Skip to main content

Advanced Motion Control for Safe Navigation of an Omnidirectional Wall-Climbing Robot

  • Conference paper
  • First Online:
Book cover Autonomous Mobile Systems 2012

Part of the book series: Informatik aktuell ((INFORMAT))

  • 970 Accesses

Abstract

Safe navigation a great challenge for wall-climbing robots which adhere to the surface via negative pressure. Especially wheeled systems which are able to drive on vertical concrete structures like bridge pylons or dams need special measures to enhance safety. This paper presents the advanced motion control system of the climbing robot cromsci which uses a negative pressure adhesion system in combination with driven wheels for propulsion. The main demands to this motion control system related to robot safety are to enhance the transferable force in driving direction, reduce the wear of wheels and to minimize the chance of robot slip. This can be achieved via special traction control components and additional elements as presented in this paper. Experimental results prove the operability of the described measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Autumn, K. Buehler, M., Cutkosky, M., et al.: Robotics in scansorial environments. In: Proceedings of The International Society for Optical Engineering (SPIE), vol. 5804, May 2005

    Google Scholar 

  • Burckhardt, M.: Fahrwerktechnik: Radschlupf-Regelsysteme. Vogel Buchverlag (1993)

    Google Scholar 

  • Kim, S., Spenko, M., Trujillo, S., et al.: Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. Proceedings of IEEE International Conference on Robotics and Automation, In (April 2007)

    Google Scholar 

  • Luk, B.L., Cooke, D.S., Collie, A.A., Hewer, N.D., Chen, S.: Intelligent legged climbing service robot for remote inspection and maintenance in hazardous environments 1. In: 8th IEEE Conference on Mechatronics and Machine Vision, in Practice, pp. 252–256 (2001)

    Google Scholar 

  • Prahlad, H., Pelrine, R., Stanford, S., et al.: Electroadhesive robots-wall climbing robots enabled by a novel, robust and electrically controllable adhesion technology. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 19–23 May 2008

    Google Scholar 

  • Shang, J., Bridge, B., Sattar, T., Mondal, S., Brenner, A.: Development of a climbing robot for inspection of long weld lines. Industrial Robot: Int. J. 35(3), 217–223 (2008)

    Article  Google Scholar 

  • Schmidt, D., Hillenbrand, C., Berns, K.: Omnidirectional locomotion and traction control of the wheel-driven, wall-climbing robot. Cromsci. Robotica J. 29(7), 991–1003 (2011)

    Article  Google Scholar 

  • Spenko, M.J., Haynes, G.C., Saunders, J.A., Cutkosky, M.R., Rizzi, A.A., Koditschek, D.E.: Biologically inspired climbing with a hexapedal robot. J. Field Robot. 25(4–5), 223–242 (2008)

    Article  Google Scholar 

  • Zielinska, T., Chmielniak, A.: Controlling the slip in mobile robots. In: 13th International Conference on Climbing and Walking Robots (CLAWAR), number 4 in 1, pp. 13–20 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, D., Berns, K. (2012). Advanced Motion Control for Safe Navigation of an Omnidirectional Wall-Climbing Robot. In: Levi, P., Zweigle, O., Häußermann, K., Eckstein, B. (eds) Autonomous Mobile Systems 2012. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32217-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32217-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32216-7

  • Online ISBN: 978-3-642-32217-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics