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Abstract

We study the Partial Nearest Neighbor Problem that consists in pre-
processing n points D from d-dimensional metric space such that the fol-
lowing query can be answered efficiently: Given a query vector Q ∈ Rd

and an axes-aligned query subspace represented by S ∈ {0, 1}d, report a
point P ∈ D with dS(Q,P ) ≤ dS(Q,P ′) for all P ′ ∈ D, where dS(Q,P ) is
the distance between Q and P in the subspace S. This problem is related
to similarity search between feature vectors w.r.t. a subset of features.
Thus, the problem is of great practical importance in bioinformatics, im-
age recognition, etc., however, due to exponentially many subspaces, each
changing distances significantly, the problem has a considerable complex-
ity. We present the first exact algorithms for `2- and `∞-metrics with
linear space and sub-linear worst-case query time. We also give a sim-
ple approximation algorithm, and show experimentally that our approach
performs well on real world data.

1 Introduction

One of the fundamental problems in the study of index structures is the Nearest
Neighbor (NN) Problem: For a database D that contains n points from a d-
dimensional metric space, build a data structure such that given a query point
Q ∈ Rd, one can efficiently find a point P ∈ D closest to Q. Such a point P is
called closest point or nearest neighbor of Q and closest is meant with respect to
the underlying metric. To stay in a well-studied space, in this paper we consider
the `2 and `∞-metric, though the presented approach also works for other `p-
norms. By d(P,Q) we denote the distance between two points P,Q ∈ Rd, and,
if not stated otherwise, it refers to the `2-distance. We understand the points in
D as feature representations, or feature vectors, of real world objects. Hence, a
nearest neighbor represents an object similar to the object the query represents.

The Nearest Neighbor Problem has been studied extensively in the last
decades. However, in some important practical applications the problem for-
mulation above is too restrictive in the sense that one is often interested in
finding a point in D that is similar to a query with respect to subset of features.
This leads to the definition of the Partial Nearest Neighbor (PNN) Problem:
Build a data structure such that for a query point Q ∈ Rd together with a
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query subspace represented by a vector S ∈ {0, 1}d, one can efficiently find a
point P = (p1, p2, . . . , pd) ∈ D that is closest to Q = (q1, q2, . . . , qd) with re-
spect to the subspace S = (s1, s2, . . . , sd). More formally, in Euclidean space
we search for a point P with dS(P,Q) ≤ dS(P ′, Q) for all P ′ ∈ D where

dS(P,Q) =
(∑d

i=1 si(pi − qi)2
)1/2

. The subspace represented by S is always

orthogonal to the coordinate axes. The dimension of the subspace is denoted
by w and we may say a query has w relevant dimensions. There are expo-
nentially many subspaces and in general for each subspace the point distances
change significantly, which is the main reason for the problem’s complexity.
Our approach considers small to medium feature space, which is supported by
our experimental evaluation that shows good results for up to 64 dimensions
(Section 4).

From the application perspective it is often sufficient to find a point in D
that is relatively close to the query point, but not necessarily the closest. This
relaxation is captured by the Approximate Partial Nearest Neighbor (APNN)
Problem in which the objective is to find a point P ∈ D with dS(P,Q) ≤
(1 + γ)dS(P ′, Q) for all P ′ ∈ D and a predefined γ > 0. In the case in which
we restrict ourselves to the full space, that means S = (1, 1, . . . ), the problem
specializes to the well-known Approximate Nearest Neighbor Problem [13].

The PNN problem occurs in many application areas such as bioinformatics,
image recognition, business data mining, and many more. A specific example,
which was the motivation to study the problem, is knowledge retrieval in gene
expression databases, in which biologists are interested in finding genes with a
similar response profile to a given gene. In the database, a feature vector repre-
sents a gene and a feature represents the gene’s activity in a certain anatomical
part of the organism like a brain cell, muscle cell, blood cell, etc. The anatomi-
cal parts are organized in classes according to an ontology, in which the number
of classes is the dimension d of the full feature space (see for example [24, 12]).
The set of classes according to which the search is made changes dynamically,
hence, this problem is essentially the (A)PNN Problem.

For the classical NN Problem worst-case efficient algorithms have been de-
veloped in the last decades, but they are still missing for the PNN Problem. A
trivial approach is to preprocess a NN data structure for each of the 2d sub-
spaces, such that the query time is the time needed to find the correct NN data
structure plus its query time. This approach has exponential space require-
ments which especially unpractical for main memory data structures. We focus
on data structures that have only linear space requirements. Known data struc-
tures for nearest neighbor and range searching were studied assuming constant
d, thus the influence of d on the query time is usually not known but believed to
be exponential. Obtaining good bounds is sophisticated even in the case d = 2
[19]. Hence, in the query time analysis we express the dependence of d as some
unknown function g(d).

Our Results. Space is the most critical resource when dealing with the PNN
problem (even for moderate d ≥ 10). Already for small data sets there is no

2



chance to deal with the brute force’ exponential overhead in space, which is not
a worst-case but a tight estimate. Consequently, we consider linear space data
structures, which come with a worse but still sub-linear query time.

The presented method combines epsilon-nets and range searching data struc-
tures to provide an efficient and simple approach to the PNN problem, leading
to the first linear space algorithm that for the `2- and `∞-metric has a guaran-
teed worst-case query time sub-linear in n. This result can easily be extended
to `p-metrics for fixed p.

For the Euclidean metric and a d-dimensional database, we obtain a query
time of O

(
g(d)n1−1/(2d−4)+δ

)
w.h.p., for δ > 0, and d > 3 using O (dn) space

(Lemma 4). On the other hand, the known lower bounds on space decomposition
[22, 14] give less hope to obtain fundamentally better exact algorithms.

For the `∞-metric we obtain an exact algorithm that has O
(
dn1−1/d

)
query

time w.h.p. while using O (dn) space (Lemma 5). The approach is very flexible
and can be adapted to any metric that can be described by a constant number
of bounded degree polynomials (using Lemma 3), which also includes the `1-
metric.

We present a
√
w-approximation algorithm that has the same complexity as

the `∞-metric case (Lemma 7). This approach is of high practical relevance: An
experimental evaluation shows that it is more than 60 times faster than a linear
scan while the approximation ratio is only 1.2 on average, and the maximal rank
over all queries was always less than 0.025% of the database (Section 4).

2 Related Work

In theory and practice little is known about the PNN Problem, which might
be due to the problem complexity that manifests in an exponential number of
possible subspaces. There are some heuristics for the problem that perform well
on real-world data, but usually they have no sublinear worst-case bound on the
query time, or do not guarantee a good solution quality.

The problem was first considered in a paper by Eastman and Zemankova
in 1982 [9] in which KD Trees are used as the data structure of choice. The
authors prove that for uniformly distributed database points under the max-
imum norm the expected query time is O

(
dn1−1/d

)
. With the KD tree, our

approach achieves the same result under the maximum norm, but for any point
distribution.

A theoretical paper by Andoni et. al. [2] treats a special case of the PNN
problem, namely, the case if all but one feature are specified. The authors study
the problem in high-dimensional space in which the dimension d is not consid-
ered constant. A (1 + γ)-approximation can be obtained in time O

(
d3n0.5+δ

)
using O

(
d2nc(1/γ

2+1/δ2)
)

space for any δ > 0, γ > 0, and a constant c. The

result makes use of the LSH scheme [13], which is a very successful approach for
the classical NN Problem in high-dimensional space. However, the approach has
not been extended to smaller relevant dimensions than w = d − 1. In contrast
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our approach works for all w in an axes-parallel setting.
In [5] the authors develop and experimentally examine a heuristic method

to solve the PNN Problem in the `p-metric using R-trees (resp. R∗-trees).
The algorithm uses an ordered active page list (APL) which contains the R-
tree nodes (enclosing rectangles) sorted in ascending order according to the
distance between query and the nearest edge of the enclosing rectangle. This
is essentially a min-heap, which is initialized with the tree’s root node. The
algorithm iteratively pops the first node in the APL and pushes the node’s
children into the APL if their distance to the query is smaller than the current
candidate nearest neighbor. The algorithm provides accurate results and it is
fast in many cases as the experiments in [5] show, however, it cannot provide a
worst-case time complexity better than a linear scan.

A heuristic for partial range searching, which is related to the PNN Problem,
was proposed in [15] in which the authors study partial vector approximation
files (VA-files) [21]. One dimensional VA-files with variable interval distribution
are constructed with the consequence that the variable intervals allow to order
the VA-files according to the so-called sensitivity. The sensitivity is defined as
number of VA interval end-points lying in the search range. It allows to correct
results in many situations. This heuristic has no guarantee on the accuracy of
the results, nor a sublinear worst-case guarantee on the query time.

3 Our Approach

We show that a combination of epsilon-nets and range searching can be used
to obtain the first exact algorithm for the PNN Problem. Furthermore, the
algorithm can be modified such that one obtains better query time for the
APNN Problem. The algorithm is based on the concepts of epsilon-nets and
range spaces: A range space S is a 2-tuple (X ,R), where X is a usually infi-
nite set and R is a collection of subsets of X . The elements of X are called
points and the elements of R are called ranges. For example, a range could
be an axes-parallel, in some dimensions unbounded, hyper-rectangle HL,R =
{(x1, x2, . . . , xd) | li ≤ xi ≤ ri}, represented by two vectors L = (l1, l2, . . . , ld)
and R = (r1, r2, . . . , rd), where li, ri ∈ R ∪ {−∞,∞}. Let us denote the set of
all hyper-rectangles by H so that we can specify the range space (Rd,H). To
simplify notation, we always denote a vector from Rd by a capital letter and its
components by the lowercase.

An important measure for the complexity of a range space is its VC-dimension:
A range space (X ,R) has VC-dimension h if there exists a subset X ⊂ X of
maximal cardinality h such that {R ∩X | R ∈ R} equals the power-set of X
[11]. For example, consider the range space of all half-spaces in R2: There ex-
ists a 3-point set P in R2 such that any subset of P can be generated by cutting
P with a half-space. This is not possible for any 4-point set in R2. Hence, the
VC-dimension of the half-space range space in R2 is 3.

Range spaces with small VC-dimension have the property that for any set
D ⊂ X there exist a small subset that is sensitive to large ranges. Such sets
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are called epsilon-nets: For a finite n-point set D ⊂ X of a range space (X ,R),
a subset N of D is called epsilon-net for a parameter ε ≤ 1/2 if for any range
R ∈ R with |R ∩ D| ≥ εn there is at least one point in R ∩ N . Epsilon-nets
were introduced to computational geometry in an influential paper by Haussler
and Welzl [11], who show that epsilon-nets of small size exist for range space of
small VC-dimension:

Lemma 1 (Epsilon-net Lemma [20]). Let (X ,R) be a range space with finite
VC-dimension h ≥ 2. For an absolute constant c, a parameter ε ≤ 1/2 and an
n-point subset D of X , there exists an epsilon-net N of D for (X ,R) of size at
most (ch/ε) log(1/ε).

For many natural ranges, such as half-spaces, balls, and ranges defined by
small-degree polynomials, the VC-dimension is usually small. Our approach uses
properties of epsilon-nets that get emphasized by the following reformulation of
their definition: A subset N ⊂ D is an epsilon-net for a range space (X ,R), if
for any range R ∈ R with R ∩N = ∅, the cardinality of R ∩ D is bounded by
εn.

The Range Searching Problem for a range space (X ,R) and an n-point
database D ⊂ X can be formulated as follows: Preprocess D such that for a
query range R ∈ R one can either efficiently report or count all points in D∩R.
We refer to these variants as the Range Reporting Problem and Range Count-
ing Problem respectively. The Range Searching Problem for the range space
(Rd,H), in which the ranges are axes-parallel hyper-rectangles, is important in
theory and practice [8, 10], thus one usually refers to it as the Orthogonal Range
Searching Problem. Range queries that are unbounded in some dimensions are
usually called partial range queries [10].

NN Search. We now show how to combine epsilon-nets and range reporting
to answer PNN queries. We first explain the algorithm for the special case of
the NN Problem in Euclidean space, and then adapt the algorithm for the PNN
Problem with other metrics.

On an intuitive basis, for a NN query Q ∈ Rd we find a nearest neighbor
if we can report and check all points in the d-dimensional Euclidean ball BdQ,r
that is centered at Q and has an appropriate radius r. The problem in this
procedure is not the range reporting, since efficient algorithms exist, but the
determination of a suitable radius r. On the one hand, if r is too large the
performance of the procedure may degenerate to a linear scan. On the other
hand, if r is too small, there is no point in the intersection and hence no nearest
neighbor is found. The idea to solve this problem is to generate an epsilon-net
N on D and use the distance of a nearest neighbor in N to bound r.

We start with the definition of an appropriate range space. A d-dimensional
Euclidean ball is defined as BdQ,r =

{
X ∈ Rd | d(X,Q) < r

}
and the set of all

Euclidean balls, denoted by B, equals
{
BdQ,r | Q ∈ Rd, r ≥ 0

}
. For the Eu-

clidean distance the range space (Rd,B) is suitable with respect to NN search.
Note that it is only a technical detail to define the Euclidean balls to be open,
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which is clarified later. The following scheme is the basis for all subsequent
algorithms.
Preprocessing: First, we build a range searching data structure for (Rd,B)
on D. Secondly, for the range space (Rd,B) and a parameter ε > 0 we generate
an epsilon-net N on D . This can be done by random sampling [11, 20] or
deterministically as described in [6]. The latter algorithm has a running time
exponential in the VC-dimension, hence we stick to random sampling which
comes at the cost of obtaining Las-Vegas algorithms. The overall preprocessing
time is dominated by the preprocessing of the range searching data structure.
Query algorithm: When processing a query Q ∈ Rd, we compare each point of
N with Q and obtain a nearest neighbor N of the epsilon-net. We set the radius
r = d(Q,N) and ask the range searching data structure to report all points in
BdQ,r∩D. These points are finally compared with Q to obtain a nearest neighbor
in D. If no points are in this range, then N is not only a nearest neighbor of
the epsilon-net, but also of D.

We require an efficient range searching data structure for the range space
(Rd,B). Using a standard lifting transform [8], in which all points are lifted
to the (d + 1)-dimensional paraboloid, the ball range searching problem trans-
forms to the half-space range searching problem [18]. The most efficient range
searching data structure for this problem is presented by Chan [7] and for linear
space it achieves a query time of O

(
g(d)n1−1/bd/2c) w.h.p.. As an intermediate

result we obtain a Lemma for the NN Problem.

Lemma 2. Given an n-point set D ⊂ Rd a nearest neighbor of a query Q ∈ Rd
can be found in time O

(
g(d)n1−1/dd/2e) w.h.p., using O (dn) space.

Proof. We show the correctness, give bounds on the query time and the space
requirements.

Correctness. In the first step of the query algorithm, the epsilon-net is
searched for a closest point N to Q. If N is not a nearest neighbor, but a
different point P ′ is, it holds that d(P ′, Q) < d(N,Q) = r, which, by definition
of BdQ,r, is in BdQ,r ∩ D. Since the algorithm reports and checks all points in
this set, it will recognize P ′ as the nearest neighbor. On the other hand, if N is
the nearest neighbor, no point is contained in BQ,r ∩D, and thus the algorithm
outputs N .

Query time. Let us set ε = 1/
√
n. We first search the epsilon-net with brute

force, which by Lemma 1 takes time O (hc/ε log 1/ε). The VC-dimension h is
linear in d for the range space (Rd,B) [20] and the variable c is an absolute
constant. This results in a time complexity of O (d

√
n log n).

Secondly, we query BdQ,r using the range reporting data structure for (Rd,B).
As we stated above, using a transform to (d+ 1)-dimensional space and Chan’s
half-space range searching data structure, we need O

(
g(d)n1−1/dd/2e + g(d)m

)
time w.h.p. to query m points in BdQ,r ∩ D. Finally, we search the m points
with brute force in time O (dεn), which is due to the following fact: By the
definition of the ranges as open balls and by setting the radius to r = d(Q,N),
we know that BdQ,r ∩D contains no point of N . By the definition of epsilon-nets
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it directly follows that the size of BdQ,r ∩ D is at most O (εn) = O (
√
n). So,

the epsilon-net guarantees that the radius r is not too large. This results in an
overall query time is O

(
d
√
n log

√
n+ g(d)n1−1/dd/2e + g(d)

√
n
)

w.h.p..
Space requirements. The space requirements depend only on the space re-

quirements of the range searching data structure since the epsilon-net has size
smaller than n. Thus the overall space requirement is linear in n.

For linear space and d > 3, our result already attains the best known query
time for NN search [7, 18]. The dependence of d should roughly be of the same
order since the same techniques are used.

PNN Search. The principle feature of our approach is that it is exten-
sible to the PNN problem. The distance between two points is now mea-
sured with respect to the subspace S as defined by dS . Instead of query-
ing ranges that have the form of balls, we query ranges that have the form
CQ,S,r =

{
X ∈ Rd | dS(Q,X) < r

}
. Their projection onto S equals BwQ,S , so we

may refer to CQ,S,r as a partially defined ball. For example when d = 3 and the di-
mension of S is w = 2, the range corresponds to a cylinder of radius r. Let us de-

fine the range space (Rd,C) for which C =
{
CQ,S,r | Q ∈ Rd, S ∈ {0, 1}d , r ≥ 0

}
.

In order to build a range searching data structure for (Rd,C) we require
an efficient description of the ranges in C. Though, there are exponentially
many subspaces, the ranges in C can be described by a single polynomial of
the form f(x1, . . . , xd, q1, . . . , qd, s1, . . . , sd, r) =

∑d
i=1 si(qi − xi)2 − r2 ≤ 0. The

corresponding range space has VC-dimension of O
(
d2
)

(see [20], Proposition
10.3.2). A range searching data structure that queries the desired ranges is
described by Agarwal and Matoušek [1]. We restate a simplified version of this
result to show the flexibility of our approach. Combining with the latest results
on Tarski-Cell decompositions [14] leads to the following lemma:

Lemma 3 ([1, 14]). Let f(x1, . . . , xd, a1, . . . , ap) be a (d+ p)-variate polynomial
where d, p, and the degree of f is bounded. Let (Rd,R) be a range space with
R = {RA1,...,Au

| A1, . . . , Au ∈ Ru}, for a fixed constant u, and RA1,...,Au
={

X ∈ Rd | f(X,A1) ≤ 0, . . . , f(X,Au) ≤ 0
}

. Then, the range searching problem

for (Rd,R) can be solved with O (n) space, and O
(
n1−1/b+δ

)
query time for

δ > 0. The parameter b = d for d ≤ 3 and b = 2d− 4 for d > 3.

This Lemma also allows the construction of a PNN data structure for `p-
metrics with fixed p. We only need to adapt the polynomial f. Note that for
increasing p the degree of the polynomial and thus the VC-dimension increases,
and consequently, the query time of the range searching algorithm increases.
On the other hand, in the case the `∞-metric the induced partially defined balls
are hyper-rectangles, thus, a KD Tree [8] is a suitable structure. The advantage
of our algorithm is that it can handle different range searching data structures.
Hence, we formulate our main result on the PNN problem in a generic way, more
precisely, for a generic metric that has suitable range space S of VC-dimension
h. For a range searching data structure build on D which uses sS(n) space, let
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t∗S(n) be the preprocessing time and let tS(n,m) be the time it takes to report
m = |D ∩ R| points in the intersection of a query range R.

Theorem 1. Let dS be a distance function and S a suitable range space of
VC-dimension h. Then, an n-point set D ⊂ Rd can be preprocessed in time
t∗S(n) into a data structure of sS space, such that a PNN query Q,S can be
answered in time O (h

√
n log n+ tS(n,

√
n)) w.h.p..

Proof. This proof uses essentially the same arguments as the proof of Lemma
2, so we keep it small and only highlight the differences.

Preprocessing time. We generate the ε-net in O (n) time by random sam-
pling, thus the given guarantees hold w.h.p.. The overall preprocessing time
is dominated by the preprocessing time of the range searching data structure
t∗(n).

Query time. For the epsilon-net we choose the parameter ε = 1/
√
n. As in

Lemma 2, the time to search the epsilon-net with brute force is O (h
√
n log n).

For the range space S we constructed the range searching data structure
that queries m points in time tS(n,m) and which has space requirements of
sS(n). The epsilon-net guarantees w.h.p. that any range queried in the proposed
algorithm is at most of size m = O (εn) = O (

√
n) (see proof of Lemma 2). So,

querying the range and searching the resulting set with brute force takes time
O (tS(n,

√
n) + d

√
n) w.h.p.. Together with the time needed to search the ε-net

we obtain the stated result.
Space requirements. Since the epsilon-net has size less than dn, the range

searching data structure dominates the space requirements, which are sS(n).

Theorem 1 and the data structure from Lemma 3 directly imply an algorithm
for the Euclidean PNN problem. The VC-dimension of the range space (Rd,C)
is at most O

(
d2
)

(see [20], Proposition 10.3.2).

Lemma 4. An n-point set D ⊂ Rd from Euclidean space can be preprocessed
in time O (g(d)n log n) into a O (dn) space data structure, such that an PNN
query Q,S can be answered in time O

(
g(d)n1−1/b+δ

)
w.h.p., for δ > 0 and for

b = d if d ≤ 4 and b = (2d− 4) otherwise.

Opposed to the brute force approach, with O
(
2dn
)

space, O (g(d)n log n)

preprocessing time and O
(
g(d)n1−1/dd/2e) query time, we obtain a worse query

time, however, we save space exponentially in d.
As we stated above, the `∞-metric uses the range space (Rd,H), that has

VC-dimension 2d. There are reasonable fast and well-studied data structures
for (Rd,H) such as KD Trees [8], Range Trees [8]. If we use a KD Tree for
range searching, which reports m points in a partially defined range in time
t(Rd,H)(n,m) = O

(
dn1−1/d + dm

)
[16], and apply Theorem 1 we obtain the

following Lemma.

Lemma 5. Given an n-point set D ⊂ Rd together with the `∞-metric. There is
a data structure of O (dn) space, which can be constructed in O (dn log n) time,
that answers a PNN query Q,S in time O

(
dn1−1/d

)
w.h.p..
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Approximate PNN Search. The performance of the range searching algo-
rithm for Euclidean distance (Lemma 3) might not be satisfying for practical
applications. Even with more efficient Tarski-cell decompositions, which are
the current limiting factor in the range searching data structure, the worst-
case time cannot be better than O

(
g(d)n1−1/d

)
[22]. Consequently, it might be

worth to consider approximation algorithms that work well on real world data.
We present a simple and practically efficient

√
w-approximation algorithm that

queries partially specified axes-parallel hyper-rectangles instead of CQ,S,r. Bet-
ter approximation ratios require the study of data structures for approximate
partial ball range reporting.

Figure 1: Left: Worst-case approxi-
mation ratios for some ranges that ap-
proximate the Euclidean ball.

For simplicity, we describe a spe-
cific unbounded hyper-rectangleHQ,S,r
with center Q and radius r that is equal
to HL,R with li = qi − r (ri = qi + r
resp.) if si = 1 and li = −∞ (ri =
∞ resp.) otherwise. As above, an
epsilon-net for the range space (Rd,C)
is denoted by N and the point of the
epsilon-net closest to Q with respect
to S is denoted by N ∈ N . Let r =
dS(Q,N) be the radius of the desired
range CQ,S,r.

The smallest enclosing rectangle
HQ,S,r, called outer cube range, is not
suitable as a query range since its vol-
ume grows exponentially faster than
the volume of CQ,S,r. Thus, we use the hyper-rectangle HQ,S,r/√w of maximal
size that completely fits inside the desired range CQ,S,r. Let us call this range
inner cube. The resulting point size is bounded by the epsilon-net, however, we
can only get an

√
w-approximation as the subsequent lemma states.

Lemma 6. Given a point N of an n-point set D, a query point Q with w-
dimensional query subspace S, and a radius r = dS(Q,N). If the hyper-rectangle
HQ,S,r/√w is queried, then the returned point is a

√
w-approximate PNN of D.

Proof. If HQ,S,r/√w ∩ D is not empty, all reported points are closer to Q than
N , so one of them is an exact PNN. Assume HQ,S,r/√w ∩D is empty. Let P be
a PNN in CQ,S,r \ HQ,S,r/√w ∩ D with minimal distance to Q. This distance is

at least dS(P,Q) > r/
√
w as otherwise P ∈ HQ,S,r/√w. The point N is now a√

w-approximate PNN, because

dS(N,Q)

dS(P,Q)
<

r

r/
√
w

=
√
w.

As a consequence we can obtain a
√
w-approximation data structures for the

Euclidean PNN Problem.
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Lemma 7. Given an n-point set D ⊂ Rd from Euclidean space and suppose
we use a KD Tree as range searching data structure. For a PNN query Q,S
we obtain a

√
w-approximation in time O

(
dn1−1/d

)
w.h.p., consuming O (dn)

space and using O (dn log n) preprocessing time.
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Figure 2: The average over 10000 queries is shown as straight lines within filled
area that represents the standard deviation. The speed-up is shown as bullets
and triangles with axes on the right. Left: The query time depending on the
database size. Right: The query time depending on the database dimension.

It is also possible to use different, application adapted range searching data
structures, as for example the Priority R-tree [4] (or PR-tree) if the goal is an
IO-optimal and practically efficient algorithm for memory hierarchies.

4 Experiments

We implemented the proposed APNN algorithm for the Euclidean distance using
KD Tree and Range Tree data structure to show that the theoretical foundations
are valid and the concept performs well on a wide range of real world data.
The performance results also indicate good behavior for the exact PNN data
structure using the `∞-metric, since the same range searching data structures
can be used. The implementation was done using C++ in a standard way [8]
without any optimizations to exploit architecture related specialties. The PNN
query points were generated by randomly perturbing points from the database
and, unless stated otherwise, the query subspace S ⊂ {0, 1}d was generated
by setting each component to 1 with probability 1/2. For each experiment we
performed 10000 queries to get reliable results.

For the experimental evaluation we used data sets from two completely dif-
ferent domains to emphasize the data independence of our approach. The first
data set comes from a gene database and contains feature vectors that rep-
resent the genes by their activity in multiple experimental settings and were
all extracted from the Genevestigator database [12]. A feature represents an
anatomical class (category) such as a certain type of neoplasmic cells or cells
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# n d |N | |C ∩ D| (avg) (stdv) (max)

4 214 8 210 14.5 (0.09%) 14.7 143 (0.87%)
4 215 8 210 30.4 (0.09%) 31.6 284 (0.87%)
4 216 8 210 57.8 (0.09%) 59.3 576 (0.88%)
4 217 8 210 118.0 (0.09%) 116.2 1181 (0.90%)
4 218 8 210 246.8 (0.09%) 250.7 2388 (0.91%)
4 219 8 210 515.4 (0.10%) 509.3 5487 (1.05%)
4 220 8 210 1074.2 (0.10%) 1055.3 8735 (0.83%)

1 54675 5 210 51.4 (0.09%) 52.6 517 (0.95%)
2 54675 7 210 47.9 (0.09%) 48.5 535 (0.98%)
3 54675 9 210 51.7 (0.09%) 53.5 521 (0.95%)
3 54675 11 210 56.7 (0.10%) 54.7 555 (1.02%)
3 54675 13 210 46.9 (0.09%) 48.2 570 (1.04%)

Table 1: This table summarizes the dependence of |CQ,S,r ∩ D| for various ex-
perimental settings (columns from left: data set number, number of points,
number of dimensions, epsilon-net size).

from different parts of the human brain. An element pi of the feature vector
representing gene P ∈ D corresponds to the gene’s activity in a cell of class i.
The activity is a floating point number in [0, 100]. We consider three data sets
show in Table 2. We want to emphasize the practical relevance of the query
type we use: it is the same type as widely used in the data mining application
of Genevestigator.

The second data set comes from an image collection crawled by Standford
Universities WebBase project [3, 23]. We extracted an 8-dimensional (data set
#4) and a 64-dimensional (data set #5) color histogram of n = 220 images such
that each image is represented by its color intensities. This type of data was
recently used in a study dedicated to the NN problem [17] and it is also well
suitable for PNN queries: a PNN query asks for an image that is similar to the
query image with respect to a subset of colors. The coordinates of a point are
floating point numbers from the interval [0, 100].

We use randomly sampled ε-nets to study their failure probability. Our
experiments indicate that small epsilon-nets bound the number of points in a
query range extremely well. The average and standard deviation (see Table 1) of
the number of points in the query range is very small. Not only the average, but
also the maximal number of points behaves well and is roughly what Lemma
1 predicts. We observe that the dependence on the number of points n and
dimension d is nearly linear. One could roughly state that if we used 1000
points for the epsilon-net over 10000 queries, then a range cuts roughly a 1/1000-
fraction of points on the average (Table 1).

There are several heuristics that naturally stem from our approach, which
have guarantees on the approximation ratio but not on the query time. Never-
theless, our experimental evaluation indicates that the worst-case query time
does not occur in practice. A heuristic to approximate CQ,S,r, denoted by
volume-fit cube, corresponds to a hyper-rectangle that is centered at Q and
its projection onto S has the same volume as a w-dimensional Euclidean ball
Bw(r). Thus, the edge length of the hyper-rectangle equals vol(Bw(r))1/w. We
obtain the hyper-rectangle HL,R with li = qi − rπ1/2/(2Γ(w/2 + 1)1/w) and
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# n d range ar (avg) (stdv) (max) rank

4 220 8 inner cube 1.08 0.15 2.30 153.67
5 220 64 inner cube 1.01 0.29 5.66 87.50
4 220 8 volume-fit 1.02 0.05 1.45 81.72
5 220 64 volume-fit 1.02 0.09 2.74 54.80

Table 2: Approximation ratio for the KD Tree implementation using the image
data sets (columns from left: data set number, number of points, number of
dimensions, approximation ratio average, standard deviation, maximum, and
average rank).

ri = qi + rπ1/2/(2Γ(w/2 + 1)1/w) for the relevant dimensions. This hyper-
rectangle exceeds the boundaries of Bw(r), and thus the number of reported
points is no longer bounded by the epsilon-net, so the query time might de-
generate to a linear scan. The approximation ratio is 2Γ(w/2 + 1)/π1/2 (see
Figure 1) and is much smaller than

√
w as the dimension grows. This heuristic

performs markedly as Table 2 and Figure 3 indicate.

Evaluation. We show results for the algorithms’ performance in terms of query
time, space requirements, approximation quality and rank of the answer. The
query time is compared with a linear scan and we define the speed-up to be the
ratio of the average query time of a linear scan and the average query time of
our implementation.

The dependence of the query time on the size of the data-base is presented
in Figure 2. We observe a sub-linear dependence of the query time, and the
algorithm performs better if a KD tree is used for range searching. A factor of
over 60 times faster than a linear scan gives strong evidence for the algorithms
practical usability. The results were obtained for an approximation with the
inner cube range that has a theoretical bound on the approximation ratio of
2.8, however, the measured average approximation ratio was way less, roughly
around 1.08 (see Table 2).

The dependence of the database dimension on the query time is shown in
Figure 2. The ranges were approximated with the inner cube range and we
observe that the dimensionality of the data set has only a negligible impact on
the query time, at least for dimensions up to 13.

In Figure 3 and Table 2 we present the measured approximation quality in
terms of approximation ratio and rank of the answer. The rank is the number
of points that are closer to the query than the point found. Figure 3 shows that
the obtained approximation ratios are reasonable small. The maximal rank is
less than than 0.025 percent of the database.

We compared our approach with the standard query algorithm for nearest
neighbor search on the KD tree. The standard query algorithm traverses the
tree from the root to a leaf into the direction of the query point. On this root-to-
leaf path a point closest to the query is chosen as a candidate nearest neighbor,
and subsequently, the algorithm unwinds the recursion and checks nodes “in the
vicinity” for a better candidate [8]. To the best of our knowlegde the standard
algorithm was solely considered for the PNN problem in a paper by Eastman
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Figure 3: The description of this figure is the same as of Figure 2. Left: Query
time depending on the dimension of the query subspace. Right: The quality of
the approximation (average over 10k queries: straight lines; standard deviation:
filled area) and rank of the answer point (average over 10k queries: box; standard
deviation: whisker).

et al. [9], who analyzed its performance for nicely distributed data points under
the `∞-metric. Our approach yields easy-to-derive guarantees on the query time
and space requirements for any set of data points. The experiments show that
our algorithm is at least as fast as the standard algorithm, hence, the reduction
to range searching does not cause any overhead.

We also studied the behavior of our algorithm for data with medium dimen-
sionality between 101 and 102. The 64-dimensional data set #5 using the KD
Tree as range searching data structure has a query time that is still a factor of
5 to 10 faster than the linear scan. The theoretical observation would suggest
that the approximation ratio is fairly large for this dimension, however, as Table
2 shows, the approximation ratio and rank are only slightly worse than for the
low dimensional case.
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bert, and A. Zimek. Subspace Similarity Search: Efficient k-NN Queries
in Arbitrary Subspaces. In SSDBM’10: Scientific and Statistical Database
Management, pages 555–564. Springer, 2010.
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