
Succinct Representations of Binary Trees for
Range Minimum Queries

Pooya Davoodi1?, Rajeev Raman2, and S. Srinivasa Rao3

1 Polytechnic Institute of New York University, United States. E-mail:
pooyadavoodi@gmail.com

2 University of Leicester, United Kingdom. E-mail: r.raman@leicester.ac.uk
3 Seoul National University, South Korea. E-mail: ssrao@cse.snu.ac.kr

Abstract. We provide two succinct representations of binary trees that
can be used to represent the Cartesian tree of an array A of size n.
Both the representations take the optimal 2n + o(n) bits of space in
the worst case and support range minimum queries (RMQs) in O(1)
time. The first one is a modification of the representation of Farzan
and Munro (SWAT 2008); a consequence of this result is that we can
represent the Cartesian tree of a random permutation in 1.92n + o(n)
bits in expectation. The second one uses a well-known transformation
between binary trees and ordinal trees, and ordinal tree operations to
effect operations on the Cartesian tree. This provides an alternative,
and more natural, way to view the 2D-Min-Heap of Fischer and Huen
(SICOMP 2011). Furthermore, we show that the pre-processing needed
to output the data structure can be performed in linear time using o(n)
bits of extra working space, improving the result of Fischer and Heun
who use n + o(n) bits working space.

1 Introduction

Given an array A[1 · · ·n] of totally ordered values, the range minimum query
(RMQ) problem is to preprocess A into a data structure such that given two
indexes 1 ≤ i ≤ j ≤ n, we return the index of the minimum value in A[i · · · j]; the
aim is to minimize the time and space requirements of both the preprocessing
and the data structure. This problem finds a variety of applications that deal
with huge datasets, thus highly space-efficient solutions are of great interest. We
consider the problem in the word RAM model with word size Θ(log n) bits.

A standard approach to solve the RMQ problem is to use the Cartesian
tree [20]. The Cartesian tree of an array A[1 · · ·n] is a binary tree with nodes
labeled by the indexes of A. The root has label i, where A[i] is the minimum
element in A. The left subtree of the root is the Cartesian tree of the subar-
ray A[1 · · · i − 1], and the right subtree of the root is the Cartesian tree of the

? Part of this research was done while the first author was a PhD student at
MADALGO (supported by the Danish National Research Foundation), Aarhus Uni-
versity, Denmark.

subarray A[i+1 · · ·n]. Thus the answer for the query range [i · · · j] is the label of
the lowest common ancestor (LCA) of the nodes labeled by i and j. The Carte-
sian tree of A can be constructed in O(n) time [6]. A data structure that uses
O(n) words of space and finds the LCA of two nodes in a tree of size n in O(1)
time can be constructed in O(n) time [10]—an apparently optimal solution.

In fact, the Cartesian tree of an array A completely characterizes A with
respect to RMQs: the Cartesian tree of two arrays have different topology, iff
there exists at least one query that has different answers over the two arrays.
Since the information-theoretic lower bound for representing a binary tree on n
nodes is 2n− Θ(log n) bits, there is a significant gap between this lower bound
and the space usage of [6], which is O(n) words, or O(n log n) bits. A fair amount
of effort has gone into closing this gap, particularly since in several applications
the array A need not be kept once we have enough information to answer RMQs.

It is known that binary trees can be represented succinctly, i.e. using space
within a lower-order term of the information-theoretic lower bound. Specifically,
an n-node binary tree can be represented in 2n+o(n) bits to support a number of
operations, including LCA, in O(1) time [12, 1–3]. Unfortunately, we cannot use
these representations to solve the RMQ problem. The difficulty is that the label
of a node in the Cartesian tree (the index of the corresponding array-element)
is its rank in the inorder traversal of the Cartesian tree. However, succinct tree
representations cannot label nodes in an arbitrary manner without blowing up
the space usage, and support only a few numbering schemes, including level-order
[12], preorder [3] and others, but not inorder.

In parallel, many succinct representations of ordinal trees (arbitrary rooted
trees where the order of children matters) were developed. These take 2n+ o(n)
bits to represent n-node ordinal trees, and support a wide variety of operations
including LCA queries (see e.g. [11, 2, 19]). However, ordinal trees do not distin-
guish between left and right children in a binary tree, so the structure of the
Cartesian tree cannot be represented. Also, as above, we need to find a way to
translate between the array indexes and the numbering scheme of the ordinal tree
representation. To get around these problems, Sadakane [18] adds a new leaf to
each node in a Cartesian tree of n nodes, and views the resulting tree of n′ = 2n
nodes as an ordinal tree. He notes that array index i corresponds to the i-th
leaf in the ordinal tree in preorder. Representing this ordinal tree succinctly, he
answers RMQs in O(1) time, but the space usage is 2n′ + o(n′) = 4n + o(n)
bits—twice the optimal. A solution using 2n + o(n) bits that answers RMQs
in O(1) time was proposed by Fischer [4, 5], who defined the 2D-Min-Heap of
an array A[1 · · ·n], an ordinal tree with n+ 1 nodes that stores information on
prefix minima of sub-arrays of A, and represents this ordinal tree succinctly.

Our Results. We present two different techniques to represent Cartesian trees
using 2n + o(n) bits, and both the representations support the inorder num-
bering scheme and LCA queries. An immediate consequence of each of these
representations is a data structure of size 2n+ o(n) bits that supports RMQs in
O(1) time. Although we do not improve the upper bounds of [5] for the RMQ

problem in the worst case (as they were already optimal), we introduce more
natural ways or simpler approaches to solve the RMQ problem.

In Section 2, we provide a new representation of binary trees that is a modi-
fication of the representation of [2], and to support the operations of converting
between its numbering system and inorder numbering (so-called node-rankinorder
and node-selectinorder) in O(1) time. A consequence of this result is that we can
represent the Cartesian tree of a random permutation of A in 1.92n+ o(n) bits
in expectation [9], and perform RMQs in O(1) time.

In Section 3, we recall that there is a well-known transformation between
binary trees and ordinal trees, which essentially converts inorder numbers in the
binary tree to preoreder/postoreder numbers in the ordinal tree, and preserves
the preorder/postorder numbers of the binary tree. Using this, we show another
method to represent Cartesian trees: transform a Cartesian tree (a binary tree)
into an ordinal tree, and then represent the ordinal tree. Using ordinal tree
operations on the resulting tree, it is possible to represent the Cartesian tree in
optimal space and perform RMQs in constant time. This provides an alternative
and more natural way to view the 2D-Min-Heap of [5], as essentially the result
of the above transformation of the Cartesian trees into ordinal trees. We also
observe a connection between the above transformation and Jacobson’s binary
tree representation [12].

Finally, in Section 4, we show that constructing the data structure of Section 3
(outputting the data structure given an input array) can be done in linear time
using only O(

√
n log n) bits of space, “improving” the result of [5] where n +

o(n) working space is used (the accounting of space is slightly different). This
improvement is useful if the preprocessing and subsequent deployment of the
data structure are done on the same machine.

Preliminaries. Given a bit vector, rank(i) returns the number of 1s up to the
position i in the bit vector, and select(i) returns the position of the ith 1 in the
bit vector. We use the following succinct representations of bit vectors.

Lemma 1. [16] Given a bit vector of size m with n 1s, one can construct

(a) an indexable dictionary that uses log
(
m
n

)
+ o(n) + O(log logm) bits, and

supports rank, for only those positions where there is a 1 in the bit vector,
and select queries in constant time, and

(b) a fully indexable dictionary that uses log
(
m
n

)
+ o(m) bits, and supports rank

and select queries in constant time.

Given a sequence of balanced parentheses, we define the following operations:
find-close(i) returns the position of the closing parenthesis that matches the open
parenthesis at position i of the sequence (the find-open(i) opreation is analo-
gous); excess(i) returns the difference between the number of open and closing
parentheses from the beginning of the sequence up to position i. The operation
double-enclose(i, j) returns the position of the pair of matching parentheses that
tightly encloses two non-overlapping pairs of parentheses whose open parenthe-
ses respectively appear at positions i and j in the sequence. It is known that in

an ordinal tree represented by its balanced parenthesis representation (BP), the
LCA of two nodes, whose open (closing) parentheses are in positions i and j, is
equivalent to double-enclose(i, j) [14].

Lemma 2. [14, 17, 13] Given a sequence of balanced parentheses of size n, there
exists a data structure of size n + o(n) bits that supports the operations rank(,
select(, rank), select), find-close, find-open, excess, and double-enclose opera-
tions on the sequence all in O(1) time.

2 Representation Based on Tree Decomposition

We show a succinct representation of binary trees that supports multiple num-
berings (preorder, postorder, DFUDS order and inorder) on the nodes of the tree,
plus a comprehensive list of operations suggested by [11, 2]. This data structure
is essentially the same as the k-ary (cardinal) tree representation of Farzan and
Munro [2] for the case when k = 2, with the additional support for two more
operations, node-rankinorder and node-selectinorder. The first operation returns
the inorder number of a node given its preorder number, and the second oper-
ation performs the inverse. We use the preorder numbers of the nodes to refer
to them. Since we can support the node-rank and node-select operations with
respect to inorder, postorder and DFUDS order, we can also use the numberings
of the nodes in any of these three orders to refer to them in the operations.

We begin by outlining the succinct representation of Farzan and Munro [2].
Like the representations of [8, 11, 15], the representation of Farzan and Munro
recursively decomposes the tree into sub-trees. A prominent property of their
decomposition method is that each sub-tree, aside from its root, has at most one
boundary node that connects the sub-tree to other sub-trees, and furthermore
the boundary node has at most one child outside of the sub-tree. The following
lemma states the result of the decomposition:

Lemma 3. [2, Theorem 1] A tree with n nodes can be decomposed into Θ(n/L)
subtrees, each of size at most L. The subtrees are disjoint aside from their roots.
Moreover, aside from edges leaving root of subtrees, there is at most one edge in
each subtree that connects a node of the subtree to its child in another subtree.

The ordinal tree is first decomposed using Lemma 3 into O(n/ log2 n) mini-
trees each of size O(log2 n). Each mini-tree is further decomposed into O(log n)
micro-trees of size at most d logn2 e. Each micro-tree is represented with its size,
and an index to a lookup table of size o(n) bits, which stores answers of all queries
asked within the micro-trees. The sum of the sizes of the representations of all the
micro-trees (i.e., the total space for storing all the indexes to the lookup table) is
2n+o(n) bits in total, which is the dominating part of the space. Each mini-tree
is represented by the explicitly stored list of pointers between the micro-trees
within the mini-tree, where each pointer uses only O(log log n) bits. The roots of
micro-trees are represented using indexable dictionary structure of Lemma 1(a).
The original tree that contains the mini-trees is represented analogously to the

representation of mini-trees, by storing the list of pointers between the mini-
trees. All the parts together take 2n+ o(n) bits. The data structure can support
the full set of navigational operations and queries in binary trees.

Lemma 4. [2] A binary tree with n nodes can be represented using 2n + o(n)
bits of space, while a full set of operations in [2, Table 2] including LCA can be
supported in O(1) time.

We now show the main theorem of this section:

Theorem 1. Given a binary tree with n nodes, there exists a data structure of
size 2n + o(n) bits, that supports the following operations in O(1) time: node-
rankinorder, node-selectinorder, and all the operations supported by the ordinal tree
representation of Farzan and Munro [2] for Cardinal trees, including LCA.

Proof. As mentioned above, in our data structure, to perform any operation on
a node, except node-select operations, we need to give the preorder number of
the node to the operation, and the operation also returns a node in the form
of its preorder number (this is not the case if the operation does not return a
node at all such as depth). Thus, in circumstances in which we are asked to
perform an operation on a node referred to by its inorder number, we first need
to compute the preorder number of the node and then perform the operation
as usual. Similarly, when we are asked to return the result of an operation in
the form of an inorder number, we need to compute the inorder number of the
node from the preorder number returned by the operation. These two tasks are
performed by the operations node-selectinorder and node-rankinorder respectively.

node-rankinorder. For a node v, we want to compute the inorder number of v,
given its preorder number. We count the following; c1: the number of nodes that
are visited before v in inorder traversal but visited after v in preorder traversal;
c2: the number of nodes that are visited after v in inorder traversal but visited
before v in preorder traversal. It is not hard to see that the inorder number of v
is equal to its preorder number + c1 − c2.

The nodes counted in c1 are all the nodes located in the left subtree of v,
which can be counted by subtree size of the left child of v. The nodes counted in c2
are all the ancestors of v of which left child is on the v-to-root path. We compute
c2 in a way similar to computing the depth of a node as follows. At the root
of each mini-tree, we store c2 of that root, which requires O((n/ log2 n) log n) =
o(n) bits. At the root rµ of each micro-tree, we store the local-c2 of rµ, that is,
the number of ancestors of rµ, only up to the root of the mini-tree containing rµ,
where their left child is on the rµ-to-root path. The local-c2 of v is analogously
defined for the ancestors of v within its micro-tree, which can be computed using
table lookup. To calculate c2 of v, we clearly take the sum of the following: c2
of the root of the mini-tree containing v, local-c2 of the root of the micro-tree
containing v, and local-c2 of v, all computed in O(1) time.

node-selectinorder. For a node v, we want to compute the preorder number of v,
given its inorder number. Notice that a node that is visited before v in preorder
traversal is the root rm of the mini-tree containing v. The preorder number of
v can be expressed as the sum of two quantities: (1) preorder number of rm;
and (2) the number of nodes that are visited after rm and before v in preorder
traversal, which may include nodes both within and outside the mini-tree. In the
following, we explain how to compute these two quantities.

(1) The preorder number of rm is stored with the mini-tree representation,
and thus we only need to find the mini-tree containing the node v. We number
all the mini-trees in some arbitrary order, counting from zero up to nm−1, where
nm = O(n/ log2 n) is the number of mini-trees. We call these numbers, names
of the mini-trees. Starting with an empty bit vector A, we traverse the tree in
inorder, and after visiting each new node, we append a bit to A as follows: during
the traversal when we enter a mini-tree from another mini-tree, we append a 1 to
A, and while we are traversing within a mini-tree we append a 0 to A. During the
traversal when we enter a mini-tree from another mini-tree, we also write down
the name of the current mini-tree in another array B. At the beginning of A we
write 1 corresponding to the first visited node (the root), and at the beginning
of B, we write the name of the first visited mini-tree (containing the root). Thus,
at the end of the traversal, A is a bit vector of length n. We observe that the
i-th node in the inorder traversal of the tree belongs to the mini-tree with name
B[j] where j to be the number of 1s before A[i+ 1] (i.e., j = rankA(i+ 1)).

We store B explicitly as it only requires O(nm · log n) = o(n) bits due to the
following. The length of B is at most 2 · nm because the traversal can enter a
mini-tree at most two times (each mini-tree has at most one edge leaving the
mini-tree aside from its root; see Lemma 3), and thus its name can be written
in B at most two times. For the same reason, the number of 1s in A is at
most 2 · nm. We represent A using the FID structure of Lemma 1(b) which uses
O(log

(
n
nm

)
) = o(n) bits and supports rank operation on A in constant time.

(2) The number of nodes that are visited after rm and before v in preorder,
is computed by taking the sum of the following quantities: (i) the number of
such nodes that are outside the mini-tree; (ii) the number of such nodes that are
within the micro-tree tµ containing v; and (iii) the number of such nodes that
are within the mini-tree and outside tµ (visited after rm and before the root of
tµ). To compute these three quantities, we first need to find tµ among the other
micro-trees within the same mini-tree. We utilize the same method as we used
in (1) as follows Each mini-tree plays the role of the original tree in (1) and its
micro-trees play the role of mini-trees in (1). That is, we give a name to each
micro-tree in the mini-tree; we traverse the mini-tree in inorder; we make the
arrays A and B; and we use an FID to encode A. Applying the same analysis
provides o(n) bits space.

The nodes in (i) only exist if the mini-tree has a boundary node which is
visited before the root of tµ. The nodes in (i) are in fact all the nodes in a
subtree of such a boundary node, and thus the subtree size of the child of the
boundary node which is outside of the mini-tree determines the quantity in (i).

The quantity in (ii) is computed using table lookup. The number in (iii) is the
local-preorder number of the root of tµ. We store the local-preorder number of
the root of each micro-tree in O(log log n) bits which requires o(n) bits in total.
This completes the proof of Theorem 1. ut

The following theorem gives a slight generalization of Theorem 1, which uses
entropy coding to exploit any differences in frequency between the four node
types (Theorem 1 corresponds to choosing all the αis to be 1/4):

Theorem 2. For any positive constants α0, αL, αR and α2, such that α0 +
αL + αR + α2 = 1, a binary tree with n0 leaves, nL (nR) nodes with only
a left (right) child and n2 nodes with both children can be represented using(∑

i∈{0,L,R,2} ni log2 1/αi

)
+ o(n) bits of space, while a full set of operations [2,

Table 2] including LCA can be supported in O(1) time.

Proof. We proceed as in the proof of Theorem 1, but if α = mini∈{0,L,R,2} αi,

we choose the size of the micro-trees to be at most µ = logn
2 log2(1/α)

. Then, given

a micro-tree with µi nodes of type i, for i ∈ {0, L,R, 2} we encode it by writing
the node types in level order (cf. [12]) and encoding this string using arithmetic
coding with the probability of a node of type i taken to be αi. The size of this

micro tree is
⌈∑

i∈{0,L,R,2} µi log2 1/αi

⌉
, from which the theorem follows. ut

Corollary 1. If A is a random permutation over {1, . . . , n}, then RMQ queries
on A can be answered using 1.92n+ o(n) bits in expectation.

Proof. Choose α0 = α2 = 1/3 and αR = αL = 1/6. The claim follows from [9,
Theorem 1]. ut

3 Transforming Binary Trees into Ordinal Trees

We now give a succinct representation of binary trees based upon a well-known
transformation between binary trees and ordinal trees. We show that this trans-
formation not only supports inorder numbering, but also permits navigational
and LCA operations by using the relevant operations on the ordinal tree.

Theorem 3. A binary tree on n nodes can be represented in 2n + o(n) bits to
support left-child, right-child, parent, subtree-size and LCA in O(1) time, where
the nodes are referred to by any of the inorder, preorder, or postorder numbers.

Proof. We first describe two (related) transformations between binary trees and
ordinal trees, and then describe how binary tree operations can be performed.
Let tb be a binary tree with n nodes that we want to transform to an ordinal
tree, and let t1 and t2 be the ordinal trees resulting from the first and second
transformation respectively. Each of t1 and t2 has n+ 1 nodes, where each node
corresponds to a node in tb, except the root which is dummy. In the first trans-
formation, the root of tb corresponds to the first child of the dummy root of t1;

i

f

a

b

c

d

e

g

h

ifa

hgb

edc

i

h

g

f

d

ba e

c

t2tb t1

Fig. 1. An example for the transformations: tb is a binary tree, t1 and t2 are the ordinal
trees obtained by applying the first and second transformations respectively to tb. The
gray nodes are dummy and do not correspond to any node in tb.

the left child of a node in tb corresponds to the first child of the corresponding
node in t1; and the right child of a node in tb corresponds to the next sibling
of the corresponding node in t1. In the second transformation, the root of tb
corresponds to the last child of the dummy root of t2; the left child of a node
in tb corresponds to the previous sibling of the corresponding node in t2; and
the right child of a node in tb corresponds to the last child of the corresponding
node in t2 (see Fig. 1).

These two transformations have a useful property which allows us to use the
inorder number as the interface of the operations. In the first transformation,
the inorder number of a node in tb is equal to the postorder number of its
corresponding node in t1. In the second transformation, the inorder number
of a node in tb is equal to the preorder number of its corresponding node in t2.
Furthermore, the preorder number of a node in tb is equal to the preorder number
of its corresponding node in t1, and the postorder number of a node in tb is equal
to the postorder number of its corresponding node in t2.

The first and second transformations can be modified to make a third and
fourth transformation, respectively, by reversing the order of all siblings in the
ordinal tree. That is, if some node is the ith child out of the k children of its
parent in the ordinal tree, then in the reverse order, it will be the k − i + 1th
child of its parent (the new tree can be seen as the mirror image of the original
ordinal tree). The third transformation is used in Section 4.

Taking advantage of the transformations and using the known ordinal tree
representations that use preorder or postorder numbers as the interface of the
operations, we obtain binary trees representations that use the inorder numbers
as the interface of the operations. To represent a binary tree, we transform it into
an ordinal tree using either of the transformations, and then we represent the or-
dinal tree by utilizing one of the known succinct representations that supports at
least the operations ith-child, parent, next-sibling, previous-sibling, subtree-size,

leftmost leaf, rightmost leaf, LCA, level-ancestor, and depth. In the following,
we only show how to support the operations in the binary tree using the first
transformation. Supporting the operations on the second transformation is anal-
ogous. Given a node v in a binary tree tb, let vt1 denote the corresponding node
in t1, the transformed binary tree using the first transformation.

left-child, right-child, parent. The left child of a node v in tb is the first child of
the node vt1 , which can be determined using the operation ith-child on t1. The
right child of a node v in tb is the next sibling of vt1 , which can be determined
by the operation next-sibling on t1. For the parent of a node v in tb there are
two cases: 1) if vt1 is the first child of its parent, then the answer is the parent;
2) if vt1 is not the first child of its parent, then the answer is the previous sibling
of vt1 . These also can be determined using the operations ith-child, parent, and
previous-sibling.

subtree-size. It is not difficult to see that the subtree size of v is equal to the
sum of the subtree size of vt1 and the subtree sizes of all the siblings to the right
of vt1 . Let ` be the right-most leaf in the subtree of the parent of vt1 . To obtain
the above sum, we only subtract the preorder number of vt1 from the preorder
number of `.

LCA. Let w be the LCA of two nodes u and v in tb that we want to compute.
Notice that the LCA of ut1 and vt1 is a node zt1 , that is a child of wt1 and an
ancestor of ut1 , assuming that u is to the left of v in tb. Thus, we only need to
find the ancestor of ut1 at level i, where i − 1 is the depth of zt1 . To compute
this, we utilize the operations LCA, depth, and level-ancestor on t1. ut

We now observe an interesting connection between the above transformation
and the binary tree representation of Jacobson [12]. Given a binary tree, we first
add external nodes wherever there is a missing child, and label the internal nodes
with an open parenthesis, and the external nodes with a closing parenthesis. We
then traverse the tree in preorder and write down the labels of the nodes visited
in the traversal order (this is similar to Jacobson’s [12] encoding, except that
he visits the tree in level-order). If the original tree has n nodes, the sequence
so obtained has length 2n + 1 (as n + 1 external nodes are added to the tree).
It is easy to show that by adding an extra open parenthesis at the beginning,
we get a balanced parenthesis sequence S of length 2n + 2. See Fig. 2 for an
example. Note that in the depth-first search, if we switch the order in which the
children of a node are visited (i.e., visit the right child before the left child), then
the resulting sequence obtained is the balanced parenthesis sequence of the tree
obtained by applying the first transformation to the given binary tree.

Furthermore, each open parenthesis in S, except the extra parenthesis that is
added, and its matching closing parenthesis, are (conceptually) associated with
a node in the given tree that was visited when the parenthesis is added to the
sequence. It is easy to verify that the open parentheses in S from left to right
correspond to the nodes in preorder, and the closing parentheses from left to
right correspond to the nodes in inorder.

d h

c f

b

g

e

a

a b c d e f g h --

(((((((()))))))))(

c d b a f e h g --

Preorder

Inorder

Fig. 2. Illustrating the connection between Jacobson’s approach to representing binary
trees and the representation of Theorem 3 to a binary tree. Note that the open/closing
parentheses from left to right are in the same order as a preorder/inorder traversal of
the nodes respectively.

4 Cartesian Tree Construction in o(n) Working Space

We show how to construct the succinct representation of Section 3, using only o(n)
bits during the construction. A straightforward way to construct a succinct rep-
resentation of a Cartesian tree is to construct the standard pointer-based repre-
sentation of the Cartesian tree from the given array in linear time [6], and then
construct the succinct representation using the pointer-based representation.
The drawback of this approach is that the space used during the construction
is O(n log n) bits, although the final structure uses only O(n) bits. Fischer and
Heun [5] show that the construction space can be reduced to n + o(n) bits. In
this section, we show how to improve the construction space to o(n) bits.

Theorem 4. Given an array A of n values, we can build a 2n+ o(n)-bit repre-
sentation of its Cartesian tree in O(n) time using o(n) bits of auxiliary space.

Proof. The proof assumes that the array A is present in read-only memory and
it is possible to randomly access A. The algorithm reads A from left to right,
and outputs a parenthesis sequence as follows: if, having completed the pre-
processing for A[1], . . . , A[i], for some i ≥ 0, when processing the A[i + 1], we
compare A[i+ 1] with all the suffix minima of A[1..i]—if A[i+ 1] is smaller than
j ≥ 0 suffix minima, then we output the string)j(. This is so far a restatement
of the algorithm of [6] for constructing a Cartesian tree, and it is not hard to
see that the string output is balanced, by adding j closing parentheses to the
end, where j is number of suffix minima of A[1..n]. This sequence is in fact
the reverse of the DFUDS sequence of the ordinal tree obtained by applying the
third transformation of Section 3 to the Cartesian tree. While the straightforward

approach would be to maintain a linked list of the locations of the current suffix
minima, this list could contain Θ(n) locations and could take Θ(n log n) bits.

Our approach is to use the output string itself to encode the positions of the
suffix minima. It is not hard to see that if the output string is created by the
above process, it will be of the form b0(b1(...(bk(where each bi is a (possibly
empty) maximal balanced parenthesis string – the remaining parentheses are
called unmatched. It is not hard to see that the unmatched parentheses encode
the positions of the suffix minima in the sense that if the unmatched parenthe-
ses are the i1, i2 . . . , ik-th opening parentheses in the current output sequence
then the position i1, . . . , ik are precisely the suffix minima positions. Our task is
therefore to sequentially access the next unmatched parenthesis, starting from
the end, when adding the new element A[i+1]. We conceptually break the string
into blocks of size b

√
nc. For each block that contains at least one unmatched

parenthesis, store the following info:

– it’s block number (in the original paren string) and the total number of open
parenthesis in the current output string before the start of the block.

– the position p of the rightmost paren in the block, and the number of open
parentheses before it in the block.

– a pointer to the next block with at least one unmatched parenthesis.

This takes O(log n) bits per block, which is O(
√
n log n) bits.

– For the rightmost block (in which we add the new parens), keep positions of
all the unmatched parens: the space for this is also O(

√
n log n) bits.

When we process the next element of A, we compare it with unmatched parens
in the rightmost block, which takes O(1) time per unmatched paren that we
compared the new element with, as in the algorithm of [6]. Updating the last
block is also trivial. Suppose we have compared A[i+1] and found it smaller than
all suffix maxima in the rightmost block. Then, using the linked list, we find the
rightmost unmatched paren (say at position p) in the next block in the list, which
takes O(1) time, and compare with it (this is also O(1) time). If A[i+1] is smaller,
then sequentially scan this block leftwards starting at position p, skipping over a
maximal BP sequence to find the next unmatched paren in that block. The time
for this sequential scan is O(n) overall, since we never sequentially scan the same
paren twice. Updating the blocks is straightforward. Thus, the creation of the
output string can be done in linear time using O(

√
n log n) bits. For constructing

the auxiliary structures for the DFUDS in linear time see [7]. ut

References

1. D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao.
Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.

2. A. Farzan and J. I. Munro. A uniform approach towards succinct representation of
trees. In Proc. 11th Scandinavian Workshop on Algorithm Theory, pages 173–184.
Springer-Verlag, 2008.

3. A. Farzan, R. Raman, and S. S. Rao. Universal succinct representations of trees? In
Proc. 36th International Colloquium on Automata, Languages and Programming,
pages 451–462. Springer, 2009.

4. J. Fischer. Optimal succinctness for range minimum queries. In Proc. 9th Latin
American Theoretical Informatics Symposium, volume 6034 of LNCS, pages 158–
169. Springer-Verlag, 2010.

5. J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

6. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In Proc. 16th annual ACM symposium on Theory of comput-
ing, pages 135–143. ACM Press, 1984.

7. R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal represen-
tation for balanced parentheses. Theoretical Computer Science, 368(3):231–246,
2006.

8. R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms, 2(4):510–534, 2006.

9. M. J. Golin, J. Iacono, D. Krizanc, R. Raman, and S. S. Rao. Encoding 2D range
maximum queries. In Proc. ISAAC 2011, volume 7074 of LNCS, pages 180–189.
Springer-Verlag, 2011.

10. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

11. M. He, J. I. Munro, and S. S. Rao. Succinct ordinal trees based on tree covering. In
Proc. 34th International Colloquium on Automata, Languages and Programming,
pages 509–520. Springer-Verlag, 2007.

12. G. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, 1989.

13. H.-I. Lu and C.-C. Yeh. Balanced parentheses strike back. ACM Transactions on
Algorithms, 4(3), 2008.

14. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and
static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

15. J. I. Munro, V. Raman, and A. J. Storm. Representing dynamic binary trees
succinctly. In Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 529–536. SIAM, 2001.

16. R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with appli-
cations to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms, 3(4), 2007.

17. K. Sadakane. Succinct representations of lcp information and improvements in the
compressed suffix arrays. In Proc. 13th Symposium on Discrete Algorithms, pages
225–232, 2002.

18. K. Sadakane. Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms, 5(1):12–22, 2007.

19. K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proc. 21st Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 134–149. SIAM, 2010.

20. J. Vuillemin. A unifying look at data structures. Communications of the ACM,
23(4):229–239, 1980.

