ (or), ⇒ (implies), ≡ (equivalent);
– (...) (brackets)

Proofs are based on axioms, that is formula that are always true and rules of

inference of the form:
assumptions
conclusion

The proof that a proposition is a theorem, that is always true, then proceeds
by starting from axioms, and established theorems, which have already been
proved to be true, and applying rules of inference until the truth or falsity of the
proposition is established.

Truth tables We may give semantics to propositional operators in terms of
truth tables that spell out explicitly their values for all possible combinations of
operands. Figure 1 shows the tables for ¬, ∧, ∨ and ⇒.

X Y ¬ X X ∧ Y X ∨ Y X ⇒ Y
false false true false false true

false true false true true

true false false false true false

true true true true true

Fig. 1. Truth tables for ¬, ∧, ∨ and ⇒

We may then prove a theorem by constructing the truth table to demonstrate
that it is true for all combinations or arguments. For example, Figure 2 shows a
proof that:

X ⇒ Y ≡ ¬ X ∨ Y

X Y ¬ X ¬ X ∨ Y X ⇒ Y
false false true true true

false true true true true

true false false false false

true true false true true

Fig. 2. X ⇒ Y ≡ ¬ X ∨ Y

Rewriting Rewriting involves using proven equivalences of the form:

formula1 ≡ formula2

by substituting instances of formula2 for formula1 and vice versa, consistently
replacing common meta-variables. There are many well known equivalences for
cancelling out, reordering and expanding/grouping terms - see Figure 3. We will

Constant Negation
P ∧ true ≡ P P ∨ ¬P ≡ true

P ∧ false ≡ false P ∧ ¬P ≡ false

P ∨ true ≡ true Idempotency
P ∨ false ≡ P P ∨ P ≡ P

P ∧ P ≡ P

Associativity Commutativity
P ∨ (Q ∨R) ≡ (P ∨Q) ∨R P ∨Q ≡ Q ∨ P
P ∧ (Q ∧R) ≡ (P ∧Q) ∧R P ∧Q ≡ Q ∧ P

(P ≡ Q) ≡ (Q ≡ P)

Distributivity De Morgan’s Laws
P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R) ¬(P ∧Q) ≡ ¬P ∨ ¬Q
P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R) ¬(P ∨Q) ≡ ¬P ∧ ¬Q

Implication Equivalence
P ⇒ Q ≡ ¬P ∨Q (P ≡ Q) ≡ (P ⇒ Q) ∧ (Q⇒ P)
P ⇒ Q ≡ ¬Q⇒ ¬P (P ≡ Q) ≡ (P ∧Q) ∨ (¬P ∧ ¬Q)
P ∧Q⇒ R ≡ P ⇒ (Q⇒ R) (P ≡ Q) ≡ (P ⇒ Q) ∧ (¬P ⇒ ¬Q)

Fig. 3. Propositional equivalences.

meet many of these forms again when we consider other roots for reasoning
about functional programs.

3.3 Predicate calculus

Where propositional calculus is concerned with properties of propositions about
truth values, predicate calculus[Hod77] is used to reason about properties of some
universe of discourse. It extends propositional calculus with:

– constant values from a universe of some type;

– predicates capturing properties of values from the universe, from that type
to boolean;

– functions between values in the universe, from type to type;

Most important, predicate calculus introduces quantifiers for expressing proper-
ties of the entire universe. Universal quantification (all):

∀var : P (var)

states that P holds for all var from the universe. Existential quantification (ex-
ists):

∃var : P (var)

states that P holds for some var from the universe.
Pure predicate calculus is used to establish properties of arbitrary universes

and we will not consider it further here. However, we will look at applied predi-
cate calculus in more detail.

3.4 Set theory

Set theory [Hal60] formalise properties of sets of constants, characterised either
exhaustively or by some predicate. Finite sets are written as:

{element1, element2, ...elementN}

where each elementi is some atomic entity. The empty set is {}. The principle
set operations are: ∈ (member), ∪ (union), ∩ (intersection), ⊂ and ⊆ (subset)
and \ (difference).

Set theory also offers a rich collection of equivalences for cancelling, reorder-
ing, expanding and grouping terms in set expressions, summarised in Figure 4.

Constant Idempotency
X ∪ {} ≡ X A ∪A ≡ A
X ∩ {} ≡ {} A ∩A ≡ A
X\{} ≡ X

Associativity Commutativity
A ∪ (B ∪ C) ≡ (A ∪B) ∪ C A ∪B ≡ B ∪A
A ∩ (B ∩ C) ≡ (A ∩B) ∩ C A ∩B ≡ B ∩A

Distributivity
A ∩ (B ∪ C) ≡ (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) ≡ (A ∪B) ∩ (A ∪ C)

Fig. 4. Set equivalences.

Set theoretic predicate calculus Quantification may be specialised to specific
sets, so:

∀var ∈ S : P (var)

states that P holds for all var in S, and:

∃var ∈ S : P (var)

states that P holds for some var in S.
We may then note the equivalence:

∀var ∈ S : P (var) ∧ P (s) ≡ ∀var ∈ S ∪ {s} : P (var)

which states that if P holds for all in S and for s, then P holds for all of S
augmented with s.

Similarly

∃var ∈ S : P (var) ∨ P (s) ≡ ∃var ∈ S ∪ {s} : P (var)

which states that if P holds for some member of S or for s, then P holds for
some member of S augmented with s.

3.5 Peano arithmetic

We come even closer to functional reasoning with Peano arithmetic[Kne63] which
formalises properties of natural numbers, that is numbers greater than or equal
to zero. Peano arithmetic is based on constructing numbers from 0 and the
successor function succ i.e. succ(X) = X + 1. The axioms are:

1. 0 is a natural number;
2. if N is a natural number then succ(N) is a natural number;
3. if N is a natural number then ¬(0 = succ(N));
4. if M and N are natural numbers and if M = N then succ(M) = succ(N).

Note that here we use the numeric notion of equality rather than boolean equiv-
alence.

Induction Peano arithmetic introduces the fundamental technique of proof by
induction which underlies all recursive proof techniques. If:

– P (0) can be proved;
– assuming P (N) then P (succ(N)) can be proved.

then it may be concluded that P holds for all natural numbers.

Recursive Complementing inductive proof, Peano arithmetic also introduces
recursive already familiar from functional programming. That is, a recursive
function may be defined in terms of:

– base case where the argument is 0 and some value is returned;
– recursion case where the argument is succ(N) and the function is called with

possibly modified N .

For example, we define addition and multiplication in Figure 5.

X + 0 = X X ∗ 0 = 0
X + succ(Y) = succ(X + Y) X ∗ succ(Y) = X + X ∗ Y

Fig. 5. Addition and multiplication

Inductive proof We may then use inductive proof to establish properties of
recursive functions. We first number and state the theorem. We next state and
prove the base case, where one argument is 0. Then, we state the recursion
case and the assumed induction hyp., where one argument involves succ, before
proving the recursion case. We write proof steps systematically from one side of
the equality to the other of the equality we wish to establish, one step to a line,
noting the justification for the step. The justification is usually a reference to
the definition of a function, the induction hypothesis or a theorem.

For example:

Theorem 1. 0 +X = X

Proof. By induction on X

Base case: 0 + 0 = 0
0 → (+)
0 + 0

Recursion case: 0 + succ(X) = succ(X)
Assumption 0 +X = X [induction hyp.]

0 + succ(X) → (+)
succ(0 +X) → (induction hyp.)
succ(X)

For example:

Theorem 2. X + succ(Y) = succ(X) + Y

Proof. By induction on Y

Base case: X + succ(0) = succ(X) + 0
X + succ(0) → (+)
succ(X + 0) → (+)
succ(X) → (+)
succ(X) + 0

Recursion case: X + succ(succ(Y)) = succ(X) + succ(Y)
Assumption X + succ(Y) = succ(X) + Y [induction hyp.]

X + succ(succ(Y)) → (+)
succ(X + succ(Y)) → (induction hyp.)
succ(succ(X) + Y) → (+)
succ(X) + succ(Y)

Theorem 3. X + Y = Y +X:

Proof. By induction on Y

Base case: X + 0 = 0 +X
X + 0 → (+)
X → (Theorem 1)
0 +X

Recursion case: X + succ(Y) = succ(Y) +X
Assumption X + Y = Y +X [induction hyp.]

X + succ(Y) → (+)
succ(X + Y) → (induction hyp.)
succ(Y +X) → (+)
Y + succ(X) → (Theorem 2)
succ(Y) +X

Non-inductive Peano arithmetic does not require us to stick to the induction
form for defining functions. For example, we give recursive definitions of com-
parison operators in Figure 6, and could prove the usual transitive properties:

0 < succ(N) succ(N) > 0
succ(X) < succ(Y) = X < Y succ(X) > succ(Y) = X > Y

Fig. 6. Comparison

A = B ∧B = C ⇒ A = C
A < B ∧B < C ⇒ A < C
A > B ∧B > C ⇒ A > C

We may then use the comparison operators to qualify other definitions. For
example, we define subtraction and division in Figure 74.

X ≤ Y ⇒ X − Y = 0 X < Y ⇒ X/Y = 0
X − 0 = X X/0 = 0
succ(X)− succ(Y) = X − Y X/Y = succ((X − Y)/Y)

Fig. 7. Subtraction and division

Arithmetic equivalences We could then prove the standard arithmetic equal-
ities shown in Figure 8, using 1 ≡ succ(0).

4 Note that, to make / total, we define division by 0 to be 0 not ⊥.

Constant Associativity
X + 0 = X (A + B) + C = A + (B + C)
X − 0 = X (A ∗B) ∗ C = A ∗ (B ∗ C)
X ∗ 0 = 0
X ∗ 1 = X Commutativity
X/1 = X A + B = B + A
X/X = 1 A ∗B = B ∗A
−(−X) = X

Distributivity
A ∗ (B + C) = A ∗B + A ∗ C
A ∗ (B − C) = A ∗B −A ∗ C

Fig. 8. Arithmetic equivalences.

3.6 λ calculus

With recursive function theory[Pet67], Church’s λ calculus[Chu36] is the bedrock
of functional programming. λ calculus is based on pure abstractions over names,
with three very simple expression forms:

– id - variable;
– (λid.expression) - function abstraction: id is the bound variable (formal

parameter) and expression is the body;
– expression1 expression2 - function application: expression1 is a function

and expression2 is the argument (actual parameter).

β reduction λ expressions are evaluated through a process of substitution of
argument expressions for bound variables in function bodies called β reduction.
Before we can formulate this, we need to clarify the notions of a variable being
bound or free in an expression.

A variable id is bound in an expression if the expression is:

– (λid′.expressions) - id is the bound variable id′ or id is bound in the body
expression;

– expression1 expression2 - id is bound in expression1 or in expression2.

A variable id is free in an expression if the expression is:

– id′ - id is id′;
– (λid′.expressions) - id is not id′ and id is free in the expression;
– expression1 expression2 - id is free in expression1 or in expression2.

Then to β reduce:

(λid.expression1) expression2

in normal order, where the actual parameter expression2 is not evaluated:

– replace all free occurrences of id in expression1 with expression2;
– β reduce the resulting expression.

We indicate a β reduction step with →β .
For example:

((λx.λy.x y) (λs.s s)) (λz.z)→β

(λy.(λs.s s) y) (λz.z)→β

(λs.s s) (λz.z)→β

(λz.z) (λz.z)→β

λz.z

For applicative order β reduction, the argument expression2 is evaluated
before substitution in the body expression1.

α renaming A potential problem with β reduction lies in free variable capture
where a free variable in an argument expression, which should not be the site of
further substitutions, is moved into the scope of a bound variable with the same
identifier, where it may subsequently be replaced. For example, in:

((λx.λy.x) y) (λx.x)→β (λy.y) (λx.x)→β (λx.x)

y was free in the original expression but is bound in the reduced expression λy.y
and so is replaced by λx.x.

To α rename an expression (→α), all id free in an expression are replaced
with a new unique id′. For example:

((λx.λy.x) y) (λx.x)→α ((λx.λy.x) a) (λx.x)→β (λy.a) (λx.x)→ a

Here, λx.x is discarded as there are now no occurrences of the bound variable y
in the renamed body a.

α renaming assumes that we have an inexhaustible supply of new names.

η reduction η reduction is a common special case of β reduction:

λ x.f x →η f

where abstracting over applying some function f to some argument x is simply
equivalent to just the function f .

Example proof We may use β reduction to carry out equivalence proofs for
the λ calculus. For example, given functions to convert between Curried and
un-Curried forms:

curry f x y = f (x,y)

uncurry f (x,y) = f x y

we may show:

Theorem 4. curry(uncurryf) = f

Proof.
curry(uncurryf) → (uncurry)
curry((λf.λ(x, y).f x y) f) →β

curry(λ(x, y).f x y) → (curry)
(λf.λx.λy.f (x, y))(λ(x, y).f x y)→β

λx.λy.(λ(x, y).f x y)(x, y) →β

λx.λy.f x y →η

λx.f x →η

f

and:

Theorem 5. uncurry(curryf) = f

Proof.

uncurry(curry f) → (curry)
uncurry((λf.λx.λy.f (x, y)) f) →β

uncurry(λx.λy.f (x, y)) → (uncurry definitiion)
(λf.λ(x, y).f x y)(λx.λy.f (x, y))→β

λ(x, y).(λx.λy.f (x, y)) x y →β

λ(x, y).(λy.f (x, y)) y →β

λ(x, y).f (x, y) →η

f

3.7 Structural induction

Burstall’s widely used structural induction[Bur69] is a generalisation of Mc-
Carthy’s recursion induction on recursive functions[McC62] to compositional
recursive structures, that is structures whose properties may be characterised
in terms of properties of their components. For example, lists are defined in
terms of the empty list ([]) and the concatenation of a head and a tail (h : t), so
proving P (h : t) by structural induction involves:

– base case: prove P ([]);
– recursion case: assume P (t) and prove P (h : t).

As we shall see, structural induction is a mainstay of reasoning about functional
programs.

3.8 fold and unfold

The other mainstay of reasoning about functional programs is Burstall and Dar-
lington’s fold/unfold approach[BD77]. This is based on five rules:

1. instantiation: substitute for actual parameter in function body;

2. unfolding : replace function call in expression by equivalent instantiation of
function body;

3. folding : replace instance of function body by equivalent function call;
4. abstraction: introduce let (or where) by replacing instance with variable

and defining variable to be instance.

Rules 1. and 2. are reminiscent of β reduction and rule 3. of its reverse.
Of their fifth rule, termed laws, they say:

“We may transform an equation by using on its right hand side any laws
we have about the primitives K,l...(associativity, commutativity etc)....”
(p48)

thus advocating use of the equivalences and equalities we have already surveyed.

3.9 Bird-Meertens Formalism

The Bird-Meertens Formalism (BMF)[BdM97] is a general calculi of functional
programs. Here we will consider the theory of lists[Bir87], which applies rules
drawn from fold/unfold and structural induction to programs built from higher
order functions like map, fold, append and compose. 5

For example, to prove the associativity of ++:

Theorem 6. a++(b++c) = (a++b)++c

Proof. By induction on a

Base case: []++(b++c) = ([]++b)++c
[]++(b++c) → (++)
b++c → (++)
([]++b)++c

Recursion case: (h : t)++(b++c) = ((h : t)++b)++c
Assumption t++(b++c) = (t++b)++c [induction hyp.]

(h : t)++(b++c) → (++)
h : (t++(b++c)) → (induction hyp.)
h : ((t++b)++c) → (++)
(h : (t++b))++c → (++)
((h : t)++b)++c

We will now carry out a number of proofs which we will use when we explore
the box calculus.

We start with a generic definition of fold which applies some function f to
the head of a list and the result of doing so recursively to the tail of the list,
given some initial value r:

fold :: (b->a->b)->b->[a]->b

fold f r [] = r

fold f r (x:xs) = fold f (f r x) xs

5 Note that in presenting proofs we assume that all variables are universally quantified.

We assume that f is associative so:

f a (f b c) = f (f a b) c

We next introduce additional functions to take the first n elements of a list:

take _ [] = []

take 0 xs = []

take (1+n) (x:xs) = x:take n xs

drop the first n elements of a list:

drop _ [] = []

drop 0 xs = xs

drop (1+n) (x:xs) = drop n xs

There now follow a number of simple BMF proofs which we will use when
we come to consider a substantive box calculus example below.

First of all, we show that take and drop cancel:

Theorem 7. take n xs++drop n xs = xs

Proof. By induction on xs

Base case: take n []++drop n [] = []
take n []++drop n [] → (take/drop)
[]++[] → (++)
[]

Recursion case: take n (x : xs)++drop n (x : xs) =
x : xs

Assumption take n xs++drop n xs = xs [induction hyp.]
By induction on n
Base case: take 0 (x : xs)++drop 0 (x : xs) =

x : xs
take 0 (x : xs)++drop 0 (x : xs) → (take/drop)
[]++(x : xs) → (++)
x : xs

Recursion case: take (y + 1) (x : xs)++
drop (y + 1) (x : xs) = x : xs
take (y + 1) (x : xs)++
drop (y + 1) (x : xs) → (take/drop)

(x : take y xs)++
drop y xs → (++)
x : (take y xs++
drop y xs) → (induction hyp.)
x : xs

Note that we could have established the second induction by case analysis with
n equal to 0.

We also show:

Theorem 8. f a (fold f r b) = fold f a (r : b)

Proof. By induction on b

Base case: f a (fold f r []) = fold f a (r : [])
f a (fold f r []) → (fold)
f a r → (fold)
fold f (f a r) [] → (fold)
fold f a (r : [])

Recursion case: f a (fold f r (x : b)) =
fold f a (r : (x : b))

Assumption f a (fold f r b) = fold f a (r : b) [induction hyp.]
f a (fold f r (x : b)) → (fold)
f a (fold f (f r x) b) → (induction hyp.)
fold f a ((f r x) : b) → (fold)
fold f (f a (f r x)) b → (f associativity)
fold f (f (f a r) x) b → (fold)
fold f (f a r) (x : b) → (fold)
fold f a (r : (x : b))

Finally, we show that fold distributes over ++, assuming that e is an identity
element for f so:

f e x = x = f x e

Theorem 9. fold f r (a++b) = f (fold f r a) (fold f e b)

Proof. By induction on a

Base case: fold f r ([]++b) =
f (fold f r []) (fold f e b)

fold f r ([]++b) → (++)
fold f r b → (e identity)
fold f (f r e) b → (fold)
fold f r (e : b) → (Theorem 8)
f r (fold f e b) → (fold)
f (fold f r []) (fold f e b)

Recursion case: fold f r ((x : a)++b) =
f (fold f r (x : a)) (fold f e b)

Assumption fold f r (a++b) =
f (fold f r a) (fold f e b) [induction hyp.]

fold f r ((x : a)++b) → (++)
fold f r (x : (a++b)) → (fold)
fold f (f r x) (a++b) → (induction hyp.)
f (fold f (f r x) a) (fold f e b) → (fold)
f (fold f r (x : a)) (fold f e b)

We will see in subsequent sections both how the BMF enables us to reason
about computational aspects of parallel programs and its limitations in account-
ing for pragmatic effects of parallel program transformation.

4 Hume coordination layer

We have met the Hume expression layer as a pure functional programming lan-
guage and surveyed techniques for reasoning about functional programs. We
will now look at the Hume coordination layer before considering requirements
for reasoning about coordination in the next section.

4.1 Boxes and wires

As we noted above, Hume programs are built from boxes connected to each
other, the wider environment and themselves by input and output wires.

Boxes are generalised finite state automata which pattern match on their
inputs and generate corresponding outputs with expression layer constructs.
Boxes are repeated one-shot and stateless. So a box can be thought of as a
non-terminating while loop which loses all the values of its local variables on
each iteration.

Wires connect input and output links on boxes and streams to the operating
environment. Wires are uni-directional, single buffered FIFOs which can hold
any matchable construct. They retain information between box iterations and
so are the sole locus of state in Hume programs.

4.2 Execution model

Boxes execute repeatedly for ever in a two-phase execution cycle. In the local
phase, each box attempts to match its inputs and generate outputs. Then in the
global super-step phase, the consumption of input values from, and assertion of
output values to, wires is resolved.

At the start of each execution cycle a box may be:

– READY : all outputs from the previous cycle have been consumed and so
new inputs may be sought;

– BLOCKED : some outputs from the previous cycle have not been consumed
and so new outputs cannnot be generated.

Then the execution model is:

for each box:
STATE ← READY

forever
for each READY box:
if match inputs then:
consume inputs from wires
generate and buffer outputs
STATE ← BLOCKED

for each BLOCKED box:
if previous outputs consumed then:
assert outputs from buffer on wires
STATE ← READY

In the model, the local and global phases may be conducted concurrently
with an intervening barrier synchronisation.

4.3 Box, wire and steam declarations

Box declaration A box is declared by:

box id
in (idI1::typeI1,...idIM::typeIM)

out (idO1::typeO1,...idON::typeON)
match

pattern1 -> expression1 |

...

patternP -> expressionP ;

id is the name of the box, and idIx/typeIx and idOy/typeOy are the names
and types of the input and output links.

All the patterni must have the same type as the input links and all the
expressioni must have the same type as the output links.

Note that the link name space and the pattern name space are disjoint so
the same identifiers may be used in both.

Wire declaration A wire declaration takes the form:

wire id (linkI1,...linkIM) (linkO1,...linkON);

id is the name of the box, and linkIx and linkOy are the names of the links (and
streams) to which the corresponding box inputs and outputs are connected.

A link name may be boxid.in− outid, where boxid is the name of a box and
in− outid is the name of one of that box’s input or output links, or the name of
a stream streamid.

All wires must make type-consistent connections.

Wire initialisation Wires which are not connected to an environmental input
may require an initial value to enable pattern matching to commence. This may
be achieved by using a wiring link of the form:

id.id initially constant

Stream declaration Streams convey character sequences from and to the op-
erating environment. In principle they may be associated with arbitrary sources
and sinks but currently only files and sockets are supported.

Streams are declared by:

input stream: stream id from ”path”;
output stream: stream id to ”path”;

where id is the stream name and path is a path.

Automatic input/output Stream text is automatically converted to and from
appropriate representations for any bounded type associated with a box link. For
an input stream, the type is used as a grammar to parse the text to the corre-
sponding value. For an output stream, the type is used to guide flat, unbracketed
pretty printing of the value. The conventions are the same as for the expression
layer type conversion: expression as string.

4.4 Examples

Consider a box that copies input from the keyboard to output on the display
without change:

1. type integer = int 32;

2. box identity

3. in (x::integer)

4. out (y::integer)

5. match

6. p -> p;

7. stream input from "std_in";

8. stream output to "std_out";

9. wire identity (input) (output);

where line numbers are purely to aid narrative.
Lines 2 to 6 declare a box called identity with input link x and output link

y which both carry integers as declared in line 1. The match in line 6 indicates
that pattern p matches input on x to generate the corresponding value on output
y.

Lines 7 and 8 declare the streams input and output connected to standard
input and standard output respectively.

Line 9 wires link identity.x to input and identity.y to output.
When the program is run, the interaction is as follows:

$ identity

1

1 2

2 3

3...

We may next change the program to generate squares of successive outputs
on new lines:

1. type integer = int 32;

2. sq::integer -> integer;

3. sq x = x*x;

4. box square2

5. in (x::integer)

6. out (y::(integer,char))

7. match

8. p -> (sq p,’\n’);

9. stream input from "std_in";

10. stream output to "std_out";

11. wire square2 (input) (output);

Now, output from line 8 is a tuple of a square and a newline character so the
type of the output link on line 6 changes accordingly.

Interaction is now as:

$ square2

1

1
2

4
3

9...

Finally, consider inputting a simple sum of the form: number operator number
where operator is one of +,-,* or /, and displaying the sum and result:

box sums

in (xy::integer,char,integer)

out (s::(integer,char))

match

(x,’+’,y) -> (x+y,’\n’) |

(x,’-’,y) -> (x-y,’\n’) |

(x,’*’,y) -> (x*y,’\n’) |

(x,’/’,y) -> (x div y,’\n’) ;

so interaction is as:

$ sums

1 + 1

2
6 / 2

3
4 * 8

32 ...

4.5 Feedback wiring

It is often useful to wire a box back to itself to maintain intermediate state.
For example, to generate successive integers from 0:

box gen

in (n::integer)

out (n’::integer,s::(integer,char))

match

(x) -> (x+1,(x,’\n’));

wire gen (gen.n’ initially 0) (gen.n,output);

Here, input n is wired to n’ and initialised to 0. Note that output n’ is also
wired back to n.

On each execution cycle, n gets the next integer from n’, sends n+1 to n’

and outputs n:

$ gen

0
1
2
...

For example, consider parity checking a sequence of bits to show at each
stage if there is an odd or even number of 1s:

type BIT = word 1;

data STATE = ODD | EVEN;

box parity

in (oldstate::STATE,input::BIT)

out (newstate::STATE,output::string)

match

(ODD,0) -> (ODD,"ODD\n") |

(ODD,1) -> (EVEN,"EVEN\n") |

(EVEN,0) -> (EVEN,"EVEN\n") |

(EVEN,1) -> (ODD,"ODD\n") ;

wire parity

(parity.newstate initially EVEN, input)

(parity.oldstate, output);

Here, oldstate and newstate are wired reflexively to each others, with newstate

initialised to EVEN.
On each execution cycle, the output to newstate flips if the input value is a

1. This which runs as:

$ parity 1 0 1 1 0

ODD
ODD
EV EN

ODD
ODD
...

4.6 From one box to multiple boxes

Consider a box to find X NAND Y :

box NAND

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 1 |

(0,1) -> 1 |

(1,0) -> 1 |

(1,1) -> 0;

We could wire this into a test program that receives a pair of bits from a single
wire from standard input and passes them on two wires to NAND:

box getIn

in (xy:(BIT,BIT))

out (x::BIT,y::BIT)

match

(x,y) -> (x,y);

wire getIn (input) (NAND.x,NAND.y);

wire NAND (getIN.c,getIn.y) (output);

We might, as an alternative, implement this as an AND box:

box AND

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 0 |

(0,1) -> 0 |

(1,0) -> 0 |

(1,1) -> 1;

feeding a NOT box:

box NOT

in (x::BIT)

out (y::BIT)

match

0 -> 1 |

1 -> 0;

wired with:

wire getIn (input) (And.x,AND.y);

wire AND(getIn.x,getIn.y) (NOT.x);

wire NOT (AND.x) (output);

In a later section, we will look at using the box calculus to justify this change.

Now, consider a program for IMPLIES:

box IMPLIES

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 1 |

(0,1) -> 1 |

(1,0) -> 0 |

(1,1) -> 1;

X ⇒ Y is equivalent to ¬X ∨ Y , so we could also implement this as an OR box
fed with a NOT ed X and unchanged Y :

box OR

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 0 |

(0,1) -> 1 |

(1,0) -> 1 |

(1,1) -> 1;

wire getIn (input) (NOT.x,OR.y);

wire NOT (getIn.x) (OR.x);

wire OR (NOT.y,getIN.y) (output);

Again, in a later section, we will look at using the box calculus to justify this
change.

4.7 * pattern and expression

The programs we’ve considered so far are synchronous where boxes execute
in locked-step. To enable asynchronicity, Hume introduces the * pattern and
expression.

The * pattern ignores its input. If there is no input then the match succeeds
and if there is input then the match succeeds but the input is not consumed.
The * pattern may only be used in box matches, not in functions.

Similarly, the * expression ignores its output. This may be used in expressions
returning final values from box transitions, including in conditional and case
expressions, and in function bodies. However, there is no associated value and
so it is meaningless to attempt to pass a * as, say, an actual parameter to a
function call.

4.8 Recursive functions and iterative boxes

An important feature of boxes is that all space is retrieved on each execution
cycle. If space is at a premium, for example in an embedded application, then
it may be advantageous to convert stack consuming recursion within a box to
constant space iteration using a feedback wire.

For example, consider finding the sum of the integers from 1 to N :

sum 0 = 0;

sum N = N+sum (N-1);

This may be re-written to use an accumulation variable:

sum’ s 0 = s;

sum’ s N = sum’ (s+N) (N-1);

sum N = sum’ 0 N;

where the partial sum s is passed from call to call. In turn, this is equivalent to
the iteration:

sum(N)

{ int s;

s = 0;

while(N>0)

{ s = s+N;

N = N-1;

}

return s;

}

where s is the partial sum and N is the next value to be summed.
We may reformulate this as a box with feedback wires for the partial sum and

the next value. Suppose the inputs are i for the original input, s for the partial
sum and N for the next value. Suppose the outputs are o for the final result, s’
for the incremented partial sum and N’ for the decremented next value. Then
we may distinguish three possibilities:

1. there is a new initial value with no partial sum or current value. The sum is
initialised to 0, the current value is initialised to the initial value, and there
is no final output:

(i,*,*) -> (*,0,i)
2. the current value is 0. Any next initial value is ignored. The partial sum is

the final output and there are no new values for the partial sum or current
value:

(*,s,0) -> (s,*,*)
3. the current value is not 0. Any next initial value is ignored. The current

value is added to the partial sum and the current value is decremented, with
no final output:

(*,s,N) -> (*,s+N,N-1)

Thus, the final program is:

box itersum

in (i::integer,s::integer,N::integer)

out (o::integer, s’::integer,N::integer)

match

(*,s,0) -> (s,*,*) |

(*,s,N) -> (*,s+N,N-1) |

(i,*,*) -> (*,0,i);

wire itersum

(input,itersum.s’,itersum.N’)

(output,itersum.s,itersum.N);

Note the order of the matches. We start with the “termination case” when N is
0, followed by the “iteration case” when N is non-zero, followed by the case for
a new input.

5 The box calculus

The box calculus[GM08,Gro09,GM11] contains rules for transforming the coor-
dination layer of a Hume program. In most cases this involves changes to the
expression layer through functional reasoning techniques, especially rewriting.

5.1 Rules of the calculus

We will now describe the rules used in the examples in the next section. Some
of these rules are atomic, i.e. they can be seen as the axioms, while other are
derived. Note that some of them have rather complicated formulations for which
we will not give the formal syntax and semantics in full detail – for this we refer
to [GM11].

Rename The simplest family of rules are those that just rename a compo-
nent. The calculus has two such rules: Rename which renames a box; and
RenameWire which renames a given input or output wire of a box. Renam-
ing of functions is considered to be independent of the calculus, and can be
incorporated by the ESub rule.

Expression substitution (ESub) The first rule of the calculus enables the
use of the BMF reasoning discussed in Section 3.9. For any match

p -> e1

if we can show that
e1 = e26

then we can replace e1 with e2, which results in the following new match

p -> e2

Expression/function folding A special, but very common, case of the ESub
rule is folding and unfolding as discussed in 3.8. Here we may create or delete
functions during this process. Assume you have a match of the following form:

p -> e p

We then fold e into a function f (with a parameter x):

6 We rely on extensional equality, meaning that two function f and g are the same if
they return the same values: ∀x. e1 x = e2 x.

f x = e x;

It is then trivial to show that f x = e x, thus creating the new match:

p -> f p

This rule, which creates a new function f from the expression and replaces
the expression with a call to f, is called expression folding introduction
(EFoldI).

Its dual, which unfold the function definition of f in the expression is called
expression folding elimination (EFoldE).

Note that in applications where EFoldI creates a function which is equiva-
lent to an existing function, then a new function is created. A subsequent step
can then replace this new function with the existing one using ESub and BMF
reasoning.

Match composition We can fold a set of adjacent matches

p1 -> e1 | p2 -> e2 | ... | pn -> en

into one match with a case expression for each match

p -> case p of p1 -> e1 | p2 -> e2 | ... | pn -> en

if and only if p will always match (and consume) whenever p1, · · · , pn will. This
rule is called match composition introduction (MCompI). A special case
of this rule is when the * pattern is not used in any pattern, and the matches are
total (will never fail if input are available on all wires). In this case we can fold
all matches into one match,which we will do in several of the example below.

The dual of this rule, match composition elimination (MCompE) turns
a case expression into a match for each case. The same precondition applies to
this rule.

Tuple composition If there are more than one wire from a box to another
then these wires can be combined into a single wire containing a tuple, where
each element of this wire correspond to one of the original wires. A proviso for
this is that the * pattern is used either for each or none of the tuple elements for
each expression/pattern. This rule is called tuple composition introduction
(TupleI), and is illustrated on the left below:

In order to apply the rule the patterns of S must change accordingly, and so
must the expression of F. For simplicity, we can only apply this rule when each
expression of F can be decomposed syntactically (e.g. the expression cannot be
a function application)

Dually, tuple composition elimination (TupleE) is the process of split-
ting a tuple into mant wires – one for each element of the tuple. This is illustrated
on the right above.

Vertical box composition Vertical box composition introduction
(VCompI) lifts function composition to the box level, and dually, vertical box
composition elimination) (VCompE) lifts function de-composition into the
box level.

VCompI takes two connected boxes and turn them into one. A proviso for
such transformation is that all outputs of the first box are connected to the
inputs of the second7. This is shown on the left hand side below:

The proviso for it’s dual, VCompE, is that the box being transformed only has
one match which is of the form of a function composition (i.e. f 0 g). This is
illustrated on the r.h.s. above.

Horizontal box composition Two independent boxes can be joined together
if it is never the case that one of them is blocked when the other is not. This is
illustrated on the top below, where A and B are composed into box C. This rule
is called horizontal box composition introduction (HCompI).

7 This can in principle be relaxed but will add more complexities.

Its dual, horizontal box composition elimination (HCompE), shown on
the bottom above, decomposes a box C into two separate boxes A and B. In order
to do this, we need to be able decompose input/output wires of the box so that
they are independent of each others, as well as ensuring that the boxes blocks at
the same time. This principle is best illustrated by example, which we will show
in the following section.

Identity boxes An identity box is a box with one input and one output with
one match of the form x -> x, that is a box which introduces a one step latency
for one wire. If such delay has no impact on the rest of the program, an arbitrary
number of identity boxes can be introduced and eliminated, called identity box
introduction (IdI) and identity box elimination (IdE) respectively:

Introducing wires Wires which does ‘nothing’ can be eliminated. Syntacti-
cally, these are cases where all the source expressions and target patterns only
contains *. Semantically, this can be generalised to cases where there are not
only *, but it is provable that this behaves like *. This rule is known as wire
elimination (WireE) and is shown on the right below.

Dually, we can introduce a wire where both the source and targets are only
*s without changing the semantics of the program. This rule is known as wire
introduction (WireI) and is shown in the left above.

Wire duplication We can also duplicate wires and eliminate such duplications,
known as wire duplication introduction (WireDupI) and wire duplica-
tion elimination (WireDupE), shown on the left and right below, respec-
tively.

In these cases we must show that the wires are indeed proper duplications,
i.e. initially the wires are the same, the same values are always written and
consumed.

5.2 A note on preconditions

We have informally discussed some of the preconditions of applying the rules,
however there are additional complications in the presence of asynchronous wires
(the use of *) due to the concurrent nature of the box scheduling. To illustrate,
consider a box with matches

1. (x,y) -> ... |

2. (*,y) -> ... | ...

In a configuration where the match at line 1 always succeeds, introduction of
an identity box on the first input wire may result in the value on this wire
arriving a step later, which may cause match 2 to succeed instead. This can
have global impact on correctness. The * pattern is not used for any examples
in the following section, so we have ignored this potentially complicated issue.

6 Reasoning about Hume programs with the box calculus

In this section we will illustrate use of the box calculus. Sections 6.1 and 6.2
use the calculus for the transformations informally shown in Section 4.6, while
Section 6.3 shows how to parallelise the fold function for multi-core applications.
This examples uses many of the properties we proved about fold in Section 3.9.

6.1 Decomposing NAND into AND and NOT

Consider again the NAND box from Section 4.6:

box NAND

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 1 |

(0,1) -> 1 |

(1,0) -> 1 |

(1,1) -> 0;

Firstly note that all cases are handled by the matches. Our first transformation
step composes all matches into one match (with a case expression) by applying
the MCompI rule. This creates the following box:

box NAND

in (x::BIT,y::BIT)

out (z::BIT)

match

(x,y) -> case (x,y) of

(0,0) -> 1 |

(0,1) -> 1 |

(1,0) -> 1 |

(1,1) -> 0;

Next we fold the case expression into a function using the EFoldI rule, which
creates the new function8:

nand (x,y) = case (x,y) of

(0,0) -> 1 |

(0,1) -> 1 |

(1,0) -> 1 |

(1,1) -> 0;

and the new box:

box NAND

in (x::BIT,y::BIT)

out (z::BIT)

match

(x,y) -> nand (x,y);

Using BMF style reasoning, similar to MCompE at the expression layer, the
case expression can be replaced by pattern matching:

nand (0,0) = 1;

nand (0,1) = 1;

nand (1,0) = 1;

nand (1,1) = 0;

Logical AND can be represented by the following function:

and (0,0) = 0;

and (0,1) = 0;

and (1,0) = 0;

and (1,1) = 1;

8 Strict calculus use is unlikely to come up with names that “makes sense”, so many
steps are followed by a renaming application. However, to ease the reading we are
using more descriptive names directly.

and logical NOT by the following function:

not 0 = 1;

not 1 = 0;

Next, we can see that NAND is the same as AND followed by NOT

Theorem 10.
nand(x, y) = not(and(x, y))

Proof. This equality can easily be proven by drawing up the truth table:

x y nand (x,y) and(x,y) not(and(x,y))
0 0 1 0 1
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0

With Theorem 10 we can apply the ESubst rule to replace nand (x,y) by
not(and(x,y)) in the NAND box:

box NAND

in (x::BIT,y::BIT)

out (z::BIT)

match

(x,y) -> not(and (x,y));

not(and(x,y)) is the same as (not o and) (x,y), thus we can apply the
VCompE rule to decompose this box into two sequential boxes. We then re-
name the boxes (by rule Rename) to AND and NOT, and input and output wires
(using RenameWire), which creates the following configuration:

box AND

in (x::BIT,y::BIT)

out (z::BIT)

match

(x,y) -> and (x,y) ;

box NOT

in (x::BIT)

out (y::BIT)

match

x -> not x;

wire AND(...) (NOT.x);

wire NOT (AND.z) (...);

Next we unfold the definition of the not function into a case expression using
BMF style reasoning

not x = case x of 0 -> 1 | 1 -> 0;

and show that it is identical to the original (pattern matching) version. We then
unfold this function in the NOT box using the EFoldE rule:

box NOT

in (x::BIT)

out (x’::BIT)

match

x -> case x of 0 -> 1 | 1 -> 0;

and split the case expression up into several matches using the MCompE rule:

box NOT

in (x::BIT)

out (x’::BIT)

match

0 -> 1 |

1 -> 0;

The exact same strategy can be applied to the AND box, giving:

box AND

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 0 |

(0,1) -> 0 |

(1,0) -> 0 |

(1,1) -> 1;

which completes the transformation.

6.2 Decomposing IMPLIES into NOT and OR

We will now apply the box calculus to the transformation of IMPLIES into NOT
followed by OR as illustrated in Section 4.6. We start with the IMPLIES box:

box IMPLIES

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 1 |

(0,1) -> 1 |

(1,0) -> 0 |

(1,1) -> 1;

First we apply the MCompI rule to turn the matches into a case expression.
We then apply the EFoldI rule to separate this case expression into a function
we call implies and unfolds the case expression in the function using BMF
reasoning. As a result the IMPLIES box is replaced by the following box:

box IMPLIES

in (x::BIT,y::BIT)

out (z::BIT)

match

(x,y) -> implies (x,y);

which uses the function:

implies (0,0) = 1;

implies (0,1) = 1;

implies (1,0) = 0;

implies (1,1) = 1;

Next, we define OR in the expression layer as a function:

or (0,0) = 0;

or (0,1) = 1;

or (1,0) = 1;

or (1,1) = 1;

and introduce the following auxiliary function:

negatefirst (0,0) = (1,0);

negatefirst (0,1) = (1,1);

negatefirst (1,0) = (0,0);

negatefirst (1,1) = (0,1);

We then show that

Theorem 11.

implies(x, y) = or(negatefirst(x, y))

Proof. This can be shown by a truth table:

x y implies (x,y) negatefirst(x,y) or(negatefirst(x,y))
0 0 1 (1,0) 1
0 1 1 (1,1) 1
1 0 0 (0,0) 0
1 1 1 (0,1) 1

By applying Theorem 11 we can replace implies with or(negatefirst(x,y))

in the IMPLIES box using the ESubst rule:

box IMPLIES

in (x::BIT,y::BIT)

out (z::BIT)

match

(x,y) -> or (negatefirst (x,y));

We then apply sequential decomposition (VCompE):

box NEGATEFIRST

in (x::BIT,y::BIT)

out (x’::BIT,y’::BIT)

match

(x,y) -> negatefirst (x,y);

box OR

in (x::BIT,y::BIT)

out (z::BIT)

match

(x,y) -> or (x,y);

wire NEGATEFIRST (..) (OR.x, OR.y);

wire OR (NEGATEFIRST.x’, NEGATEFIRST.y’) (..);

Next, we apply BMF reasoning to replace the patterns in the or function with
a case expression. We then unfold this function in the OR box by applying
the EFoldE rule. Then we move the case expression into the match with the
MCompE rule, creating the following new OR box:

box OR

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 0 |

(0,1) -> 1 |

(1,0) -> 1 |

(1,1) -> 1;

We now want to transform the NEGATEFIRST box. Firstly, we observe that
the first argument is always negated. We then observe that the second argument
is left unchanged. Thus, we have the following fact:

Theorem 12.
negatefirst (x, y) = (not x, y)

Proof. This can be easily shown by a truth table.

Using Theorem 12 we apply ESub to the NEGATEFIRST box, which gives us the
following box:

box NEGATEFIRST

in (x::BIT,y::BIT)

out (x’::BIT,y’::BIT)

match

(x,y) -> (not x,y);

We then observe that the box has one match with two arguments, and the expres-
sion can be decomposed such that the first argument in the expression only uses
the first input, and the second only uses the second input. This means that we
can horizontally decompose the box into two parallel boxes using the HCompE
rule. We then rename the boxes accordingly (using the Rename rule), creating
the following box configuration:

box NOT

in (x::BIT)

out (y::BIT)

match

x -> not x;

box Id

in (x::BIT)

out (y::BIT)

match

y -> y;

box OR ...

wire NOT (..) (OR.x);

wire Id (..) (OR.y);

wire OR (NOT.y,Id.y) (..);

Next we unfold the definition of the not function into a case expression using
BMF style reasoning and show that it is identical to the original (pattern match-
ing) version. We then unfold this function in the NOT box using the EFoldE rule,
before we move the case expression into the match by MCompE creating the
new NOT box:

box NOT

in (x::BIT)

out (y::BIT)

match

0 -> 1 |

1 -> 0;

Finally, we observe that, as the name implies, the Id box behaves as an identity
box and can therefore be eliminated by the IdE rule. We then have the following
box configuration:

box NOT

in (x::BIT)

out (y::BIT)

match

0 -> 1 |

1 -> 0;

box OR

in (x::BIT,y::BIT)

out (z::BIT)

match

(0,0) -> 0 |

(0,1) -> 1 |

(1,0) -> 1 |

(1,1) -> 1;

wire NOT (..) (OR.x);

wire OR (NOT.y,..) (..);

which completes the transformation.

6.3 Parallelising fold

Our final application of the box calculus relates to the very timely problem of
parallelising programs, for example to explore multi-core architectures. We will
address the problem of parallelising the fold combinator which we described
previously. We make the same assumptions about the function being folded as
in Section 3.9 and we utilise several of the theorems proved there.

Two-box fold First we will address the problem of splitting one fold into two
parallel applications, and after that generalise to N boxes. Obviously, there is
a cost of parallelisation, thus this would only make sense when the function f

:: a -> b -> b which we fold over performs some heavy and time-consuming
computations over a list xs and we want to fold the result of each computation.
Assuming an initial value r::b, we start with the following box:

box foldbox

in (i :: [a])

out (o :: b)

match

xs -> fold f r xs;

Henceforth we will not give such Hume code for boxes and separate diagrams,
but integrate the matches into the diagram. In this notation the foldbox looks
as follows:

Firstly, we define some abbreviations to make the code more readable :

append’ (xs,ys) = append xs ys;

left xs = take ((Length xs) div 2) xs;

right xs = drop (Length xs) div 2) xs;

split2 xs = (left xs, right xs);

With these definition it follows from Theorem 7 that:

fold f r xs = fold f r (append’(left xs, right xs))

Then, from Theorem 9 we have that:

fold f r (append’(left xs, right xs)) =

f (fold f r left xs) (fold f e right xs)

Thus, by transitivity of = we know that

fold f r xs = f (fold f r (left xs)) (fold f e (right xs)) (1)

Further from the definition of uncurry we know that

f x y = (uncurry f) (x, y)

from before. Using this (1) becomes by BMF:

fold f r xs = (uncurry f) (fold f r (left xs), fold f e (right xs))

Using this fact, we apply the ESub rule creating the following new match for
foldbox:

xs -> (uncurry f) (fold f r (left xs), fold f e (right xs))

This is sequential application of two function, which we lift to the box level by
the VCompE rule, together with some box renaming9:

9 Note that a single wire label means that this name is used for both the output of
the first box (applyfold box) and input of the second box (combine box).

We know that the output wire of the applyfold box is a pair which can be split
by the TupleE rule. After this split the match of combine box becomes:

(a,b) -> (uncurry f) (a,b)

Next, we curry this function, which by the ESub rule gives us the match:

(a,b) -> (curry(uncurry f)) a b

From Theorem 4 we have that:

curry(uncurry f) = f

Using this theorem we apply the ESub rule to get the following new configura-
tion:

We have now completed the transformation of combine box. Next we start trans-
forming applyfold box. First we apply EFoldI to fold the expression into a new
function h:

h xs = (fold f r (left xs), fold f e (right xs));

and the box match becomes:

xs -> h xs

Next, we define a new function

g (a,b) = (fold f r a, fold f e b);

and show that

h xs = g (left xs, right xs)

which hold by unfolding both function definitions. We apply ESub to create a
new match:

xs -> g (left xs, right xs)

We know that:

(left xs, right xs) = split2 xs

by the definition of split2. Using this we apply the ESub rule creating the
following new match:

xs -> g (split2 xs)

Again, this is sequential composition of two function, which we can lift to the
box level by rule VCompE. By making some suitable renaming we obtain the
following box configuration:

As above, the wire between the two new boxes is a pair which we can split by
the TupleE rule:

The transformation of the split box box is now completed. and we start on
applyfold box. First, we unfold the g function by rule EFoldE creating the
new match:

(a,b) -> (fold f r a, fold f e b)

Next we observe that the first element of the expression only uses the first
pattern, while the second element only uses the second pattern, hence we can
apply the horizontal box decomposition, that is rule HCompE, creating the
following final box configuration

which completes the transformation.

N-box fold We now outline how to generalise this into N cores. We assume
that N is fixed for ease of presentation (but we can also abstract over N). First
we generalise left, right and split2 with an additional argument n specifying
the size of the chunks:

left n x = take ((length x) div n) x;

right n x = drop ((length x) div n) x;

splitN n x = (left n x,right n x);

Note that the previous definitions would be equivalent to setting n to 2. The

idea is that we we want to split a given list x into
length x

N chunks and apply
(a slight adaption of) the transformation from above N − 1 times, so that each
chunk is executed on a core with equal load balancing.

The difference for each transformation is that we use the more general version
splitN. Firstly, we apply the transformation with N given as argument, i.e.
splitN N. The first output wire will then contain the first 1

N parts of the list

and this will be sent to the first core. The remaining N−1
N parts of the list are

sent down the second wire. Since we have used one core (the first wire), we have
N − 1 cores left. Thus, we reapply this transformation to the second wire with
splitN (N-1) to get a chunk equal to to the first wire. This transformation is
recursively applied N − 1 times, which will create an “arrow-headed” shape

where we need to flatten the “top” and “bottom”, creating the following shaped
box configuration:

The top can be flatten by a sequence of the transformations discussed next,
which shows how two boxes at the ath (2 < a ≤ N) step can be combined (after
unfolding splitN):

First we apply IdI to introduce an identity box on the first output wire:

Then we horizontally merge this box with the second box by the HCompI rule
which creates the following configuration:

We can then vertically compose these two boxes with VCompI, creating

Notice that the result of the transformation is to make a copy of the last element
e of the tuple in the expression of the box, so (...,e) becomes (...,e,e). If
we are at level k, then the first e is replaced by left (N-k) e and the second e

is replaced by right (N-k) e – so the tuple is now (...,left (N-k) e,right

(N-k) e).
Reverting to our transformation. If we assume that a > 3, the result of

incorporating the “split box” at the next level down, is the following match:

x -> (left a x,

left (a-1) (right a x),

left (a-2) (right (a-1) (right a x)),

right (a-2) (right (a-1) (right a x)))

Note that we start at the top of the “arrow-head” diagram when combining
boxes.

When merging the results, the match of each box looks as follows:

(x,y) -> f x y

Two such boxes can be combined with exactly the same approach of introduc-
ing an identity box (IdI), followed by horizontal (HCompI) and then vertical
composition VCompI, giving a new box with the match

(x1,x2,x3) -> f x1 (f x2 x3)

Since we assume that f is associative this can be rewritten to:

(x1,x2,x3) -> f (f x1 x2) x3

Applying the associative rewrite to the next box it becomes

(x1,x2,x3,x4) -> f (f (f x1 x2) x3) x4

and so on. At the end the box will have the following match schema:

(x1,x2,x3,x4,...,xn) -> f (...(f (f x1 x2) x3) x4 ...) xn

This is the result of applying the fold function!

Theorem 13.

f x y = fold f x [y]

Proof. Firstly, remember that [y] is shorthand for (y : []). The proof follows from
two unfoldings of the definition of fold:

fold f x (y : [])→ fold f (f x y) []→ f x y

Next we prove the following property about fold:

Theorem 14.

f (fold f x ys) z = fold f x (ys++[z])

Proof. By structural induction on ys:

Base case: f (fold f x []) z = fold f x ([]++[z])
fold f x ([]++[z]) → (++)
fold f x [z] → (fold def (twice))
f x z → (fold def)
f (fold f x []) z

Recursion case: f (fold f x (y : ys)) z =
fold f x ((y : ys)++[z])

Assumption: f (fold f x ys) z = fold f x (ys++[z]) [induction hyp.]
fold f x ((y : ys)++[z]) → (++)
fold f x (y : (ys++[z])) → (fold)
fold f (f x y) (ys++[z]) → (induction hyp.)
f (fold f (f x y) ys) z → (fold)
f (fold f x (y : ys)) z

By first applying Theorem 13 to the innermost f application, and then reapplying
Theorem 14 until we are left with a large fold expression we end up with the
following property:

f (...(f (f x1 x2) x3) x4 ...) xn = fold f x1 [x2,...,xn]

With this we apply ESub to get the following match:

(x1,x2,x3,x4,...,xn) -> fold f x1 [x2,...,xn]

This completes the following transformation:

7 Conclusion

We have surveyed the Hume programming language and shown how the explicit
separation of coordination and computation aids formal reasoning about pro-
grams. In particular, we have introduced the box calculus for reasoning about
coordination and shown how, in conjunction with extant reasoning systems for
computation, it is possible to construct robust proofs of substantial program
constructs for parallelism through systematic transformation.

We envisage two important avenues for future activity. First of all, effective
box calculus deployment clearly requires a graphical tool-set to support, and
ultimately automate, scalable program transformation. Secondly, there are ex-
cellent opportunities in complementing the box calculus with resource analysis
to enable resource directed program development in a “costing by construction”
style. Here again, this should be supported by an integrated tool-set which can
flexibly account for different resource modalities such as time, space and power
consumption.

Acknowledgements

We would like to thank our collaborators Kevin Hammond of the University
of St Andrews, Hume’s co-designer, Andrew Ireland of Heriot-Watt University,
who helped develop the box calculus, and the anonymous reviewer for very con-
structive feedback.

Hume resources

The Hume home page is:

http://www-fp.cs.st-andrews.ac.uk/hume/index.shtml.

Hume tools and documentation may also be found at:

http://www.macs.hw.ac.uk/~greg/hume/.

The Hume Report is at:

http://www.macs.hw.ac.uk/~greg/hume/hume11.pdf

and the Hume Manual is at:

http://www.macs.hw.ac.uk/~greg/hume/manual.pdf

References

[BD77] R. M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the Association for Computing Machinery,
24(1):4467, 1977.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, 1997.
[Bir87] Richard S. Bird. An introduction to the theory of lists. In M. Broy,

editor, Logic of Programming and Calculi of Discrete Design, pages 3–42.
Springer-Verlag, 1987.

[BLOMP97] S. Breitinger, R. Loogen, Y. Ortega-Mallen, and R. Pena. The Eden
Coordination Model for Distributed Memory Systems. In Proc. High-
Level Parallel Prog. Models and Supportive Envs. (HIPS), number 1123 in
LNCS. Springer-Verlag, 1997.

[Bur69] R. Burstall. Proving properties of programs by structural induction. Com-
puter Journal, 12(1):41–48, 1969.

[Chu36] A. Church. An unsolvable problem of elementary number theory. Ameri-
can Journal of Mathematics, 58:345–363, 1936.

[CJP07] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and Engineering Computation).
MIT, 2007.

[Dij75] E. W. Dijkstra. Guarded commands, non-determinacy and derivation of
programs. Commuications of the ACM, 18(8):453–457, 1975.

[eAB+99] S.L. Peyton Jones (ed.), L. Augustsson, B. Boutel, F.W. Burton, J.H.
Fasel, A.D. Gordon, K. Hammond, R.J.M. Hughes, P. Hudak, T. Johnsson,
M.P. Jones, J.C. Peterson, A. Reid, and P.L. Wadler. Report on the Non-
Strict Functional Language, Haskell (Haskell98). Technical report, Yale
University, 1999.

[GM08] G. Grov and G. Michaelson. Towards a Box Calculus for Hierarchical
Hume. In M. Morazan, editor, Trends in Functional Programming Volume
8, pages 71–88. Intellect, 2008.

[GM11] G. Grov and G. Michaelson. Hume box calculus: robust system develop-
ment through software transformation. Higher Order Symbolic Computing,
July 2011. DOI 10.1007/s10990-011-9067-y.

[Gro09] G. Grov. Reasoning about correctness properties of a coordination lan-
guage. PhD thesis, Heriot-Watt University, 2009.

[Hal60] P. R. Halmos. Naive Set theory. Van Nostrand, 1960.
[HM03] K. Hammond and G. Michaelson. Hume: a Domain-Specific Language for

Real-Time Embedded Systems. In In Proc. of GPCE’03, pages 37–56.
LNCS 2830, Sep. 2003.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. commu-
nications of the ACM, 12:576–583, October 1969.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications
of the ACM, 21(8):666–677, 1978.

[Hod77] W. Hodges. Logic. Pelican, 1977.
[Inm88] Inmos. Occam Reference Manual. Prentice-Hall, 1988.
[Kne63] G. Kneebone. Mathematical Logic and the Foundations of Mathematics.

Van Nostrand, 1963.
[McC62] J. McCarthy. A basis for a mathematical theory of computation. Technical

Report Memo 31, MIT, 1962.
[MF94] MPI-Forum. MPI: A message passing intrface standard. International

Journal of Supercomputer Application, 8(3–4):165–414, 1994.
[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982.
[Mil99] R. Milner. Communicating and mobile systems - the Pi-calculus. Cam-

bridge University Press, 1999.
[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The

Definition of Standard ML (Revised). MIT Press, 1997.
[Nid62] P. H. Nidditch. Propositional Calculus. Routledge and Kegan Paul, 1962.
[Pet67] R. Peter. Recursive Functions. Academic Press, 1967.
[Qui64] W.V. Quine. Word and Object. MIT, 1964.
[Weg68] P. Wegner. Programming Languages, Information Structures, and Ma-

chine Organization. McGraw-Hill, 1968.

