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Abstract

d-Hitting Set is the NP-hard problem of selecting at most k vertices
of a hypergraph so that each hyperedge, all of which have cardinality at
most d, contains at least one selected vertex. The applications of d-Hit-
ting Set are, for example, fault diagnosis, automatic program verification,
and the noise-minimizing assignment of frequencies to radio transmitters.

We show a linear-time algorithm that transforms an instance of d-Hit-
ting Set into an equivalent instance comprising at most O(kd) hyperedges
and vertices. In terms of parameterized complexity, this is a problem
kernel. Our kernelization algorithm is based on speeding up the well-
known approach of finding and shrinking sunflowers in hypergraphs, which
yields problem kernels with structural properties that we condense into
the concept of expressive kernelization.

We conduct experiments to show that our kernelization algorithm can
kernelize instances with more than 107 hyperedges in less than five minutes.

Finally, we show that the number of vertices in the problem kernel can
be further reduced to O(kd−1) with additional O(k1.5d) processing time
by nontrivially combining the sunflower technique with d-Hitting Set
problem kernels due to Abu-Khzam and Moser.

1 Introduction

Many problems, like the examples given below, can be modeled as the NP-hard
d-Hitting Set problem:

∗Supported by the DFG, project DAPA, NI 369/12. Parts of this work were done under
DFG project AREG, NI 369/9. Earlier versions of this article appeared in the Proceedings
of the 18th Annual International Computing and Combinatorics Conference (COCOON’12)
and in the COCOON’12 special issue of Algorithmica [4]. Due to an implementation bug,
Figure 3 of the Algorithmica article [4] reports wrong sizes of the problem kernels obtained in
the experiments and, consequently, the article gives a wrong interpretation of the experimental
results. This version gives corrected experimental results, adds additional figures, and more
formally defines “expressive kernelization”.
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d-Hitting Set
Input: A hypergraphH = (V,E) with hyperedges whose cardinality is bounded

from above by a constant d, and a natural number k.
Question: Is there a hitting set S ⊆ V with |S| ≤ k and ∀e ∈ E : e ∩ S 6= ∅?

Problems that can be modeled as d-Hitting Set arise, among others, in the
following fields.

Construction of Golomb rulers. A Golomb ruler of length n is a subset
of marks R ⊆ [n] such that no pair of marks in R has the same distance as
another pair. The task of finding shortest Golomb rulers with a fixed number
of marks or Golomb rulers of fixed length with a maximum number of marks
arises, among others, in radio frequency allocation [13]. Sorge et al. [37] showed
how to construct Golomb rulers using 4-Hitting Set. That is, d = 4.

Fault diagnosis. The task is to detect faulty components of a malfunctioning
system. To this end, those sets of components are mapped to hyperedges of a
hypergraph that are known to contain at least one broken component [9, 34]. By
the principle of Occam’s razor, a small hitting set is then a likely explanation of
the malfunction. In this application, d is the maximum number of components
that a wrong observation depends on.

Program verification. O’Callahan and Choi [32] used d-Hitting Set in
order to automatically detect bugs in parallel Java programs while aiming
for a small slowdown of the program monitored at execution time. In their
experiments, d ≤ 10 was sufficient to debug complex software suites. In most
cases, even d ≤ 5 sufficed. Remarkably, in this application, one is interested in
the question whether a hypergraph allows for a hitting set of size at most k = d,
that is, both k and d are small.

The described problems have in common that a large number of “conflicts” (the
possibly O(nd) hyperedges in a d-Hitting Set instance) is caused by a small
number of elements (the hitting set S), whose removal or repair could fix a
broken system or establish a useful property.

A powerful tool to attack NP-hard problems like d-Hitting Set is problem
kernelization [20, 26]—a form of provably efficient and effective data reduction.
We show how to compute a problem kernel with O(kd) hyperedges for d-Hitting
Set in linear time. We experimentally evaluate our kernelization algorithm on
4-Hitting Set instances arising in the construction of Golomb rulers with a
maximum number of marks and see that instances with more than 107 hyperedges
are kernelizable in less than five minutes.

Known results. Hitting Set is W[2]-complete with respect to the parame-
ter k when the cardinality of the hyperedges is unbounded [18, Theorem 7.14].
Hence, unless FPT = W[2], it has no problem kernel. Dell and van Melke-
beek [10] showed that the existence of a problem kernel with O(kd−ε) hyperedges
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for any ε > 0 for d-Hitting Set implies a collapse of the polynomial-time
hierarchy. Therefore, d-Hitting Set is assumed not to admit problem kernels
with O(kd−ε) hyperedges. For the same reason, d-Hitting Set presumably has
no polynomial-size problem kernels if d is not constant.

Various problem kernels for d-Hitting Set have been developed [1, 8, 15,
18, 25, 28, 30, 31]. Niedermeier and Rossmanith [30] showed a problem kernel
for 3-Hitting Set of size O(k3). They implicitly claimed that a polynomial-size
problem kernel for d-Hitting Set is computable in linear time, without giving
a proof for the running time. Nishimura et al. [31] claimed that a problem kernel
with O(kd−1) vertices is computable in O(k(n+m) + kd) time, which, however,
does not always yield correct problem kernels [1]. Damaschke [8] focused on
developing small problem kernels for d-Hitting Set and other problems with
the focus on preserving all minimal solutions of size at most k (so-called full
kernels). Fafianie and Kratsch [15] presented a so-called streaming kernelization
for d-Hitting Set, which reads every hyperedge in the input hypergraph at
most once and has logarithmic memory usage for fixed k. Abu-Khzam [1] showed
a problem kernel with O(kd−1) vertices for d-Hitting Set, thus proving the
previously claimed result of Nishimura et al. [31] on the number of vertices in the
problem kernel. Moser [28, Section 7.3] built upon the work of Abu-Khzam [1] to
show a problem kernel for d-Hitting Set that also comprises O(kd−1) vertices
but, in contrast to the problem kernel of Abu-Khzam [1], yields a subgraph of
the input hypergraph. The problem kernels of Abu-Khzam [1] and Moser [28]
comprise Ω(k2d−2) hyperedges in the worst case.1

Several exponential-time algorithms for Hitting Set exist and aim to
decrease the exponential dependence of the running time on the number of input
vertices [36], on the number of input hyperedges [16], and on the size of the
sought hitting set [17]. Also exponential-time approximation stepped into the
field of interest [6], since, in polynomial time, d-Hitting Set appears to be
hard to approximate within a factor of better than d [24].

Our results. We show that a problem kernel for d-Hitting Set with O(kd) hy-
peredges and vertices is computable in linear time. Thereby, we prove the previ-
ously claimed result by Niedermeier and Rossmanith [30] and complement recent
results in improving the efficiency of kernelization algorithms [5, 15, 21, 22, 33].

Our problem kernel has useful structural properties that ensure the inter-
pretability of the problem kernel. We condense these properties into the concept
of expressive kernelization. Moreover, in the sense that a problem kernel with
O(kd−ε) hyperedges for some ε > 0 would lead to a collapse of the polynomial-
time hierarchy, the size of our problem kernel is optimal.

We implement our kernelization algorithm and evaluate its applicability to
the problem of constructing Golomb rulers with a maximum number of marks

1Although not directly analyzed in the works of Abu-Khzam [1] and Moser [28], this can be
seen as follows: the kernel comprises vertices of a set W of “weakly related” hyperedges and
an independent set I. In the worst case, |W | = kd−1, |I| = dkd−1, and each hyperedge in W
has d subsets of size d− 1. Each such subset can constitute a hyperedge with each vertex in I
and the kernel has Ω(k2d−2) hyperedges.
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and find instances with more than 107 hyperedges to be kernelizable in less than
five minutes.

Finally, using ideas of Abu-Khzam [1] and Moser [28], we show that the
number of vertices can be further reduced to O(kd−1) with an additional amount
of O(k1.5d) time. By merging these techniques, we can compute in O(n+m+
k1.5d) time a problem kernel comprising O(kd) hyperedges and O(kd−1) vertices.

Preliminaries. A hypergraph H = (V,E) consists of a set of vertices V and
a set of (hyper)edges E, where each hyperedge in E is a subset of V . We use
n := |V | and m := |E|. In a d-uniform hypergraph every edge has cardinality
exactly d. A 2-uniform hypergraph is a graph. A hypergraph G = (V ′, E′) is
a subgraph of its supergraph H if V ′ ⊆ V and E′ ⊆ E. A set S ⊆ V intersecting
every set in E is a hitting set. A parameterized problem is a subset L ⊆ Σ∗ ×
N [12, 18, 29]. A problem kernel for a parameterized problem L is a polynomial-
time algorithm that, given an instance (I, k), computes an instance (I ′, k′) such
that |I ′| + k′ ≤ f(k) and (I ′, k′) ∈ L ⇐⇒ (I, k) ∈ L. Herein, the function f
is called the size of the problem kernel and depends only on k.

Paper outline. We start by giving a concept of expressive kernelization in
Section 2.

Then, we present an expressive linear-time kernelization algorithm for d-Hit-
ting Set in Section 3, which we evaluate experimentally on hypergraphs occur-
ring in the computation of optimal Golomb rulers in Section 4.

Finally, we show how the number of vertices can be reduced to O(kd) in
additional O(k1.5k) time in Section 5. Since the resulting problem kernel is not
expressive, we have not implemented it.

2 Expressive kernelization

The core component of our linear-time kernelization algorithm for d-Hitting
Set is an algorithm to find and shrink sunflowers in linear time. Sunflowers
are special constellations of hyperedges that Erdős and Rado [14] discovered
to appear in any sufficiently large hypergraph and their use in kernelization
algorithms for d-Hitting Set is a standard technique [18, 19, 25]. They are
defined as follows and illustrated in Figure 1.

Definition 1. A sunflower in a hypergraph H = (V,E) is a set of petals P ⊆ E
such that each pair of sets in P intersects in exactly the same set C ⊆ V , which
is called the core (possibly, C = ∅). The size of the sunflower is |P |.

The approach of finding and shrinking sunflowers yields problem kernels that
contain more structural information than the formal definition of problem kernels
requires. Specifically, sunflowers help computing problem kernels that have the
following three properties, which we henceforth require to be guaranteed by
expressive problem kernels for d-Hitting Set and that we will describe in more
detail in the following.
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Figure 1: A sunflower with three petals and two core elements.

Definition 2. A kernelization algorithm for d-Hitting Set is expressive if,
given an instance (H, k), it outputs an instance (H ′, k′) such that

i) H ′ is a subgraph of H,

ii) any vertex set of size at most k is a minimal hitting set for H if and only if
it is a minimal hitting set for H ′, and

iii) it outputs a certificate for (H ′, k′) being a yes-instance if and only if (H, k) is.

Interpretability of the problem kernel. The kernelization algorithm should
output a subgraph of the input hypergraph. Kernelization algorithms for
d-Hitting Set with this explicit goal have been developed by Moser [28]
and Kratsch [25], since newly introduced hyperedges or vertices in the problem
kernel might not be interpretable in the context of the original problem modeled
as d-Hitting Set. Kratsch [25] exploited this property to show polynomial-size
problem kernels for a large class of problems formalizable as d-Hitting Set.
In some scenarios, as pointed out by Abu-Khzam and Fernau [2], it is even
desirable that the kernelization algorithm outputs an induced subgraph of the
input hypergraph. However, our problem kernel for d-Hitting Set will not
satisfy this requirement.

Interpretability of solutions. Any vertex set of size at most k should be a
minimal hitting set for the resulting problem kernel if and only if it is a minimal
hitting set for the original instance. If the input instance and the problem
kernel allow for exactly the same minimal hitting sets of size at most k, the
problem kernel retains enough information for interpreting solutions and finding
alternative solutions without having to consider the input hypergraph. This
property has been exploited by Fomin et al. [19] as an important building block
in a polynomial-size problem kernel for a problem that cannot easily be modeled
as d-Hitting Set for constant d. As pointed out by Fomin et al. [19], this
property is stronger than those guaranteed by the full kernels introduced by
Damaschke [8]: full kernels contain all minimal hitting sets of size at most k for
the input hypergraph, but not necessarily the information whether a hitting set
is minimal.
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x1 v1 w1 f1(x)

x2 v2 w2 f2(x)

w3 f3(x)

x3 v3 w4 f4(x)

x4 v4 w5 f5(x)

(a) A Boolean circuit with circle
nodes representing gates and square
nodes representing input and output
nodes.

w3v3

v4

w4

w5

w2v2

v1

w1

S1

S2 S3

S4

S5

(b) Sets containing at least one faulty gate,
found by the analysis of the circuit.

Figure 2: Illustrations for Example 1.

Certifying data reduction. Similarly to how certifying algorithms provide
a certificate for the correctness of their output [27], an expressive kernelization
algorithm should provide a certificate for the correctness of the executed data
reduction. Ideally, the proof that a certificate indeed certifies the correctness
should be easily understandable, so that a human can easily verify the executed
data reduction to be correct without having to trust on the correctness of
algorithms and their implementations. A sunflower P with k + 1 petals in a
d-Hitting Set instance fulfills this requirement: every hitting set S of size at
most k contains an element of the core C of P , since otherwise S cannot contain
an element of each of the k + 1 petals. Thus, any additional hyperedge in the
hypergraph that contains C already contains an element of S; it is redundant
and may be removed. The sunflower P is a certificate for this being correct.

Example 1. Sunflowers not only certify the correctness of data reduction, but
also lead the way to alternative solutions. We illustrate this using an example of
d-Hitting Set in a fault diagnosis context.

Figure 2(a) represents a Boolean circuit. It gets as input a 4-bit string x =
x1 . . . x4 and outputs a 5-bit string f(x) = f1(x) . . . f5(x). The nodes drawn
as circles represent Boolean gates, which output some bit depending on their
two input bits. They might, for example, represent the logical operators ∧ or ∨.
Assume that all output bits of f(x) are observed to be the opposite of what
would have been expected by the designer of the circuit. We want to identify
broken gates. For each wrong output bit fi(x), we obtain a set Si of gates for
which we know that at least one is broken because fi(x) is wrong. That is,
Si contains precisely those gates that have a directed path to fi(x) in the graph
shown in Figure 2(a). We obtain the sets S1, . . . , S5 illustrated in Figure 2(b).

The sets S1 and S4 are disjoint. Therefore, the wrong output is not explain-
able by only one broken gate. Hence, we assume that there are two broken
gates and search for a hitting set of size k = 2 in the hypergraph with the

6



vertices v1, . . . , v4, w1, . . . , w5 and hyperedges S1, . . . , S5. The set {S3, S4, S5} is
a sunflower of size k + 1 = 3 with core {v3, v4}. Therefore, the functionality of
gate v3 and v4 must be checked. If, in contrast to our expectations, both gates v3
and v4 turn out to be working correctly, the sunflower shows not only that at
least three gates are broken, but also shows which gates have to be checked for
malfunctions next: w3, w4, and w5.

There are few expressive kernelization algorithms for d-Hitting Set in the
literature. For example, the algorithm of Abu-Khzam [1] does not yield a
subgraph of the input hypergraph. Thus, it does not satisfy Definition 2(i),
which has been “fixed” by Moser [28]. However, both problem kernels may
discard minimal solutions of size at most k and, thus, do not satisfy Defini-
tion 2(ii). Damaschke [8] designed a problem kernel that retains all minimal
solutions of size at most k. However, it is not certifying and thus does not satisfy
Definition 2(iii).

We are aware of only one expressive kernelization algorithm for d-Hitting
Set: this is the problem kernel shown by Kratsch [25], which is also used by Fomin
et al. [19]. This is precisely the algorithm we will improve to run in linear time.

3 A linear-time kernelization algorithm

This section shows a linear-time computable problem kernel for d-Hitting Set
comprising O(kd) hyperedges. That is, we show that a hypergraph H can be
transformed in linear time into a hypergraph G such that G has O(kd) hyperedges
and allows for a hitting set of size k if and only H does. In Section 5, we show
how to shrink the number of vertices to O(kd−1).

Theorem 1. d-Hitting Set allows for an expressive problem kernel with
d! · dd+1 · (k+ 1)d hyperedges and d times as many vertices that is computable in
O(d · n+ 2dd ·m) time.

We prove Theorem 1 with the help of the sunflower lemma of Erdős and Rado [14],
who showed that every sufficiently large hypergraph contains a sunflower with
k + 2 petals: if we shrink all of these sunflowers, it follows that the resulting
hypergraph will be small. Kernelization algorithms based on this strategy, like
those of Flum and Grohe [18] and Kratsch [25] usually proceed along the lines
of repeatedly

• finding a sunflower of size k + 2 in the input hypergraph and

• deleting redundant petals until no more sunflowers of size k + 2 exist.

This approach has the drawback of finding only one sunflower at a time and
restarting the process from the beginning.

In contrast, to prove Theorem 1, we construct a subgraph G of a given
hypergraph H not by hyperedge deletion, but by a bottom-up approach that
allows us to “grow” many sunflowers in G simultaneously, stopping “growing
sunflowers” when they become too large.
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Algorithm 1 repeatedly (after some initialization work in lines 1–6) in line 9
copies a hyperedge e from H to the initially empty G unless we find in line 8
that e contains the core C of a sunflower of size k + 1 in G. We maintain the
number of petals found for a core C in petals[C]. If we find that a hyperedge e
can be added to a sunflower with core C in line 11, then we increment petals[C]
in line 12 and mark the vertices in e \C as “used” for the core C in line 13. This
information is maintained by setting “used[C][v]← true.” In this way, vertices
in e \ C are not considered again for finding petals for the core C in line 11,
therefore ensuring that petals later found for the core C intersect e only in C.

Algorithm 1: Linear-Time kernelization for d-Hitting Set

Input: A hypergraph H = (V,E) and a natural number k.
Output: A hypergraph G = (V ′, E′) with |E′| ∈ O(kd).

1 E′ ← ∅;
2 foreach e ∈ E do // Initialization for each hyperedge
3 foreach C ⊆ e do // Initialization for all possible cores of sunflowers
4 petals[C]← 0; // No petals found for sunflower with core C yet
5 foreach v ∈ e do
6 used[C][v]← false; // No vertex v is in a petal of a

// sunflower with core C yet

7 foreach e ∈ E do
8 if ∀C ⊆ e : petals[C] ≤ k then
9 E′ ← E′ ∪ {e};

10 foreach C ⊆ e do // Consider all possible cores for the petal e
11 if ∀v ∈ e \ C : used[C][v] = false then
12 petals[C]← petals[C] + 1;
13 foreach v ∈ e \ C do used[C][v]← true;

14 V ′ :=
⋃

e∈E′ e;
15 return (V ′, E′);

By storing in petals[C] a list of found petals, the algorithm can output the
discovered sunflowers without any increase in running time. Thus, it gives
certificates for the correctness of the executed data reduction.

It is important to note that, as illustrated in Figure 3, the value in petals[C]
is not necessarily the size of the largest possible sunflower with core C, but
depends on the order in that Algorithm 1 processes the hyperedges of the input
hypergraph. Computing the size of a largest sunflower with core C is, for C = ∅,
the problem of computing a maximum matching in a hypergraph, which is
NP-hard [23].

Towards proving Theorem 1, we now proceed as follows. Section 3.1 shows
that Algorithm 1 is correct and expressive. Section 3.2 shows that the hypergraph
output by Algorithm 1 contains O(kd) hyperedges. Finally, Section 3.3 shows
that Algorithm 1 runs in linear time.
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v

e3

w3

e2 w2

e1

w1

e4

Figure 3: The result of applying Algorithm 1 depends on the order in that
it processes the hyperedges of the input hypergraph H. If applied for k = 2,
then Algorithm 1 will not add the hyperedge e4 to the output hypergraph G
if it before added e1, e2, and e3, since it discovers e4 to contain the core {v}
of the sunflower {e1, e2, e3} with k + 1 = 3 petals. However, if it first adds e4
to G, then it marks the vertices w1, w2, and w3 as used for the sunflower with
core {v}. Thus, none of the hyperedges e1, e2, and e3 is recognized as a petal
for a sunflower with core {v} and all shown hyperedges are added to the output
hypergraph.
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3.1 Correctness

On our way to proving that d-Hitting Set has an expressive linear-time
computable problem kernel with O(kd) hyperedges and thus proving Theorem 1,
we now prove the correctness and expressiveness of Algorithm 1. This, together
with a proof for the size of the output hypergraph and a proof of the running
time of Algorithm 1, will provide a proof of Theorem 1.

Proposition 1. Let G be the hypergraph returned by Algorithm 1 when given a
hypergraph H and an integer k. Then,

i) any hitting set S of size at most k for G is a hitting set for H and

ii) any minimal hitting set S of size at most k for H is a hitting set for G.

Moreover, G is a subgraph of H and any subset S of at most k vertices of H is
a minimal hitting set for H if and only if it is a minimal hitting set for G.

Proof. By construction of G from H in Algorithm 1, it is clear that G is a
subgraph of H. We now show that it is sufficient to prove (i) and (ii) to also
conclude the last statement of Proposition 1: let S be a minimal hitting set
of size at most k for H. By (ii), it is a hitting set for G. Assume, towards
a contradiction, that S is not a minimal hitting set for G. Then, there is a
hitting set S′ ( S for G. However, by (i), S′ ( S is also a hitting set for H.
This contradicts S being a minimal hitting set for H. Symmetrically, let S be a
minimal hitting set S of size at most k for G. By (i), S is a hitting set for H.
Assume, towards a contradiction, that S is not a minimal hitting set for H.
Then, there is a minimal hitting set S′ ( S for H. However, by (ii), S′ ( S is
also a hitting set for G. This contradicts S being a minimal hitting set for G. It
remains to prove (i) and (ii).

(i) Let S be a hitting set of size at most k for G. Obviously, all hyperedges
that H and G have in common are hit in H by S. We show that every hyperedge e
in H that is not in G is also hit. If e is in H but not in G, then adding e to G
in line 9 of Algorithm 1 has been skipped because the condition in line 8 is false.
That is, petals[C] ≥ k + 1 for some C ⊆ e. Consequently, for this particular C,
a sunflower P with k + 1 petals and core C exists in G, since we only increment
petals[C] in line 12 if we find a suitable additional petal for the sunflower with
core C in line 11. Note that C 6= ∅ because, otherwise, k + 1 pairwise disjoint
hyperedges would exist in G, contradicting our assumption that S is a hitting
set of size k for G. Since |S| ≤ k, we have S ∩ C 6= ∅. Therefore, since C ⊆ e,
the hyperedge e is hit by S also in H.

(ii) Let S be a minimal hitting set of size at most k for H = (V,E). The
set S′ := S ∩ V ′ is a hitting set for G = (V ′, E′) with S′ ⊆ S: the set S contains
an element of every hyperedge in E and, since E′ ⊆ E and V ′ =

⋃
e∈E′ e, the

set S′ contains an element of every hyperedge in E′. By (i), S′ is also a hitting
set for H. Since S′ ⊆ S and we required S to be a minimal hitting set of size at
most k for H, we have that S′ = S and, thus, that S is a hitting set for G.
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3.2 Problem kernel size

Having shown that Algorithm 1 is correct, we now show that the hypergraph
output by Algorithm 1 contains O(kd) hyperedges. To prove Theorem 1, it then
remains to prove that Algorithm 1 runs in linear time.

In order to show an upper bound on the size of the hypergraph output by
Algorithm 1, we exploit an upper bound on the size of the sunflowers in the
output hypergraph:

Lemma 1. Let G be the hypergraph output by Algorithm 1 applied to a hyper-
graph H and a natural number k. Every sunflower P in G with core C /∈ P has
size at most d(k + 1).

Proof. Let P be a sunflower in G with core C /∈ P . Then, |P | ≤ d(k+ 1) follows
from the following two observations:

(i) Every petal e ∈ P present in G is copied from H in line 9 of Algorithm 1.
Consequently, every petal e ∈ P contains a vertex v satisfying used[C][v] = true:
if this condition is violated in line 11, then line 13 applies “used[C][v]← true”
to all vertices v ∈ e \ C.

(ii) Whenever petals[C] is incremented by one in line 12, then, in line 13,
“used[C][v] ← true” is applied to the at most d vertices v ∈ e. Thus, since
petals[C] never exceeds k+1, at most d(k+1) vertices v satisfy used[C][v] = true.
Moreover, since, by line 13, no v ∈ C satisfies used[C][v] = true and the petals
in P pairwise intersect only in C, it follows that at most d(k + 1) petals in P
contain vertices satisfying used[C][v] = true.

Having shown an upper bound on the size of the sunflowers in the hypergraph
output by Algorithm 1, we now show that the output hypergraph contains
O(kd) hyperedges. To this end, in a way similar to Flum and Grohe [18,
Lemma 9.7], we show the following refined version of Erdős and Rado [14]’s
sunflower lemma. Herein, recall that a hypergraph is `-uniform if and only if
every hyperedge has cardinality exactly `.

Lemma 2. Let H be an `-uniform hypergraph and b, c ∈ N with b ≤ ` such that
every pair of hyperedges in H intersects in at most `− b vertices.

If H contains more than `!c`+1−b hyperedges, then H contains a sunflower
with more than c petals.

For b = 1, we obtain the sunflower lemma stated by Flum and Grohe [18]. For
b = 2, we will exploit it in Section 5 to reduce the number of vertices in the
output hypergraph.

Proof. We prove the lemma by induction on `. As base case, consider ` = b.
For ` = b, all hyperedges in H are pairwise disjoint. Hence, if H has more than
`!c`+1−b hyperedges, then these form a sunflower with empty core and more than
`!c`+1−b = `!c ≥ c petals. That is, the lemma holds for ` = b.

Now, assume that the lemma holds for some ` ≥ b. It remains to prove that
it holds for `+ 1. Let M be a maximal set of pairwise disjoint hyperedges of
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the (`+ 1)-uniform hypergraph H := (V,E). If |M | > c, then the lemma holds
because M is a sunflower with empty core. Otherwise, for N :=

⋃
e∈M e, it holds

that |N | ≤ (`+1)c and some vertex w ∈ N is contained in a set Ew of more than

|E|
|N |
≥ (`+ 1)!c`+2−b

(`+ 1)c
= `!c`+1−b hyperedges.

The hypergraph Hw that contains for each hyperedge e ∈ Ew the hyper-
edge e \ {w} is an `-uniform hypergraph and, by induction hypothesis, contains
a sunflower P with more than c petals. Adding w to each of the petals of P
yields a sunflower P ′ with more than c petals in H.

By combining Lemma 1 with Lemma 2, we can easily show that the hypergraph
output by Algorithm 1 contains O(kd) hyperedges. Since we have already shown
in Proposition 1 that the algorithm is correct, it thereafter only remains to show
that Algorithm 1 runs in linear time in order to complete the proof of Theorem 1.

Proposition 2. The hypergraph G returned by Algorithm 1 on input H and k
contains at most d! · dd+1 · (k + 1)d hyperedges and d times as many vertices.

Proof. Obviously, G has at most d times as many vertices as hyperedges, since
the vertex set of G is constructed as the union of its hyperedges in line 14
of Algorithm 1.

To bound the number of hyperedges, consider, for 1 ≤ ` ≤ d, the `-uniform
hypergraph G` = (V`, E`) comprising only the hyperedges of size ` of G. If G
had more than d! · dd+1 · (k + 1)d hyperedges, then, for some ` ≤ d, G` would
have more than d! ·dd · (k+1)d hyperedges. Lemma 2 with b = 1 and c = d(k+1)
states that, if G` had more than `! · d` · (k + 1)` hyperedges, then G` would
contain a sunflower P with core C and more than d(k + 1) petals. Obviously,
C /∈ P , since all petals have cardinality `. Moreover, this sunflower would also
exist in the supergraph G of G`, contradicting Lemma 1.

3.3 Running time

Since Proposition 1 has shown that Algorithm 1 is correct and Proposition 2
has shown that the output hypergraph contains O(kd) hyperedges, to prove
Theorem 1, it remains to show that Algorithm 1 runs in linear time. In order to im-
plement the algorithm efficiently, we need data structures that allow us to quickly
look up the values petals[C] and used[C] for some vertex set C of size at most d.

The usual approach to realize table look-ups for subsets of some universe
of size γ in O(γ) time is representing the subsets as bitstrings of length γ and
looking up these in a trie [3, Section 5.3]. However, here, our universe is the set of
vertices of the input hypergraph and, thus, has size n. Hence, this method would
yield table look-ups in Θ(n) time, which is too slow to prove that Algorithm 1
runs in linear time. For this reason, we will not represent vertex subsets of size
at most d as bitstrings, but uniquely represent them as sorted sequences of at
most d integers. Then, we will exploit the following lemma.
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Figure 4: A trie that associates integer values with sequences of integers
in {1, . . . , 5}. That is, each node of the trie is an array of size five. With
(1, 2) the trie associates 5, with (1, 2, 3) it associates 10, with (1, 2, 4) it asso-
ciates 8, and, finally, with (2, 3, 5) it associates 2.

Lemma 3. Let L be a list of sequences of length at most d of integers in [n].
In O(d · n+ d · |L|) time, we can compute an associative array A[] such that,

for each sequence s in L, accessing the value A[s] and storing a value to A[s]
works in O(d) time.

Proof. We use a trie to associate values with sequences in L. However, the trie
will be too large to initialize it fully in linear time. We have to show that we
can create the trie so that, for a look-up of a value for any sequence s in L, no
uninitialized memory cells are read.

We define a trie as a size-n array, of which each cell contains a pointer to
a structure consisting of two more pointers: one of them points to data, the
other one to another trie. This is illustrated in Figure 4. A look-up of the value
associated with a sequence s = (s1, . . . , sd) in a trie T1 then works in O(d) time
as follows: for i ∈ [d− 1], we get the trie Ti+1 pointed to by Ti[si]. Then, from
Td[sd], we get a pointer to the data associated with s.

In the creation of the trie to associate values with the sequences in L, we face
a problem: we do not have enough time to initialize all cells of all arrays that
implement the inner nodes of the trie: this would take Θ(n) time per node and,
as seen in Figure 4, the number of nodes required in the trie can be more than |L|.
This is a problem since, when creating the trie, we do not know whether an
array cell already contains a pointer to a trie node of the next level or whether
we have to create such a pointer with a corresponding new node. We have to
make sure that we only follow pointers of initialized cells and that we do not
overwrite previously correctly set up pointers since, otherwise, information in
subtries will be lost. We achieve this as follows:

The input list L contains sequences of length at most d of integers in [n].
Hence, we can sort L lexicographically in O(d · (n+ |L|)) = O(d ·n+ d · |L|) time
using radix sort [7, Section 8.3]. We construct the trie by iterating over L once.
For each sequence p in L, we find in O(d) time the first position i in which the
sequence p differs from its predecessor sequence in the lexicographically sorted
list L. This tells us that we already created all nodes on the path from the trie’s

13



root node to the leaf corresponding to s up to a depth of i. Pointers up to this
depth i are valid and may not be overwritten. Nodes and pointers beyond this
depth have to be newly created.

Using Lemma 3, we can finally prove that Algorithm 1 runs in linear time. Note
that, together with Propositions 1 and 2, Proposition 3 completes the proof of
Theorem 1.

Proposition 3. Algorithm 1 can be implemented to run in O(d · n+ 2dd ·m)
time.

Proof. We first describe how Lemma 3 helps us efficiently implementing the
associative arrays petals[] and used[] required by Algorithm 1. To this end,
we assume that every vertex is represented as an integer in [n] and that every
hyperedge is represented as a sequence sorted by increasing vertex numbers,
which we call sorted hyperedge. We can initially sort each hyperedge of H
in O(m · d log d) total time. Note that, on hyperedges represented as sorted
sequences, the set subtraction operation needed in line 11 can be executed in
O(d) time such that the resulting set is again sorted [3, Section 4.4]. Moreover,
we can generate all subsets of a sorted set such that the resulting subsets are
sorted. Hence, we may assume to always deal with sorted hyperedges as a unique
representation of hyperedges.

We now apply Lemma 3. Observe that Algorithm 1 looks up petals[C]
and used[C] only for sets C ⊆ e for some hyperedge e. Thus, from the set of
sorted hyperedges, in O(2dd ·m) time, we compute a length-(2d ·m) list L of all
possible sets C ⊆ e for all hyperedges e and use this list in Lemma 3 to create the
associative arrays petals[] and used[] in O(d ·n+d · |L|) = O(d ·n+ 2dd ·m) time.

Now, we can implement lines 1–6 of Algorithm 1 to run in O(d·n+2dd·m) time,
observing that the loop in line 5 can be implemented to run in O(d)-time, since
only one look-up to used[C] is needed to obtain a pointer to an array in which,
then, O(d) values are set.

The for-loop in line 7 iterates m times. Its body works in O(2dd) time:
obviously, this time bound holds for lines 8 and 9; it remains to show that the
body of the for-loop in line 10 works in O(d) time. This is easy to see if one
considers that, in lines 11 and 13, one only has to do one look-up to used[C] to
find a pointer to an array that holds the values for the at most d vertices of a
hyperedge. Also line 14 works in linear time by first initializing all entries of
an array vertices[] of size n to “false” and then, for each output hyperedge e
and each vertex v ∈ e, setting “vertices[v]← true” in O(d) time. Afterward, we
can build the vertex set V ′ of the output hypergraph G using the vertices v for
which vertices[v] = true. This takes O(n+ d ·m) time.

4 Experimental evaluation

This section experimentally evaluates the linear-time kernelization algorithm
from Section 3. We demonstrate to which size our algorithm can process instances
within five minutes.

14



Implementation details. Our implementation of Algorithm 1 comprises
about 700 lines of C++ and is freely available.2 The experiments were run
on a computer with a 3.6 GHz Intel Xeon processor and 64 GB RAM under
Linux 3.2.0, where the C++ source code has been compiled using the GNU C++
compiler in version 4.7.2 and using the highest optimization level (-O3).

Given a hypergraph H = (V,E), our implementation of Algorithm 1 checks
for each hyperedge e ∈ E with ` := |e| independently whether it is a large
hyperedge (2` > m) or a small hyperedge (2` ≤ m). For a small hyperedge e,
Algorithm 1 chooses to consider all subsets C ∈ e as possible cores of sunflowers
in line 8. For a large hyperedge e, all subsets e∩ e′ for any e′ ∈ E are considered
as possible cores instead. Hence, our implementation chooses the variant which
promises the lower running time for each hyperedge independently.

Additionally to discarding hyperedges that contain some core of a sunflower
of size k+ 1, our implementation of Algorithm 1 also makes sure that the output
hypergraph contains no pair of hyperedges such that one is a superset of the
other. To this end, the implementation initially sorts all hyperedges by increasing
cardinality in O(d + m) time using counting sort [7, Section 8.2]. Moreover,
after adding a hyperedge e to the output hypergraph, the implementation
sets petals[e] to k + 1: in this way, the algorithm will not add hyperedges to the
output hypergraph that are supersets of already added hyperedges.

As data structures to hold the values used[C] and petals[C] used by Algo-
rithm 1 to associate values with sets C of size at most d, we implemented the
following variants.

By malloc trie, we refer to the associative array created in Lemma 3. It is
implemented as a trie whose nodes are allocated as uninitialized arrays in
constant time using the C-routine malloc. It guarantees O(d) look-up time
and, as described in the proof of Proposition 3, O(d · n+ 2dd ·m) creation
time. However, Ω(n · m) random access memory cells may need to be
reserved by the program in the worst case, although at most O(d·n+2dd·m)
memory cells are actually accessed.

By calloc trie, we refer to a trie whose nodes are allocated as arrays pre-
initialized by zero using the C-routine calloc. This makes the intricate
initialization by Lemma 3 unnecessary. However, the running time of
acquiring a zero-initialized array and its actual memory usage may vary
depending on the implementation of the routine by the used C library.
For näıve implementations of calloc, creation time and memory usage of
the calloc tree could be Ω(n ·m) in the worst case. However, we can still
guarantee O(d) look-up time.

By hash table, we refer to an associative array implemented using the data
structure unordered map provided in the C++11 Standard Template Li-
brary. At most O(2d ·m) values are stored in the hash table. According to
the C++11 reference, storage and look-up work in O(2d ·m) time in the

2http://fpt.akt.tu-berlin.de/hslinkern/
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worst case, but in O(d) time in the average case, where O(d) time accounts
for computing the hash value of a hyperedge of cardinality d.

By balanced tree, we refer to an associative array implemented using the
map data structure provided by the C++11 Standard Template Library.
According to the C++11 reference, it is usually implemented as a balanced
binary tree. Since, in the worst case, O(2d ·m) values are stored in the
tree, the C++11 reference guarantees O(d+ logm) time for storage and
look-up. Its memory requirements are O(2dm).

Data. We execute our experiments on hypergraphs generated from the Golomb
Subruler problem: one gets as input a set R ⊆ N and wants to remove at most
k numbers (“marks”) from R such that the result is a Golomb ruler, that is, no
pair of remaining marks has the same distance as another pair. The applications
of Golomb rulers lie, among others, in radio frequency allocation [13]. Optimum
solutions for Golomb Subruler are only known for R = [n] with n ≤ 553 at
the current time.3

From a Golomb Subruler instance, we obtain a conflict hypergraph as fol-
lows: the vertex set is R, and for each a, b, c, d ∈ R, create a hyperedge {a, b, c, d}
if |a− b| = |c− d|. Asking for a hitting set of size k in this conflict hypergraph is
equivalent to Golomb Subruler [37]. As shown by Sorge et al. [37], the class
of conflict hypergraphs for R = [n] has n vertices and Θ(n3) hyperedges, their
cardinality being three or four. Our data set consists of the conflict hypergraphs
for Golomb Subruler instances R = [n] with 100 ≤ n ≤ 600, which yields
conflict hypergraphs with 105 to 2 · 107 hyperedges. Since, in this way, we obtain
a whole family of growing hypergraphs, this data set is well-suited to show the
running time and memory scalability of Algorithm 1.

Experimental setup. Algorithm 1 requires as input not only a hypergraph H
but also an upper bound k on the size of a sought hitting set. We choose as k
an upper bound on the size of a minimum hitting set, so that the kernelization
algorithm will not output small trivial no-instances and so that the computed
problem kernel will retain all minimum hitting sets.

To obtain this upper bound for the 4-Hitting Set instances that we obtain
from Golomb Subruler, we exploit that, for all n ≤ 4.2 · 109, Dimitro-
manolakis [11, Theorem 6.1] verified that there is a Golomb ruler R ⊆ [n] with
strictly more than

√
n marks. Hence, in our experiments with n ≤ 600, a conflict

hypergraph of a Golomb Subruler instance R = [n] has a hitting set of size at
most k := bn−

√
nc. We use this k to compute problem kernels for 4-Hitting

Set. Figure 5 shows this upper bound together with a lower bound.

Experimental results. In all plots to be shown, each point has been obtained
from a single run of our algorithm; the running times and memory usage are not
averaged in any way.

3http://blogs.distributed.net/2014/02/
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Figure 6: Performance of Algorithm 1 on conflict hypergraphs of the Golomb
Subruler problem with at most 2 · 106 hyperedges.

17



balanced tree calloc trie

5 10 15 20

0

100

200

300

input hyperedges
[
106
]

ru
n
n
in

g
ti

m
e

[s
]

5 10 15 20

10

20

input hyperedges
[
106
]

m
em

o
ry

u
sa

g
e

[G
B

]

Figure 7: Performance of Algorithm 1 on conflict hypergraphs of the Golomb
Subruler problem with at most 20 · 106 hyperedges.

Figure 6 shows the performance of our kernelization algorithm on conflict
hypergraphs of the Golomb Subruler problem of size up to 2 · 106 hyperedges.
On larger instances, the implementations based on malloc tries, calloc tries, and
hash tables hit the 32 GB memory limit of the valgrind memory measuring
tool. One can observe that the implementation using the malloc trie is the
slowest. This is due to the complicated initialization procedure required by
Lemma 3. The fastest implementation is the variant using the calloc trie, which
is the same as the malloc trie implementation except that we skip the intricate
initialization of the trie using Lemma 3. Unsurprisingly, the memory usage of
the balanced tree implementation is the lowest, as it grows linearly with the
number of stored elements. Surprisingly, the hash table implementation of the
GNU C++ compiler consumes even more memory than our calloc trie.

Since the malloc trie, calloc trie, and hash table reach the 32 GB memory
limit of the valgrind memory measurement tool between 2 ·106 and 5 ·106 input
hyperedges, we made ongoing experiments only with the balanced tree implemen-
tation. Thus, unfortunately, we were unable to see how the running time of our
fastest implementation—using calloc tries—scales to larger instances. Figure 7
shows that the implementation using the balanced tree solves 4-Hitting Set
instances on conflict hypergraphs of Golomb Subruler with 20 ·106 hyperedges
in less than five minutes and does not even hit the 32GB memory limit of the
valgrind memory measurement tool.

Effect of data reduction. As shown in Figure 8, the kernelization algorithm
removed between 20 · 103 and 60 · 103 hyperedges from the input instances. Thus,
although we observed the algorithm to handle large input instances well, the
observed data reduction effect is rather limited. This is partly due to the lack of
a better upper bound k for the size of the sought hitting set: we observed that
the input 4-Hitting Set instances obtained from Golomb Subruler have
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Figure 8: Size of the resulting problem kernel when Algorithm 1 is applied to
conflict hypergraph of the Golomb Subruler problem.

roughly 1/12 · n3 hyperedges. This, for any n ≥ 0, is already below the upper
bound of 4! · 45 · (k+ 1)4 with k = bn−

√
nc given by Theorem 1 on the problem

kernel size for 4-Hitting Set.
The limited effect of the data reduction on 4-Hitting Set instances obtained

from Golomb Subruler is also due to the fact that they are nearly 4-uniform:
this prevents hyperedges from getting deleted for being supersets of smaller
hyperedges. The presence of smaller hyperedges can significantly influence the
output instance size. As an extreme example, consider a hypergraph containing(
n
2

)
hyperedges of cardinality two. Then, the output problem kernel will contain

O(k2) output hyperedges, regardless of how many more input hyperedges of
cardinality 100 there are. Such phenomena are not captured in the theoretical
upper bound on the problem kernel size given by Theorem 1, which is based on
the analysis of uniform hypergraphs.

As shown in Figure 8, when measuring the size of the problem kernels in k,
we observe that the resulting problem kernels contain about 2/21 ·k3 hyperedges.
Thus, our empirically measured problem kernel size is lower than the upper
bound of 3k3 + 3k2 hyperedges that Sorge et al. [37] have proven using data
reduction rules specifically designed for Golomb Subruler. Moreover, our
problem kernel is computable in linear time, while the problem kernel of Sorge
et al. [37] takes O(k(n + m)) time. Both problem kernels require the conflict
hypergraph as input.

Summary. The calloc trie implementation of Algorithm 1 is superior when
enough memory is available, since it is the fastest variant if the C++ environment
at hand implements the allocation of zero-initialized memory using calloc

efficiently. In all other cases, the balanced tree implementation of Algorithm 1
yields a good compromise between scalability with respect to running time and
memory usage.

One can observe that the data reduction effect on nearly uniform hypergraphs,
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like those from Golomb Subruler, is rather limited. On the other hand,
problem kernels for d-Hitting Set can be small even for high values of d if the
input hypergraph is less uniform.

5 Reducing the number of vertices in O(k1.5d)
additional time

This section combines the linear-time computable problem kernel from Section 3
with techniques of Abu-Khzam [1] and Moser [28, Section 7.3]. This will yield a
problem kernel for d-Hitting Set with O(kd) hyperedges and O(kd−1) vertices
in O(n+m+ k1.5d) time. Towards this problem kernel, Section 5.1 first briefly
sketches the running-time bottleneck of the kernelization idea of Abu-Khzam [1],
which is also a bottleneck in the algorithm of Moser [28]. Then, Section 5.2
describes our improvements.

5.1 The approaches of Abu-Khzam and Moser

Abu-Khzam [1] has shown a problem kernel for d-Hitting Set that comprises
O(kd−1) vertices. Moser [28, Section 7.3] built upon the work of Abu-Khzam [1]
to show a problem kernel for d-Hitting Set that also comprises O(kd−1) vertices
but that, in contrast to the kernelization algorithm of Abu-Khzam [1], yields a
subgraph of the input hypergraph.

The approach of Abu-Khzam [1] and Moser [28] is as follows. Given a
hypergraph H and a natural number k, Abu-Khzam [1] first computes a maximal
weakly related set W :

Definition 3 (Abu-Khzam [1]). A set W of hyperedges is weakly related if every
pair of hyperedges in W intersects in at most d− 2 vertices.

Whether a given hyperedge e can be added to a weakly related set W , Abu-
Khzam [1] checks in O(d|W |) time. After adding a hyperedge e to W , he applies
data reduction to W in O(2d|W | log |W |) time that ensures |W | ≤ kd−1. Hence,
since |W | never exceeds kd−1, Abu-Khzam [1] can compute the maximal weakly
related set W in O(2d · kd−1 · (d− 1) log k ·m) time.

Since |W | ≤ kd−1, it remains to bound the size of the set I of vertices
not contained in hyperedges of W . This is achieved by the following steps,
which are illustrated in Figure 9. The set I is an independent set, that is,
I contains no pair of vertices occurring in the same hyperedge [1]. A bipartite
graph B = (I ] S,E′) is constructed from the input hypergraph H = (V,E),
where S := {e ⊆ V |∃v ∈ I : ∃w ∈ W : e ⊆ w, {v} ∪ e ∈ E} and E′ := {{v, e} |
v ∈ I, e ∈ S, {v} ∪ e ∈ E}. Whereas Abu-Khzam [1] shrinks the size of I using
so-called crown reductions, Moser [28, Lemma 7.16] shows that it is sufficient
to compute a maximum matching in B and to remove unmatched vertices in I
together with the hyperedges containing them from the input hypergraph. The
bound of the number of vertices in the problem kernel is thus O(kd−1), since
|W | ≤ kd−1, and, therefore, |I| ≤ |S| ≤ d|W | ≤ dkd−1.
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(a) Input hypergraph. The hyperedges fully below the dashed line are a maximal weakly
related set of hyperedges. The vertices above the dashed line are the independent set I.
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(b) The resulting bipartite graph B with the thick edges being a maximum matching.
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W

(c) The resulting hypergraph with the unmatched vertex i2 and its incident hyperedges removed.

Figure 9: Illustration of the kernelization of Moser [28, Lemma 7.16] using
4-Hitting Set.
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5.2 Our improvements

We now discuss our running time improvements over the kernelization algorithms
of Abu-Khzam [1] and Moser [28].

Given a hypergraph H and a natural number k, we first compute our problem
kernel in O(n + m) time, leaving O(kd) hyperedges in H. Afterward, we aim
for applying the ideas of Abu-Khzam [1] and Moser [28] to reduce the number
of vertices to O(kd−1). However, as discussed in Section 5.1, the computation
of a maximal weakly related set on our reduced instance already takes O(2d ·
kd−1 · (d− 1) log k ·m) = O(k2d−1 log k) time. We improve the running time of
this step in order to show the following theorem.

Theorem 2. d-Hitting Set has a problem kernel with d! · dd+1 · (k + 1)d hy-
peredges and 2 · d! · dd+1 · (k + 1)d−1 vertices computable in O(d · n+ 2dd ·m+
(d! · dd+1 · (k + 1)d)1.5) time.

Note that the problem kernel resulting from Theorem 2 will no longer be
expressive in the sense of Section 2. For example, not every minimal hitting set
of size at most k for the input hypergraph will be a minimal hitting set for the
problem kernel. This can be observed in Figure 9, where the vertex i2 might be
contained in a minimal hitting set of the input hypergraph and is absent in the
output hypergraph.

To prove Theorem 2, we compute a maximal weakly related set W in linear
time and show that our problem kernel already ensures |W | ∈ O(kd−1) and thus,
that further data reduction on W is unnecessary. To compute a maximal weakly
related set in linear time, we employ Algorithm 2.

After some initialization work in lines 1–5, Algorithm 2 in lines 6–11 adds a
hyperedge e to the weakly related set W if none of the subsets C ⊆ e with |C| =
d− 1 is a subset of a set previously added to W . The information whether C is
some subset of a hyperedge previously added to W is saved in intersection[C].
Note that, in line 11, Algorithm 2 also sets “intersection[e \C]← true” and thus
saves which vertices are parts of hyperedges added to W . We will use this later
to quickly reduce the number of vertices not contained in hyperedges in W .

Lemma 4. Given a hypergraph H, a maximal weakly related set is computable
in O(d · n+ d2 ·m) time.

Proof. First, observe that the set W returned in line 12 of Algorithm 2 when
applied to H = (V,E) is indeed weakly related: let w1 6= w2 ∈ E intersect
in more than d − 2 vertices and assume that w1 is added to W in line 8. Let
C := w1 ∩w2. Obviously, |C| = d− 1. Hence, when w1 is added to W , we apply
“intersection[C] ← true” in line 10. Therefore, when e = w2 is considered in
line 6, the condition in line 7 does not hold, which implies that w2 is not added
to W in line 8. In the same way it follows that each hyperedge is added to W if
it does not intersect any hyperedge of W in more than d− 2 vertices. Therefore,
W is maximal.

Now, Algorithm 2 works as follows. We use Lemma 3 to look up values
in intersection[] in O(d) time. To this end, like in the proof of Proposition 3, we
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Algorithm 2: Computation of a maximal weakly related set

Input: Hypergraph H = (V,E), natural number k.
Output: Maximal weakly related set W .

1 W ← ∅;
2 foreach e ∈ E do // Initialization for each hyperedge
3 foreach C ⊆ e, |C| = d− 1 do
4 intersection[C]← false; // No hyperedges in W contain C yet.
5 intersection[e \ C]← false; // The vertex in e \ C is not in W yet.

6 foreach e ∈ E do
7 if ∀C ⊆ e, |C| = d− 1: intersection[C] = false then
8 W ←W ∪ {e};
9 foreach C ⊆ e, |C| = d− 1 do

10 intersection[C]← true;
11 intersection[e \ C]← true;

12 return W ;

represent vertex subsets of size at most d as sorted sequences of length at most d.
Thus, we first sort each hyperedge of H in O(m · d log d) total time. To apply
Lemma 3 to create the associative array intersection[], we need a list L of all
values that we are going to store values for. As L, we use the list that, for each
hyperedge e of H and each vertex v ∈ e, contains e \ {v} and {v}. Of course,
e\{v} can be computed in O(d) time from e so that e\{v} is sorted. It follows that
L contains at most 2d ·m elements and is computable in O(d2m) time. Hence, by
Lemma 3, we can build the associative array intersection[] in O(dn+d2 ·m) time
and looking up values in intersection[] works in O(d) time for elements of L.

Now, the initialization in lines 1–5 works in O(d2 ·m) time. Finally, for every
hyperedge, the body of the for-loop in line 6 can be executed in O(d2) time by
doing O(d)-time look-ups for each of the 2d ·m sets.

We can now prove Theorem 2 by showing how to compute a problem kernel with
O(kd−1) vertices in O(n+m+ k1.5d) time.

Proof of Theorem 2. It is shown in Theorem 1 that d-Hitting Set has a prob-
lem kernel with d! ·dd+1 ·(k+1)d hyperedges that is computable in O(dn+2dd ·m)
time. It remains to show that, in additional O(d! · dd+1 · (k + 1)d)1.5 time, the
number of vertices of a hypergraph H output by Algorithm 1 can be reduced to
2 · d! · dd+1 · (k+ 1)d−1. To this end, we follow the approaches of Abu-Khzam [1]
and Moser [28] as discussed in Section 5.1 and as illustrated in Figure 9.

First, we compute a maximal weakly related set W in H in O(d·n+d2·m) time
using Algorithm 2. We show that |W | ≤ d! · dd · (k+ 1)d−1. To this end, consider
the hypergraph H` := (V,W`) for 1 ≤ ` ≤ d, where W` is the set of cardinality-`
hyperedges in W . Since H has been output by Algorithm 1, we know that,
by Lemma 1, H` has no sunflowers with more than d(k + 1) petals. Moreover,
since every pair of hyperedges in W intersects in at most d − 2 vertices, also
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each pair of hyperedges of H` intersects in at most d − 2 vertices. Hence, by
Lemma 2 with b = 2 and c = d(k + 1), we know that H` for ` ≥ 2 has at most
`!d`−1(k+1)`−1 hyperedges. Moreover, H1 contains at most d(k+1) hyperedges,
as they form a sunflower with empty core. Therefore, |W | ≤ d! · dd · (k + 1)d−1.

Next, we construct a bipartite graph B = (I ] S,E′) from the input hyper-
graph H = (V,E), where

i) I is the set of vertices in V not contained in any hyperedge in W , which is
an independent set [1],

ii) S := {e ⊆ V | ∃v ∈ I : ∃w ∈W : e ⊆ w, {v} ∪ e ∈ E}, and

iii) E′ := {{v, e} | v ∈ I, e ∈ S, {v} ∪ e ∈ E}.

This can be done in O(d2 · m) time by exploiting the information stored in
the associative array intersection[] computed by Algorithm 2: for each e ∈ E
with |e| = d and each v ∈ e, add {v, e \ {v}} to the graph B if and only if
intersection[e \ {v}] = true and intersection[{v}] = false. In this case, it follows
that e can be partitioned into

i) a subset e \ {v} of a hyperedge of W , since intersection[e \ {v}] = true, and

ii) the vertex v, which is not contained in any hyperedge in W , since we have
intersection[{v}] = false, and, hence, is contained in I.

Thus, e clearly satisfies the definition of E′. Observe that the graph B constructed
in this way contains at most |E| = m edges. It remains to shrink I so that
it contains at most |S| vertices. Then, the number of vertices in the output
hypergraph will be at most d|W |+|I| ≤ d|W |+|S| ≤ 2d|W | = 2·d!·dd+1·(k+1)d−1.
This, as shown by Moser [28, Section 7.3], is achieved by computing a maximum
matching in B and deleting from H the unmatched vertices in I and the
hyperedges containing them. To analyze the running time of computing the
maximum matching, recall that the number of edges in B is at most m ≤ d!·dd+1 ·
(k+1)d and that the number |I|+ |S| of vertices is at most twice as much. Hence,
a maximum matching in B can be computed in O(

√
|I ] S| · |E′|) = O(d! · dd+1 ·

(k+1)d)1.5 time using the algorithm of Hopcroft and Karp [35, Theorem 16.4].

6 Conclusion

We have given an understanding of expressive kernelization for d-Hitting Set
and have shown, as earlier claimed by Niedermeier and Rossmanith [30], that
a problem kernel for d-Hitting Set with O(kd) hyperedges and vertices can
be computed in linear time. Using the linear-time computable problem kernel
for d-Hitting Set, we have improved the worst-case running times of the
O(kd−1)-vertex problem kernels by Abu-Khzam [1] and Moser [28].

Our experiments have shown that the kernelization algorithm runs efficiently,
yet the observed data reduction effect on the nearly uniform hypergraphs occur-
ring in the construction of Golomb rulers was limited.
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An interesting question is whether a problem kernel with O(kd−1) vertices and
O(kd) hyperedges for d-Hitting Set can be computed in linear time. Answering
this question would merge the best known results for problem kernels for d-Hit-
ting Set. However, to date, all O(kd−1)-vertex problem kernels for d-Hitting
Set that we are aware of, that is, the problem kernels by Abu-Khzam [1] and
Moser [28], involve the computation of maximum matchings. This seems to be
difficult to avoid this bottleneck.
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