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Abstract

This paper deals with cooperation situations in linear production problems

in which a set of goods are to be produced from a set of resources so that

a certain benefit function is maximized, assuming that resources not used

in the production plan have no value by themselves. The Owen set is a

well-know solution rule for the class of linear production processes. Despite

their stability properties, Owen allocations might give null payoff to players

that are necessary for optimal production plans. This paper shows that,

in general, the aforementioned drawback cannot be avoided allowing only

allocations within the core of the cooperative game associated to the original

linear production process. In this paper a new solution set named EOwen is

introduced. For any player whose resources are needed in at least one optimal

production plan, the EOwen set contains at least one allocation that assigns

a strictly positive payoff to such player.
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1. Introduction

A benefit cooperative game is a pair (N, v), where N = {1, 2, ..., n} is

the set of players and v : 2N → R is the characteristic function assigning to

every coalition S ⊂ N the maximum benefit that the cooperation between

players in S would yield. For a complete introduction on cooperative game

theory see for instance Owen (1995) or Forgó et al. (1999). Assuming that

the game is superadditive, that is v(S) + v(T ) ≤ v(S ∪ T ), ∀ S, T ⊂ N ,

cooperation among all players is beneficial and, therefore, the grand coalition

N is to form.

One of the main questions in cooperative game theory is how to dis-

tribute the benefit obtained by the grand coalition N among the players.

An allocation is a vector α ∈ Rn, such that αi is the payoff of player i and
∑n

i=1 αi = v(N). One well-accepted way of allocating v(N) among the play-

ers is to find allocations in the core. The core of a game (N, v), denoted by

Core(N, v), is the set of allocations satisfying that no coalition of players can

obtain a better payoff by acting separately from the rest of players. That is,

Core(N, v) = {α ∈ Rn : v(S) ≤ α(S) ∀ S ⊂ N, v(N) = α(N)}, (1)

where α(S) =
∑

i∈S αi, ∀ S ⊂ N . In principle, the core has at least two

problems: the core of a game might be empty, that is, there are games for

which no core allocations exist, and finding a core allocation might be a NP-

hard problem. Along the years, many other allocation rules have appeared

in the literature. One of the most used allocation rules is the Shapley value,
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which has attracted a lot of interest for its many applications, see Moretti

and Patrone (2008).

A linear production problem is a situation in which certain goods that

can be sold in a market are to be produced from a set of available distinct

resources. An implicit feature of the linear production problems we deal

with in this paper is that the resources not used in the production plan

have no value at all. Situations like this may arise when the resources are

perishable and, if not used in the next production plan, they are wasted.

Another example of this situation is found in some industries in developed

countries that give their excesses to underdeveloped countries, to charity

organizations, or even to other companies within the same area as long as

they are not competing ones. This is beneficial for both parties: the donor

party gets rid of excesses which, if not used, must be eliminated at certain

cost, and the receiving party only has to pay for the shipping costs, which is

usually cheaper than having to buy the material.

In this paper we study a new set of allocations for linear production

processes (LP processes for short), which arise when a bunch of players N =

{1, . . . , n} with conflicting objectives control the resources of a LP problem.

A cooperative game, called LP game, can be associated to each LP process.

(Note that different LP processes may generate the same LP game.) An early

reference to LP games can be found in Owen (1975). LP games are totally

balanced games, so every subgame of a LP game has a non-empty core. By

solving the dual problem of the underlying linear production problem we

can obtain a set of allocations for LP processes known as Owen allocations

(see Owen (1975)), which has been well-studied in the literature. One of its
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main properties is that Owen allocations are always core allocations, and

are easily computed. More recently, Van Gellekom et al. (2000) provided an

axiomatic characterization of this solution set. In this paper we show that,

despite their stability properties, Owen allocations do not always yield a fair

distribution of the benefit obtained. For instance, a player whose resources

are necessary for any optimal plan may receive a null payoff from Owen

allocations. Such drawback is discussed in this paper, and an alternative

allocation set is proposed.

Since the pioneering work by Owen, several generalizations of LP games

have appeared in the literature. Dubey and Shapley (1984) study a game in

which players have partial control over the constraints of a general mathemat-

ical programming problem. Granot (1986) introduces another generalization

in which the resources owned by a coalition are not restricted to be the sum

of the resources of players in the coalition. Curiel et al. (1989) introduce

LP games with committee control, obtaining results on the balancedness

of these games, whose core has been more recently studied by Molina and

Tejada (2004).

The goal of this paper is to introduce a new set of allocations for linear

production processes that avoid some of the aforementioned drawbacks of the

Owen set. To this end, the rest of the paper is structured as follows. Section

2 gives a short introduction to LP processes and a motivation of the studied

problem. Some definitions and technical results are given in Section 3. The

allocation set proposed in this paper is introduced and analyzed in Section 4.

An axiomatic characterization and some of its properties are given, as well

as a discussion about the impossibility of finding core allocations that avoid
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the unfairness problem of the Owen allocations we address in this paper.

2. Linear Production processes

A LP problem is a situation in which there is a finite set of resources

R = {1, 2, . . . , r} and from those resources a set P = {1, 2, . . . , p} of con-

sumption goods can be produced. The production technologies are given by

a matrix A ∈ Rr×p, where Aij ≥ 0 denotes the amount of resource i nec-

essary to produce one unit of product j, ∀ i = 1, . . . , r, j = 1, . . . , p. It is

also assumed that the demand of every product is large enough to sell all

produced products, the unitary market price of product j being cj ≥ 0. The

objective of a LP problem is to decide how much of each product should be

produced so that the general benefit is maximized.

Assume now that a group of players N = {1, . . . , n} control the resources

R = {1, 2, . . . , r}, that is, player k owns Bik ≥ 0 units of resource i, k =

1, . . . , n, i = 1, . . . , r. Therefore, let B = (Bik)r×n be the resource-player

matrix. Let b ∈ Rr be the resource vector, that is b = BeN , where eS ∈ Rn

satisfying (eS)k = 1 if k ∈ S, and zero otherwise for all S ⊆ N . In other

words, bi is the total amount of resource i owned by the grand coalition, that

is, bi =
∑n

k=1Bik ∀ i ∈ R. Thus, the maximum profit that can be made by

the cooperation of all players is the value of problem PN :

max cx

s.t. Ax ≤ b

x ≥ 0

(PN),

min yb

s.t. yA ≥ c

y ≥ 0

(DN), (2)

where DN is the dual problem of PN (see Bazaraa et al. (1990) for a de-

scription of duality theory in linear programming). It is easy to check that,
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although players can try to produce separately, it is always more profitable

to join their resources since the benefit they obtain this way is at least as

high as the sum of the possible coalitions’ profits separately. For a coalition

S ⊂ N , we define its characteristic function, v(S), via the optimal value of

problem PS:

max cx

s.t. Ax ≤ BeS

x ≥ 0

(PS),

min yBeS

s.t. yA ≥ c

y ≥ 0

(DS), (3)

where DS is the dual of PS.

Problem PS is feasible and bounded for all possible coalitions if BeS > 0,

c ≥ 0 and ∀ j : cj > 0 there is at least one resource i ∈ R with Aij > 0.

Each triple (A,B, c) satisfying the conditions above will be called in the

following, according to Van Gellekom et al. (2000), a linear production pro-

cess. Let L denote the class of LP processes. From the definition of the

characteristic function v one can associate to each LP process a cooperative

game (N, v). The reader may note that the same LP game can originate

from different LP processes.

Now a natural question arises: how to divide the profit made by the

grand coalition among the players. Let us introduce some notation that will

be useful in the rest of the paper.

Let (A,B, c) ∈ L. The feasible regions of problems PN and DN , see (2),

are denoted by

Fmax(A,B, c) := {x ∈ Rp
+ : Ax ≤ b},

Fmin(A,B, c) := {y ∈ Rn
+ : yA ≥ c},

(4)
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respectively. The optimal values of problems PN and DN are denoted by

vmax(A,B, c) := max{cx : x ∈ Fmax(A,B, c)},

vmin(A,B, c) := min{yb : y ∈ Fmin(A,B, c)},
(5)

respectively, and the set of optimal solutions to PN and DN by

Omax(A,B, c) := {x ∈ Fmax(A,B, c) : cx = vmax(A,B, c)},

Omin(A,B, c) := {y ∈ Fmin(A,B, c) : yb = vmin(A,B, c)}.
(6)

A solution rule ϕ on L is a map assigning to every LP process (A,B, c) ∈

L a set Γ ⊂ Rn such that
∑

i∈N γi = vmax(A,B, c) for all γ ∈ Γ. Each member

of this set is an allocation. A well-known solution rule for cooperative games

is the core, see (1). One well-accepted solution rule specific for LP processes

is the Owen set, defined from optimal solutions to the dual problem DN .

Definition 1. Let (A,B, c) ∈ L. The Owen set of (A,B, c) is

Owen(A,B, c) := {yB : y ∈ Omin(A,B, c)}. (7)

Owen (1975) proved thatOwen(A,B, c) ⊆ Core(A,B, c) for every (A,B, c) ∈

L. That is, Owen allocations are stable in the sense that no group of players

can obtain a better payoff by acting separately. Despite these good prop-

erties, they should not be considered as ideal allocations. See the following

example.

Example 1. Consider the 3-player game (A,B, c) ∈ L where

A =




1 0

1 1

0 1

1 2




, B =




1 0 1

0 4 0

1 0 0

0 5 0




, c =


 1

2


 .
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The corresponding dual problem D(N) is

min 2y1 + 4y2 +y3 +5y4

s.t. y1 + y2 +y4 ≥ 1

y2 +y3 +2y4 ≥ 2

y1, y2, y3, y4 ≥ 0.

(8)

The characteristic function of the associated game is v({i}) = v({1, 3}) =

0 ∀ i = 1, 2, 3, v({1, 2}) = 3, v({2, 3}) = 1, v({1, 2, 3}) = 4. It can be

checked that Omin(A,B, c) = {(1, 0, 2, 0)} and, therefore, Owen(A,B, c) =

{(1, 0, 2, 0)B} = {(3, 0, 1)}.

This allocation is in the core of the game but, is it a “fair” allocation?

Note that player 2 receives nothing but, without his resources, the optimal

production plan cannot be achieved. So, the Owen allocation gives a null

payoff to a player whose resources are necessary for the optimal production

plan.

What happened in Example 1 is a general drawback of the Owen set in LP

processes. This is a consequence of the complementary slackness theorem,

see Bazaraa et al. (1990), which says that if there is some surplus of resource

i in an optimal solution x∗ ∈ Omax(A,B, c) (meaning (Ax∗)i < bi), then

y∗i = 0 ∀ y∗ ∈ Omin(A,B, c). This condition for optimality conveys a simple

economic principle: if there is a positive slack in a constrained primal re-

source, i.e. there are leftovers, then the additional quantities of that resource

must have no value (shadow prices are zero). This means that only players

owning resources that generate no surplus have the chance of receiving a

strictly positive payoff from Owen allocations, which are based on shadow

prices. This fact could make players get rid of their surpluses so that the
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corresponding dual variables are not forced to be null, so they have the pos-

sibility of receiving a positive reward from allocations obtained from dual

solutions.

The following section presents a new solution rule on LP processes that

avoids the drawback previously discussed. It is based on the idea that the

surpluses of resources should not be taken into account. Therefore players

owning leftovers of resources in an optimal production plan are allowed to

get rid of them at no cost, nor benefit, and play a new reduced game. A

similar approach was used to allocate the benefits obtained in a distribution

model, see Perea et al. (2009). Another example of an allocation trying to

avoid unfairness can be found in Çiftçi and Tijs (2009), who give some rules

for minimum spanning tree games.

3. Technical results and definitions

In this section we introduce some technical results and definitions that

will be useful for presenting our new solution rule. First, the concept of

intermediate matrix will be needed in the rest of the paper. Let M , M1, M2

be three matrices in Rr×n. We say that

M ∈ [M1,M2] if and only if M1
ik ≤ Mik ≤ M2

ik∀ i = 1, ..., r, k = 1, ..., n. (9)

Let (A,B, c) ∈ L and x∗ ∈ Omax(A,B, c) one solution to the correspond-

ing problem PN . The coordinates of x∗ define the amount of consumption

goods to be produced. Now consider the LP process in which each player k

reduces the amount of its resource i so that the total amount of this resource

owned by all agents is (Ax∗)i :=
∑p

j=1Aijx
∗
j , ∀ i = 1, ..., r.
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Therefore, for any optimal solution x∗, let Bx∗

ik be the updated amount of

resource i owned by agent k, satisfying that 0 ≤ Bx∗

ik ≤ Bik and
∑n

k=1B
x∗

ik =

(Ax∗)i, that is, player k gets rid of Bik − Bx∗

ik ≥ 0 units of resource i, ∀ i =

1, ..., r, k = 1, ..., n. Since there might be (infinitely) many ways of finding

matrices satisfying these constraints, we make use of the set constituted by

of all of them.

Given a LP process (A,B, c) and x∗ ∈ Omax(A,B, c), the set of all possible

reduced resource-player matrices of (A,B, c) associated to x∗ is

B(A,B, x∗) = {Bx∗

∈ [Θ, B] :
n∑

k=1

Bx∗

ik = (Ax∗)i, ∀ i ∈ R}, (10)

where Θ denotes the matrix with the appropriate dimensions and all entries

equal to zero.

Define the vector bx
∗

∈ Rr, where bx
∗

i = (Ax∗)i, ∀ i ∈ R. Note that

bx
∗

i =
∑n

k=1B
x∗

ik for all Bx∗

∈ B(A,B, x∗). So, for every x∗ ∈ Omax(A,B, c)

and Bx∗

∈ B(A,B, x∗) a new LP process (A,Bx∗

, c) ∈ L is defined. Its

corresponding problems PS(B
x∗

) and DS(B
x∗

) are:

max cx

s.t. Ax ≤ Bx∗

eS

x ≥ 0

PS(B
x∗

),

min yBx∗

eS

s.t. yA ≥ c

y ≥ 0.

DS(B
x∗

).

(11)

Remark 1. Note that PN(B
x∗

) and DN(B
x∗

) only depend on x∗, and not on

the chosen reduced matrix. Therefore, once x∗ ∈ Omax(A,B, c) is fixed, both

Omax(A,B
x∗

, c) and Omin(A,B
x∗

, c) are constant for any Bx∗

∈ B(A,B, x∗).

The above property leads us to the definition of reduced LP process.
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Definition 2. (A,Bx∗

, c) is a reduced LP process of (A,B, c) associated to

Bx∗

, for every x∗ ∈ Omax(A,B, c) and every Bx∗

∈ B(A,B, x∗).

The next lemma gives some properties on the value of problems PN and

DN and their solution sets, needed for the rest of the paper.

Lemma 1. Let (A,B, c) ∈ L. Then

1. vmax(A,B, c) = vmax(A,B
x∗

, c) ∀ x∗ ∈ Omax(A,B, c), ∀ Bx∗

∈ B(A,B, x∗).

2. vmin(A,B, c) = vmin(A,B
x∗

, c) ∀ x∗ ∈ Omax(A,B, c), ∀ Bx∗

∈ B(A,B, x∗).

3.

Omax(A,B, c) =
⋃

x∗∈Omax(A,B,c)

⋃

Bx∗∈B(A,B,x∗)

Omax(A,B
x∗

, c)

=
⋃

x∗∈Omax(A,B,c)

⋂

Bx∗∈B(A,B,x∗)

Omax(A,B
x∗

, c).

4.

Omin(A,B, c) ⊆
⋂

x∗∈Omax(A,B,c)

⋃

Bx∗∈B(A,B,x∗)

Omin(A,B
x∗

, c)

=
⋂

x∗∈Omax(A,B,c)

⋂

Bx∗∈B(A,B,x∗)

Omin(A,B
x∗

, c).

Proof.

1. It follows because x∗ is a solution to PN(B
x∗

) ∀ x∗ ∈ Omax(A,B, c), ∀Bx∗

∈

B(A,B, x∗).

2. The result follows from part 1 of Lemma 1 and the strong duality

theorem in linear programming (vmax = vmin).

3. First consider x̂ ∈ Omax(A,B, c) and Bx̂ ∈ B(A,B, x̂). Trivially x̂ ∈

Omax(A,B
x̂, c). Then

x̂ ∈
⋃

x∗∈Omax(A,B,c)

⋃

Bx∗∈B(A,B,x̂)

Omax(A,B
x∗

, c). (12)
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Now consider x̂ ∈
⋃

x∗∈Omax(A,B,c)

⋃

Bx∗∈B(A,B,x̂)

Omax(A,B
x∗

, c). Then, there

exists x∗ ∈ Omax(A,B, c) andBx∗

∈ B(A,B, x∗) such that x̂ ∈ Omax(A,B
x∗

, c).

Thus

Ax̂ ≤ bx
∗

= Ax∗ ≤ b

x̂ ≥ 0

cx̂ = vmax(A,B
x∗

, c) = vmax(A,B, c)





⇒ x̂ ∈ Omax(A,B, c). (13)

Since Omax(A,B
1, c) = Omax(A,B

2, c) for all B1, B2 ∈ B(A,B, x̂) (see

Remark 1), the result is proven joining (12) and (13).

4. Let ŷ ∈ Omin(A,B, c) and x̂ ∈ Omax(A,B, c). Applying the comple-

mentary slackness theorem and the strong duality theorem in linear

programming, we have that ŷi = 0 for all i such that (Ax̂)i < bi, and if

(Ax̂)i = bi then bi = bx̂i . Therefore

ŷb =
n∑

i=1

ŷibi =
∑

i:(Ax̂)i=bi

ŷibi =
∑

i:(Ax̂)i=bi

ŷib
x̂
i =

n∑

i=1

ŷib
x̂
i = ŷbx̂.

Thus, for each Bx̂ ∈ B(A,B, x̂)

ŷbx̂ = ŷb = cx̂ = vmax(A,B, c) = vmax(A,B
x̂, c) = vmin(A,B

x̂, c). (14)

Trivially ŷ ∈ Fmin(A,B
x̂, c), since problems DN and DN(B

x̂) have the

same constraints. Thus, we conclude that ŷ ∈ Omin(A,B
x̂, c) and the

result follows from Remark 1.

�

Note that, if x∗ ∈ Omax(A,B, c) and Bx∗

∈ B(A,B, x∗), then x∗ ∈

Omax(A,B
′, c) for all B′ ∈ [Bx∗

, B]. The next lemma states that the set

of reduced matrices of such B′ is contained in that of B.
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Lemma 2. Let x∗ ∈ Omax(A,B, c), and let B′ ∈ [Bx∗

, B] for some Bx∗

∈

B(A,B, x∗). Then B(A,B′, x∗) ⊆ B(A,B, x∗).

Proof. Under the hypotheses in the statement, let B̃ ∈ B(A,B′, x∗). Since

B̃ ∈ [Θ, B′] ⊆ [Θ, B], and using (10), it is easy to see that B̃ ∈ B(A,B, x∗). �

4. The Extended Owen Set

In this section a new solution rule for the class of LP processes is pre-

sented. It is based on the idea of not taking into account the surplus gener-

ated by optimal solutions to the primal linear programming problem defining

the value of v(N). Therefore, we first have to find out how much the amount

of resources can be reduced while the maximum profit is unchanged. The

following lemma gives a hint to answer this question and states that, in linear

production processes with only one optimal production plan, the minimum

amount of resources needed to generate the maximum profit must be bounded

from above by bx
∗

, where {x∗} = Omax(A,B, c).

Lemma 3. Let (A,B, c) ∈ L such that {x∗} = Omax(A,B, c). Let bx
∗

=

Ax∗. Let b′ ∈ Rn be such that b′ ≤ bx
∗

. Then, the maximum values of

problems P and P ′ coincide if and only if b′ = bx
∗

, where P and P ′ are

defined by

max cx

s.t. Ax ≤ b

x ≥ 0

(P ),

max cx

s.t. Ax ≤ b′

x ≥ 0

(P ′).
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Proof. Let (A,B, c) and b′ be a LP process and a vector satisfying the

conditions of the theorem, respectively. By contradiction, assume that there

exists x′ ≥ 0 : Ax′ ≤ b′, cx′ = cx∗ with b′ < b. One has that x′ 6= x∗, since

there exists j such that Aj•x
′ ≤ b′j < bx

∗

j = Aj•x
∗. Since b′ ≤ b, one has that

x′ is an optimal feasible solution to problem (P ). Since we had assumed that

there was only one solution to problem (P ), and cx′ = cx∗, the contradiction

appears and the result is proven. �

Note that, in the more general case with multiple optimal production plans,

we have that the vector b′ of the previous lemma is dominated by all the re-

source vectors associated to optimal production plans, that is, b′ ≥ bx
∗

∀ x∗ ∈

Omax(A,B, c). This can be easily proven adapting the result of Proposition

4.1 in Perea et al. (2009).

Based on this idea, the definition of the EOwen set follows.

Definition 3. Let (A,B, c) ∈ L. The Extended Owen set of (A,B, c) is the

set

EOwen(A,B, c) =
⋃

x∗∈Omax(A,B,c)

⋃

Bx∗∈B(A,B,x∗)

Owen(A,Bx∗

, c). (15)

Remark 2. The reader may note that, although Omin(A,B
x∗

, c) is indepen-

dent of the choice of matrix Bx∗

, once x∗ has been chosen (see Remark 1);

Owen(A,Bx∗

, c) does not necessarily have a similar property.

In order to start gaining insights into this new solution rule, we present

the following result, which states that the more matrix B is reduced without

lowering Bx∗

, the larger the Owen set of the corresponding LP process.
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Proposition 1. Let B̂ ∈ [Bx∗

, B] for some reduced matrix Bx∗

associated to

an optimal production plan x∗. Then we have that:

Owen(A,B, c) ⊆ Owen(A, B̂, c) ⊆ Owen(A,Bx∗

, c).

Proof. Let α ∈ Owen(A,B, c) ⇒ ∃ y ∈ Omin(A,B, c) : α = yB. Let us

see that y ∈ Omin(A, B̂, c).

min yb

s.t. yA ≥ c

y ≥ 0

(D),

min yb̂

s.t. yA ≥ c

y ≥ 0

(D̂).

Since y ∈ Omin(A,B, c), by definition one has that y is optimal for problem

D. Therefore, y is feasible for problem D̂. Besides, as we proved in Lemma 1,

part 4, yb = yb̂. Thus y ∈ Omin(A, B̂, c). Applying again the complementary

slackness theorem, one has that:

αk =
n∑

i=1

yiBik =
∑

i:yi 6=0

yiBik =
∑

i:yi 6=0

yiB̂ik ⇒ α = yB̂.

Therefore we have proven that α ∈ Owen(A, B̂, c), and as a consequence

Owen(A,B, c) ⊆ Owen(A, B̂, c). Owen(A, B̂, c) ⊆ Owen(A,Bx∗

, c) can be

proven analogously. �

An immediate corollary to the previous result states that the name Extended

Owen set is meaningful, as EOwen contains the Owen set.

Corollary 1. Owen(A,B, c) ⊆ EOwen(A,B, c) for all (A,B, c) ∈ L.

The following example proves that the inclusions in Proposition 1 and Corol-

lary 1 may be strict.
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Example 2. Take the LP process from Example 1. One can see that Omax(A,B, c) =

{x∗ = (2, 1)}. Therefore, Bx∗

(in this case unique) and a choice of B̂ are:

Bx∗

=




1 0 1

0 3 0

1 0 0

0 4 0




, B̂ =




1 0 1

0 3 0

1 0 0

0 5 0




.

Then, we obtain that problem DN (B
x∗

) and that corresponding to B̂, DN(B̂),

are, respectively:

min 2y1 + 3y2 +y3 +4y4

s.t. y1 + y2 +y4 ≥ 1

y2 +y3 +2y4 ≥ 2

y1, y2, y3, y4 ≥ 0

DN(B
x∗

),

min 2y1 + 3y2 +y3 +5y4

s.t. y1 + y2 +y4 ≥ 1

y2 +y3 +2y4 ≥ 2

y1, y2, y3, y4 ≥ 0

DN(B̂).

(16)

From the solutions to these problems, which are the convex hulls of {(1, 0, 2, 0),

(0, 1, 1, 0), (0, 0, 0, 1)} and {(1, 0, 2, 0), (0, 1, 1, 0)}, respectively, one can see

that Owen(A,Bx∗

, c) (which in this example coincides with EOwen(A,B, c))

is the convex hull of {(3, 0, 1), (1, 3, 0), (0, 4, 0)} and Owen(A, B̂, c) is the

convex hull of {(3, 0, 1), (1, 3, 0)}. This way we prove that the relations de-

scribed in Proposition 1 are strict. Besides, note that there are allocations in

EOwen(A,B, c) that give player 2 a strictly positive payoff, unlike Owen(A,B, c).

Note as well that EOwen(A,B, c) ⊂ Core(A,B, c).
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From their definitions, it is easy to prove that for reduced LP processes,

as introduced in Definition 2, the EOwen set and the Owen set coincide.

Analogously, one can state that in LP processes where all the resources are

completely used, the EOwen set coincides with the Owen set.

The following proposition proves that allocations in the EOwen set dis-

tribute exactly v(N) among the players.

Proposition 2. Let (A,B, c) ∈ L and let γ ∈ EOwen(A,B, c). Then γ is

efficient.

Proof. Let γ ∈ EOwen(A,B, c). Then there exists x∗ ∈ Omax(A,B, c),

Bx∗

∈ B(A,B, x∗) and ŷ ∈ Omin(A,B
x∗

, c) such that γk =
∑r

i=1 ŷiB
x∗

ik ∀ k =

1, . . . , n. Therefore

γ(N) =
n∑

k=1

γk =
n∑

k=1

r∑

i=1

ŷiB
x∗

ik =
r∑

i=1

ŷi

n∑

k=1

Bx∗

ik =
r∑

i=1

ŷib
x∗

i = ŷbx
∗

. (17)

Since ŷ ∈ Omin(A,B
x∗

, c) and x∗ ∈ Omax(A,B, c), we know that ŷbx
∗

= cx∗ =

v(N). This concludes that γ(N) = v(N). �

Another interesting property states that, for all players whose resources are

necessary to produce the maximum benefit v(N) in some optimal production

plan, there exists an allocation in EOwen that assigns them a strictly positive

payoff.

Theorem 1. Let (A,B, c) ∈ L and x∗ ∈ Omax(A,B, c), and let k ∈ N be a

player such that some of the resources that he owns are needed for the optimal

production plan x∗ to be developed. Then there exists α ∈ EOwen(A,B, c)

such that αk > 0.
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Proof. Let x∗ ∈ Omax(A,B, c), and Bx∗

∈ B(A,B, x∗). By the strict

complementary slackness theorem, if the slack in the ith constraint of problem

PN(B
x∗

) is zero, then there exists a solution y to DN(B
x∗

) such that yi > 0

(see Theorem 10.7 in Vanderbei (1997)). Assuming that the units of the ith

resource owned by player k are needed for the optimal production plan x∗,

it is easy to see that Bx∗

ik > 0. Then, the payoff of player k from the EOwen

allocation αBx∗ = yBx∗

is, at least, yiB
x∗

ik > 0.

�

Note that this proposition allows us to state that the EOwen set always

overcomes the unfairness problem illustrated in Example 1.

Let us now introduce the property of upper limit inclusion (ULI), which

will be useful for our characterization of EOwen.

Property 1 (ULI). A solution rule ϕ satisfies ULI if for every (A,B, c) ∈

L, every x∗ ∈ Omax(A,B, c), and every matrix B′ such that B′ ∈ [Bx∗

, B] for

every Bx∗

∈ B(A,B, x∗), we have that ϕ(A,B′, c) ⊆ ϕ(A,B, c).

The following result proves that EOwen satisfies this property.

Proposition 3. EOwen satisfies ULI.

Proof. Let (A,B, c) ∈ L. Consider x∗ ∈ Omax(A,B, c), and let B′ ∈

[Bx∗

, B] for every Bx∗

reduced matrix associated to x∗. Similarly as we

proved in Proposition 1, it can be seen that Omax(A,B
′, c) ⊆ Omax(A,B, c).

Besides, since we proved in Lemma 2 that B(A,B, x∗) ⊇ B(A,B′, x∗), we
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have

EOwen(A,B, c) =
⋃

x∗∈Omax(A,B,c)

⋃
Bx∗∈B(A,B,x∗)Owen(A,Bx∗

, c)

⊇
⋃

x∗∈Omax(A,B′,c)

⋃
Bx∗∈B(A,B,x∗)Owen(A,Bx∗

, c)

⊇
⋃

x∗∈Omax(A,B′,c)

⋃
Bx∗∈B(A,B′,x∗)Owen(A,Bx∗

, c)

= EOwen(A,B′, c).

�

Now we are ready to give a characterization of the EOwen solution rule

for linear production processes.

Theorem 2. Let ϕ be a solution rule over L. ϕ satisfies ULI, coincides with

the Owen set over LP processes without leftovers and is minimal if and only

if ϕ ≡ EOwen.

Proof.

• Clearly EOwen coincides with the Owen set in LP processes without

leftovers, and as proven in Proposition 3, EOwen satisfies ULI. Let

us see that EOwen is minimal. For this purpose, let ϕ be a solution

set that coincides with the Owen set in LP processes without leftovers

and satisfies ULI, and let (A,B, c) ∈ L. Therefore, Owen(A,Bx∗

, c) =

ϕ(A,Bx∗

, c) ⊆ ϕ(A,B, c) for all x∗ ∈ Omax(A,B, c) and all Bx∗

∈

B(A,B, x∗). Hence

EOwen(A,B, c) =
⋃

x∗∈Omax(A,B,c)

⋃
Bx∗∈B(A,B,x∗)Owen(A,Bx∗

, c)

=
⋃

x∗∈Omax(A,B,c)

⋃
Bx∗∈B(A,B,x∗) ϕ(A,B

x∗

, c)

⊆ ϕ(A,B, c)

which proves that EOwen is minimal.
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• Let ϕ be a solution rule over L satisfying the hypotheses of the theorem.

Therefore ϕ(A,Bx∗

, c) = Owen(A,Bx∗

, c) ∀ x∗ ∈ Omax(A,B, c) and for

every Bx∗

∈ B(A,B, x∗), because (A,Bx∗

, c) has no leftovers. Now,

since ϕ satisfies ULI we have that ϕ(A,Bx∗

, c) ⊆ ϕ(A,B, c), therefore

EOwen(A,B, c) =
⋃

x∗∈Omax(A,B,c)

⋃

Bx∗∈B(A,B,x∗)

ϕ(A,Bx∗

, c) ⊆ ϕ(A,B, c).

From the minimality of ϕ, and since EOwen satisfies the hypotheses of

the theorem, ϕ(A,B, c) ⊆ EOwen(A,B, c). Thus, EOwen(A,B, c) =

ϕ(A,B, c).

�

Let us now introduce the following increasing monotonicity (IM) property

that will lead us to another characterization of EOwen set:

Property 2 (IM). A solution rule ϕ satisfies IM if for every (A,B, c) ∈ L,

every x∗ ∈ Omax(A,B, c), and every B1, B2 such that B1 ∈ [Bx∗

, B] for each

Bx∗

∈ B(A,B, x∗) and B2 ∈ [B1, B], we have that ϕ(A,B1, c) ⊆ ϕ(A,B2, c).

The following result states that increasing monotonicity is equivalent to up-

per limit inclusion.

Lemma 4. Let ϕ be a solution rule over L. Then ϕ satisfies ULI if and only

if ϕ satisfies IM.

Proof. Trivially, if ϕ satisfies IM then it satisfies ULI too. Conversely,

let (A,B, c) ∈ L, and x∗ ∈ Omax(A,B, c). Moreover, let B1 ∈ [Bx∗

, B]

for each Bx∗

∈ B(A,B, x∗) and B2 ∈ [B1, B]. It is straightforward that
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x∗ ∈ Omax(A,B
2, c). Then, since B1 ∈ [Bx∗

, B2] and ϕ satisfies IM, we have

that ϕ(A,B1, c) ⊆ ϕ(A,B2, c), which concludes the proof. �

From the equivalency between increasing monotonicity and upper limit in-

clusion, the following alternative characterization of EOwen trivially follows

from Theorem 2.

Corollary 2. Let ϕ be a solution rule over L. ϕ satisfies IM, coincides with

the Owen set over LP processes without leftovers and is minimal if and only

if ϕ ≡ EOwen.

We finish this section by studying the relation between EOwen, the Owen

set, and the core of the original game. It is obvious that Core(A,B, c) ⊆

Core(A,Bx∗

, c) for every optimal production plan x∗ and every reduced ma-

trix Bx∗

associated to it, since vB
x∗

(S) ≤ v(S) and vB
x∗

(N) = v(N), where

vB
x∗

denotes the characteristic function of the corresponding reduced game.

The following example shows that this relation may be strict.

Example 3. Consider the LP process (A,B, c) where

A =




1 0

1 1

0 1


 , B =




1 0

1 3

1 0


 , c =


 2

1


 .

It can be seen that Omax(A,B, c) = {x∗ = (1, 1)}, and the characteristic

function of the associated game is v({1}) = 2, v({2}) = 0, v({1, 2}) = 3.

There is a surplus of resource 2. One reduced matrix (in which both players
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drop half of the units of resource 2 they had) is

Bx∗

=




1 0

0.5 1.5

1 0


 ,

and vx
∗

({1}) = 1, vx
∗

({2}) = 0, v({1, 2}) = 3. Therefore, Core(A,B, c)  

Core(A,Bx∗

, c).

Unfortunately, not all EOwen allocations are core allocations. However,

it is not always possible to find allocations that avoid the unfairness drawback

of the Owen set mentioned in this paper and remain in the core of the original

game at the same time. Therefore, one has to look for some compromise

between null-payoff to absolutely necessary players and un-stability. The

following example illustrates the above statements.

Example 4. Consider the LP process (A,B, c) with the following data,

A =




1 0

1 1

0 1


 , B =




1 0 0

0 1 0

0 0 1


 , c =


 1

1


 .

The characteristic function of the associated game is v({1, 2}) = v({2, 3}) =

v({1, 2, 3}) = 1, and zero for any other coalition. Therefore, the core of

this game consists of the singleton {(0, 1, 0)}. Note as well that without the

resources of players 1 and 3, player 2 gets nothing, but it is not possible to

give a positive payoff to players 1 and 3 with a core allocations.

Let us calculate the EOwen set for this example. One can see that the

extreme optimal production plans are x1 = (1, 0) and x2 = (0, 1), and that
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B(A,B, x1) and B(A,B, x2) consist only of one matrix each (named B1 and

B2, respectively). B1 has a diagonal equal to (1, 1, 0) and B2 has a diagonal

equal to (0, 1, 1). All non-diagonal entries are null for both matrices. It is

easy to see that Omin(A,B
1, c) is the union over t1 ≥ 1 and t2 ≥ 0 of the

convex hulls of {(1, 0, t1), (0, 1, t2)}, and that Omin(A,B
2, c) is the union over

t1 ≥ 1 and t2 ≥ 0 of the convex hulls of {(t1, 0, 1), (t2, 1, 0)}. Therefore,

Owen(A,B1, c) is the convex hull of {(1, 0, 0), (0, 1, 0)} and Owen(A,B2, c)

is the convex hull of {(0, 0, 1), (0, 1, 0)}. For every non-extreme optimal solu-

tion xa = (a, 1− a) (a ∈ (0, 1)), B(A,B, xa) consists only of one matrix Ba,

in which the diagonal is (a, 1, 1 − a), and the rest is zero. The correspond-

ing Omin(A,B
a, c) is the convex hull of {(0, 1, 0), (1, 0, 1)}, and therefore the

Owen set of the corresponding reduced LP process is {(0, 1, 0), (a, 0, 1− a)}.

Therefore, EOwen(A,B, c) is the convex hull of {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(all players can obtain a positive payoff from allocations in this set).

To summarize, the Owen set, the EOwen set and the core of the original

game have a relationship as shown in Figure 1.

&%
'$
&%
'$

Owen

EOwen

Core(A,B, c)

Figure 1: General relation between EOwen, Core and Owen .
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Conclusions

In this work we have introduced the EOwen set, a new solution rule on

the class of linear production processes which overcomes certain drawbacks of

the well-known Owen set, in the sense that one can always find an allocation

that gives a strictly positive payoff to players whose resources are needed for

(at least) one optimal production plan. Some examples in the paper show

that Owen allocations do not satisfy this property.

EOwen is defined as the union, over all possible optimal production plans

and all possible reduced matrices, of the Owen sets over the corresponding

reduced LP processes, in which players get rid of the leftovers in their re-

sources according to a reduced matrix. Several theoretical properties and an

axiomatic characterization of this new solution rule are given. By means of

an example we also prove that, in general, it is not possible to find allocations

that give non-null payoffs to players that are necessary in order to achieve

the optimal value of v(N) by restricting to the core.

We note that two types of players have been involved in this paper: group

T1, consisting of players such that some of the resources they own are needed

for (at least) one optimal production plan; and group T2, consisting of players

whose resources are never completely used in any of the optimal production

plans. Theorem 1 ensures that players in T1 can always find an allocation in

EOwen that gives them a strictly positive payoff. Examples have shown that

players in T2 may receive only zero payoffs from Owen allocations. Players

in both T1 and T2 are of special interest, since they receive strictly positive

payoffs from EOwen allocations, and may only receive zero payoffs from

Owen allocations (see for instance examples 1 and 2).
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Further research on this topic will focus on methods to find allocations

with particular extra properties in the EOwen set, as well as efficient algo-

rithms for obtaining them.
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