
Formula Complexity of Ternary Majorities

Kenya Ueno

The Hakubi Center for Advanced Research and
Graduate School of Informatics,

Kyoto University
kenya@kuis.kyoto-u.ac.jp

Abstract. It is known that any self-dual Boolean function can be de-
composed into compositions of 3-bit majority functions. In this paper,
we define a notion of a ternary majority formula, which is a ternary
tree composed of nodes labeled by 3-bit majority functions and leaves
labeled by literals. We study their complexity in terms of formula size.
In particular, we prove upper and lower bounds for ternary majority for-
mula size of several Boolean functions. To devise a general method to
prove the ternary majority formula size lower bounds, we give an upper
bound for the largest separation between ternary majority formula size
and DeMorgan formula size.

1 Introduction

The parity and majority functions are the most basic Boolean functions studied
in the literature. When the number of input bits is odd, both of them are in-
variant under negations of all the input variables and the output (i.e., self-dual).
The class of self-dual Boolean functions is closed under compositions. Therefore
the recursive majority function defined by compositions of the 3-bit majority
function is also self-dual.

A class of Boolean functions closed under compositions is called a Boolean
clone. There are systematic studies on the relationship among Boolean clones
known as Post’s lattice [16]. (See also a survey [3] on Post’s lattice with its
applications.) According to the theory of Post’s lattice, any monotone self-dual
Boolean function can be decomposed into compositions of 3-bit majority func-
tions. In other words, the 3-bit majority function is the universal gate for the
class of monotone self-dual Boolean functions. On the other hand, the 3-bit
Boolean function denoted by (x1 ∧ ¬x2) ∨ (¬x2 ∧ ¬x3) ∨ (¬x3 ∧ x1) is the uni-
versal gate for the class of self-dual Boolean functions. It is also representable
by the 3-bit majority function with negations. Therefore any self-dual Boolean
function can be also decomposed into compositions of 3-bit majority functions
with negations.

Ibaraki and Kameda [8] developed a decomposition theory of monotone self-
dual Boolean functions for the data structure called coteries which realize mutual
exclusions in distributed systems. The theory was further investigated for self-
dual Boolean functions in general by Bioch and Ibaraki [2], who gave the decom-

position scheme of the 3-bit parity function into compositions of 3-bit majority
functions. We will fully utilize this decomposition scheme in our results.

There are two kinds of formula models whose nodes are labeled by 2-bit
Boolean functions, known as U2-formula (DeMorgan formula) and its extension
B2-formula (full binary basis formula). Studies on formula complexity of U2-
formulas and B2-formulas have a long period of history. Most of lower bound
methods for U2-formula size are regarded as extensions of Khrapchenko [10]
proving the Θ(n2) matching bound for the parity function. However, there are
some hard limitation against U2-formula complexity around Ω(n2) revealed in
[7, 9, 11, 12]. In the case of B2-formula, the lower bound technique introduced by
Nechiporuk [13] Ω(n2/ log n) is the most classical and still the strongest method.

Independently from any choice of formula models, proving formula size lower
bounds is one of the most important problems in computational complexity the-
ory as a weaker version of the circuit size lower bound problem and P 6= NP.
A super-polynomial formula size lower bound for a function in some complexity
class (e.g., NP) including NC1 implies a separation between the two complexity
classes (e.g., NC1 6= NP). The complexity class NC1 is defined in terms of loga-
rithm circuit depth, which turns out to be equivalent to polynomial formula size.
Therefore, the effect of the basis for formula complexity is also significant from
the viewpoint of logical circuit design. With all the effort, it is extremely hard to
give a slight improvement for the formula size problem even for a basic Boolean
functions such as the majority function. Therefore there are fewer achievements
in recent years concerned with formula complexity in spite of its importance.

In this paper, we consider a formula model MAJ3-formula (ternary majority
formula) besides U2-formula and B2-formula. Every node of a MAJ3-formula is
labeled by the 3-bit majority function while every node of a U2-formula and B2-
formula is labeled by a 2-bit Boolean function. We will prove the MAJ3-formula
size lower and upper bounds in Section 4 and 5, respectively. To prove the lower
bounds, we will show that the largest separation between MAJ3-formula and
U2-formula complexity is at most O(nlog2 3) in Section 3. It can be regarded
as analogue of Pratt’s result [17], which showed the largest separation between
B2-formula complexity and U2-formula complexity is at most O(nlog3 10).

Our work is intended as a basis towards further studies on MAJ3-formula
and any similar kinds of circuits and formula models. Since MAJ3-formula can
be seen as the most simplified form of threshold circuits as well as neural net-
works, there are possibilities to utilize related techniques. We hope that devel-
oping a new stream of studies on MAJ3-formulas will contribute a new progress
revealing the complexity of itself as well as other existing formula models.

2 Definitions

In this section, we summarize definitions concerned with Boolean functions and
formula size. We assume that the readers are familiar with the basics of these
concepts together with the notations of O, o, Ω, ω and Θ.

2.1 Boolean Functions

In this paper, we consider the following Boolean functions. Through the paper,
n means the number of input bits.

Definition 1 (Boolean Functions). The parity function PARn : {0, 1}n 7→
{0, 1} is defined by

PARn(x1, · · · , xn) =


1 (

n∑
i=1

xi ≡ 1 mod 2),

0 (
n∑
i=1

xi ≡ 0 mod 2).

The majority function MAJ2l+1 : {0, 1}2l+1 7→ {0, 1} on odd number of input
bits is defined by

MAJ2l+1(x1, · · · , xn) =


1 (

n∑
i=1

xi ≥ l + 1),

0 (
n∑
i=1

xi ≤ l).

The recursive majority function RecMAJh3 : {0, 1}3h 7→ {0, 1} is defined by

RecMAJh3 (x1, · · · , x3h) = MAJ3(RecMAJh−1
3 (x1, · · · , x3h−1),

RecMAJh−1
3 (x3h−1+1, · · · , x2·3h−1),

RecMAJh−1
3 (x2·3h−1+1, · · · , x3h))

with RecMAJ1
3 = MAJ3.

We will define another Boolean function right before it will appear. The
notions of monotone and self-dual for Boolean function are defined as follows.

Definition 2 (Monotone and Self-Dual). For Boolean vectors x = (x1, · · · , xn)
and y = (y1, · · · , yn), we define x ≤ y if xi ≤ yi for all i ∈ {1, · · ·n}.
A Boolean function f is called monotone if x ≤ y implies f(x) ≤ f(y) for
any x,y ∈ {0, 1}n. A Boolean function f is called self-dual if f(x1, · · · , xn) =
¬f(¬x1, · · · ,¬xn) where ¬ denotes the negation, which flips 1 to 0, and 0 to 1.

2.2 Formula Size

In this paper, we consider the following three formula models. For each model,
a literal means either a variable xi or the a negated variable ¬xi for some index
i. Each formula is called monotone if it does not have negated variables. In
the definition, the nodes ∧ and ∨ mean the logical conjunction and disjunction,
respectively.

Definition 3 (Formula Models). A U2-formula is a binary tree with leaves
labeled by literals and internal nodes labeled by ∧ and ∨. A B2 -formula is a
binary tree with leaves labeled by literals and internal nodes labeled by any of
2-bit Boolean functions such as ∧, ∨ and PAR2. A MAJ3-formula is a ternary
tree with leaves labeled by literals and internal nodes labeled by MAJ3.

If we allow 0 and 1 in leaves along with literals, MAJ3-formulas can compute
all the Boolean functions because MAJ3(x1, x2, 0) = x1∧x2 and MAJ3(x1, x2, 1) =
x1∨x2. So the 3-bit majority function with 0 and 1 can be regarded as a kind of
the universal gate for all the Boolean functions. In this sense, MAJ3-formula is
yet another natural extension of U2-formula like B2-formula. Even if we do not
allow 0 and 1 in leaves MAJ3-formulas can compute all the self-dual Boolean
functions. Furthermore, even if we allow only variables without negations, they
can compute all the monotone self-dual Boolean functions.

The formula size for each formula model is defined as follows. For the conve-
nience, we will not distinguish a Boolean function f and a formula computing f .
Note that LMAJ3(f) is defined only for self-dual Boolean functions while LB2(f)
and LU2(f) are defined for all Boolean functions.

Definition 4 (Formula Size). The size of a formula is its number of leaves
for any formula model. We define the formula size of a Boolean function f as
the size of the smallest formula computing f . We denote the size of U2-formula,
B2-formula and MAJ3-formula of a Boolean function f by LB2(f), LU2(f)
and LMAJ3(f), respectively. We will sometimes abbreviate LU2(f) to L(f) for
simplicity.

3 Translation from Ternary Majority Formulas to
DeMorgan Formulas

In this section, we analyze the relation between MAJ3-formula complexity and
U2-formula complexity. The results in this section will be useful to derive a
MAJ3-formula size lower bound from a U2-formula size lower bound for the
same function as shown in Section 4. We begin with the following simple propo-
sition.

Proposition 1. LMAJ3(RecMAJh3) = 3h.

Proof. The upper bound LMAJ3(RecMAJh3) ≤ 3h follows from the same con-
struction as the definition. The lower bound LMAJ3(RecMAJh3) ≥ 3h is also
immediate because it depends on all the variables. ut

From a majority formula L(MAJ3) ≤ 5, we can recursively construct a
formula for the recursive majority function whose size is 5h. Therefore we have
an upper bound L(RecMAJh3) ≤ 5h, i.e., L(RecMAJh3) ∈ O(LMAJ3(f)1.4650) .
Similarly, the best upper bound we know for B2-formula is also LB2(RecMAJh3) ≤
5h. The quantum adversary bound [11], which is useful to prove U2-formula
size lower bounds, has a nice composition property written as ADV(f · g) ≥

ADV(f) ·ADV(g). It implies a formula size lower bound 4h ≤ L(RecMAJh3),
i.e. L(RecMAJh3) ∈ Ω(LMAJ3(f)1.2618).

We call the value γ an expansion factor from a MAJ3-formula into U2-
formula for an arbitrary self-dual Boolean function f if L(f) ∈ O((LMAJ3(f))γ).
In the case of the recursive majority function, we can prove γ ≥ log3 5 by solving
5 · aγ ≤ (3a)γ where LMAJ3(f1) = LMAJ3(f2) = LMAJ3(f3) = a. At first
glance, the recursive majority function seems to have the largest expansion factor
log3 5 from a MAJ3-formula into a U2-formula among all the MAJ3-formulas.
Surprisingly, this is not true as we prove in the next lemma.

Lemma 1. For any self-dual Boolean function f ,

L(f) ∈ O(LMAJ3(f)log2 3) ⊆ O(LMAJ3(f)1.5850).

Proof. We are looking for the largest formula expansion from a MAJ3-formula
into a U2-formula. Differently from the recursive majority function, the same
variable might appear more than once in a ternary majority formula for an
arbitrary Boolean function f . In this case, the expanded U2-formula can shrink
more. So we can concentrate on the case in which all the variable appear exactly
once. That is, LMAJ3(f) = n.

We assume that L(f) ≤ β · LMAJ3(f)γ for any self-dual Boolean function
and consider an inductive argument. The expansion factor γ must satisfy an
inequality

L(f) ≤ 2 · β · (LMAJ3(f1))γ + 2 · β · (LMAJ3(f2))γ + β · (LMAJ3(f3))γ

≤ β · (LMAJ3(f))γ

by looking at a formula expansion from a MAJ3-formula f = MAJ3(f1, f2, f3)
into a U2-formula f = (f1 ∧ f2) ∨ ((f1 ∨ f2) ∧ f3). This expansion is processed
from leaves to the root in a recursive way.

We can assume that LMAJ3(f1) ≤ LMAJ3(f2) ≤ LMAJ3(f3) without loss of
generality. We set LMAJ3(f1) = a−b, LMAJ3(f2) = a+b and LMAJ3(f3) = a+c
where a > b ≥ 0 and c ≥ b ≥ 0. In this case, we need to find the minimum value
of γ which always satisfies

2 · (a− b)γ + 2 · (a+ b)γ + (a+ c)γ ≤ (3a+ c)γ .

So we set

p(a, b, c, γ) = (3a+ c)γ − (a+ c)γ − 2 · (a+ b)γ − 2 · (a− b)γ

and seek the minimum value of γ such that p(a, b, c, γ) ≥ 0 for any a > b ≥ 0
and c ≥ b > 0.

First we fix a, b and γ and consider

q(α) = (3 + α)γ − (1 + α)γ

where α = c
a (0 < α). By the derivative y′ = γ ·xγ−1 of y = xγ , (3+α)γ increases

more than (1+α)γ whenever α slightly increases. So q(α) monotonically increases

as α increases. To minimize p(a, b, c, γ) for fixed γ, we would like to minimize
q(α) and had better α be as small as possible. Hence we set c = b because c ≥ b.

Next we consider

r(α, γ) =
p(a, b, b, γ)

aγ
= (3 + α)γ − 3 · (1 + α)γ − 2 · (1− α)γ

where α = b
a (0 ≤ α < 1). Since r(α, γ) ≥ 0 for any α (0 ≤ α < 1) implies

p(a, b, c, γ) ≥ 0 for any a, b and c, it suffices to seek the minimum γ which
satisfies this condition.

It is easy to see that log3 5 is not the largest expansion factor because

r(1, log3 5) ≈ −0.660928 < 0

while
r(1, log3 5) = 0.

On the other hand, log2 3 seems to be a good candidate which is very near to
the largest expansion factor because

r(0, log2 3) ≈ 0.704522 > 0

and
r(1, log2 3) ≈ 1.77636× 10−15 > 0.

To confirm r(0, log2 3) ≥ 0 for 0 ≤ α < 1, it is sufficient to draw the graph of
r(α, log2 3) (0 ≤ α < 1) as shown in Figure 1. (Strictly speaking, it requires a
rigorous analysis on r(α, log2 3), but we omit it in this paper.)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Fig. 1. r(α, log2 3) = (3 + α)log2 3 − 3 · (1 + α)log2 3 − 2 · (1− α)log2 3 (0 ≤ α < 1).

Therefore the largest expansion factor is at most log2 3, which is given for
a MAJ3-formula with a − 1 = b = c, i.e., LMAJ3(f1) = 1 and LMAJ3(f2) =
LMAJ3(f3) for each subtree. ut

Pratt [17] has proved

LU2(f) ∈ O((LB2(f))log3 10) ⊆ O((LB2(f))2.096).

The exponent log3 10 is derived from the U2-formula size of 10 for the 3-bit parity
function. The above lemma can be seen as an analogue of Pratt’s bound [17] for
the relation between MAJ3-formulas and U2-formulas.

4 Ternary Majority Formula Size Lower Bounds

In this section, we devise a general method to prove ternary majority formula
size lower bounds. In general, we can derive a MAJ3-formula size lower bound
for an arbitrary Boolean function from a U2-formula size lower bound of the
same function using Lemma 1 as follows.

Theorem 1. For any self-dual Boolean function f such that L(f) ∈ Ω(nc),
LMAJ3(f) ∈ Ω(nc/ log2 3).

Proof. By Lemma 1, an upper bound for U2-formula size expanded from a
MAJ3-formula of size N is at most O(N log2 3). This size must be not smaller
than the formula size lower bound L(f) ∈ Ω(nc). Therefore we have obtained
the theorem. ut

From U2-formula size lower bounds of L(PARn) ∈ Ω(n2) and L(MAJn) ∈
Ω(n2) by Khrapchenko [10], we have the following corollaries. After completion of
our work, we have noticed that the lower bound for the parity function is weaker
than 1.33 of Chokler and Zwick [4] using the random restriction technique. Still,
our lower bound method has merit in the sense that it can be applied for any
Boolean function.

Corollary 1. For any n = 2l+ 1, we have LMAJ3(PAR2l+1) ∈ Ω(n1.2618) and
LMAJ3(MAJ2l+1) ∈ Ω(n1.2618).

Since 2/ log2 3 = log3 4, these lower bounds are equal to the U2-formula
size lower bound for the recursive majority function accidentally. It seems to be
difficult to give a matching MAJ3-formula size upper and lower bounds even for
the parity function while we can obtain those for U2-formula and B2-formula.
Both of them seem to be not tight and have room for further improvements.

The current best B2-formula size lower bound is Ω(n2/ log n) shown by
Nechiporuk [13] for the element distinctness function. We should note that
Pratt’s bound [17] LU2(f) ∈ O((LB2(f))2.096) is not sufficient to give a sub-
stantial lower bound larger than n differently from the case of MAJ3-formula.
This is because U2-formula size lower bounds have got stuck the barrier around
Ω(n2) [7, 9, 11, 12] for almost all explicitly defined Boolean functions except the
Andreev function discussed from now on.

The current best U2-formula size lower bound is Ω(n3−o(1)) by H̊astad [6]
for the Andreev function [1]. We can define the Andreev function so that it is
self-dual.

Definition 5. The Andreev function A2n is composed of 2n input bits which
are divided into 2 parts. The first part consists of n bits represent the truth table
of a Boolean function f on log n bits. The second part consists of n bits which
are also divided into log n blocks of n/ log n bits. First, the function computes
log n parity function on n/ log n input bits from the second part of the input bits.
and obtain log n output bits. Here we assume that the number of input bits for
all the parity function is even. That is, n/ log n is even. Then it computes the
Boolean function f represented by the first part with the obtained log n output
bits as input bits.

With the slightly modification of the Andreev function from its original def-
inition version, we can confirm that it is self-dual as follows.

Lemma 2. The Andreev function A2n defined as above is self-dual.

Proof. We consider the situation in which we flip all the input bits for the An-
dreev function. Because we defined the Andreev function so that the number of
input bits for all the parity functions inside the Andreev function is even, the
output bits are invariant when we flip all the input bits. In other words, the
parity function with even number of input bits is anti-dual, i.e.,

PARn/ logn(x1, · · · , xn/ logn) = PARn/ logn(¬x1, · · · ,¬xn/ logn).

Therefore the Andreev function outputs a bit in the same position in the first
part of the input bits after flipping all the input bits. On the other hand, this
output bit has been also flipped. Hence the output bit of the Andreev function
is also flipped after we flip all the input bits. ut

So our MAJ3-formula size lower bound for the Andreev function is given as
follows.

Theorem 2. LMAJ3(A2n) ∈ Ω(n1.8927)

Proof. Since we have defined the Andreev function so that it is self-dual, it can
be represented by a MAJ3-formula from the theory of Post [16]. Moreover, the
modification of the Andreev function does not affect the U2-formula size lower
bound of Ω(n3−o(1)) by H̊astad [6]. Thus we can apply Theorem 1 and obtain
the lower bound by 3/ log2 3 ≈ 1.89279. ut

5 Ternary Majority Formula Size Upper Bounds

In this section, we prove MAJ3-formula size upper bounds of the parity and
majority function. In both cases, the upper bounds are shown by utilizing the
decomposition scheme of Bioch and Ibaraki [2] for the 3-bit parity function as

PAR3(x1, x2, x3) = [1, [1̄, 2̄, 3̄], [1̄, 2, 3]]

where we use notations [i, j, k] = MAJ3(xi, xj , xk), i = xi and ī = ¬xi. From the
decomposition scheme, we obtain LMAJ3(PAR3) ≤ 7. We show that MAJ3-
formula complexity is intermediate between B2-formula complexity and U2-
complexity for both functions.

5.1 The Parity Function

In the case of U2-formula, we can construct a 2-bit parity formula (x1 ∧ ¬x2) ∨
(¬x1∧x2). By a recursive construction, we can prove an upper bound L(PARn) ≤
n2 where n = 2h from a recursive inequality L(PAR2n) ≤ 4 · L(PARn).

In the case of MAJ3-formula, we can decompose the 3h-bits parity function
into a composition of a 3-bit parity function and three 3h−1-bits parity functions.
Thus we have a recursive inequality LMAJ3(PAR3h) ≤ 7 · LMAJ3(PAR3h−1)
from the decomposition scheme of the 3-bit parity function. Solving this in-
equality straightforwardly, we can show an upper bound LMAJ3(PAR3h) ∈
O(nlog3 7) ⊆ O(n1.7712). Actually we can give a better upper bound as follows.
Theorem 3 (See also [4]). LMAJ3(PAR2l+1) ∈ O(n1.7329) where n = 2l+ 1.

Proof. For some constant α, we consider decomposition of the (2α + 1) ·m-bit
parity function into a composition of a 3-bit parity function with a m-bit parity
function and two α ·m-bit parity functions as follows.

PAR(2α+1)·m(x1, · · · , x(2α+1)·m) = PAR3(PARm(x1, · · · , xm),
PARα·m(xm+1, · · · , x(α+1)·m),
PARα·m(x(α+1)·m+1, · · · , x(2α+1)·m)).

Here we can assume that α ·m is an odd integer by increasing or decreasing it
at most 1. In this case, (2α+ 1) ·m becomes also an odd integer if m is odd.

Let S(n) = LMAJ3(PARn) and assume S(n) ≤ β · nγ for some constants
β, γ > 0 for any odd number n. By increasing the value of β, the slight modi-
fication which makes α ·m be an odd integer can be ignored for the following
estimation of γ. By using decomposition scheme of the 3-bit parity function,

S((1 + 2α) ·m) ≤ 3 · S(m) + 2 · S(α ·m) + 2 · S(α ·m)
≤ (3 + 4 · αγ) · β · nγ .

It suffices to show that the last expression is bounded by (1 + 2α)γ · β · nγ .
Therefore we consider the minimum value of γ which satisfies

3 + 4 · αγ ≤ (1 + 2α)γ

by eliminating β · mγ from both sides. We can verify that this inequality is
satisfied when α = 1.73896 and γ = 1.73282. ut

We have possibilities to improve the upper bound by analysis of the parity
function with larger number of input bits. In this case, the proof will become
much more complicated as the number of input bits increases. For example, we
can construct MAJ3-formula of size 21 for the 5-bit parity function as

PAR5(x1, x2, x3, x4, x5) =
[1, [1̄, 2̄, [3̄, [3, 4, 5], [3, 4̄, 5̄]]], [1̄, 2, [1̄, 2, [3, [3̄, 4̄, 5̄], [3̄, 4, 5]]]]].

From the construction, we can obtain the upper bound ofO(nlog5 21) = O(n1.8917).
This is far from the above upper bound. To obtain a better bound, we need much
more succinct construction of a MAJ3-formula for the 5-bit parity function of
size as close to 51.7328 = 16.262... as possible.

5.2 The Majority Function

Our MAJ3-formula size upper bound for the majority function essentially relies
on the general theory established by Paterson, Pippenger and Zwick [14]. Their
idea is based on construction of a carry save adder from a full adder of fixed
size as building blocks. Here we consider a full adder FA3 from 3 bits to 2 bits.
The first and second output bits y1, y2 of FA3 are the 3-bit parity and majority
function, respectively.

In the case of U2-formula, the full adder FA3 can be constructed by

y1 = (x1 ∧ ((¬x2 ∨ x3) ∧ (x2 ∨ ¬x3))) ∨ (¬x1 ∧ ((x2 ∧ ¬x3) ∨ (¬x2 ∧ x3))),

and
y2 = (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3).

They defined the notion of the occurrence matrix. It summarizes the information
of the number of occurrence in the formula. For example, the occurrence matrix

of the above case is M =
(

2 4 4
1 2 2

)
. In the first and second row of the matrix,

each entry counts the number of occurrence of each variable in the first and
second formula, respectively.

From the construction of an arbitrary fixed size full adder and its correspond-
ing occurrence matrix, Paterson, Pippenger and Zwick [14] gave the following
general upper bound method.

Theorem 4 ([14]). Let M be an occurrence matrix of some full adder for some
fixed basis and some Boolean function f . Let ε(M) be the maximum value of 1

γ

such that ‖x‖γ ≤ ‖M · x‖γ for any vector x ≥ 0 where ‖x‖γ = (
∑
i |xi|γ)1/γ .

Then O(nε(M)+o(1)) gives a formula size upper bound for f on the fixed basis.

By the theorem, we can derive a U2-formula size upper bound of O(n4.70).
Paterson and Zwick [15] gave a construction of the full adder from 11 bits to 4
bits and an improved upper bound of O(n4.57).

In the case of B2-formula, Paterson, Pippenger and Zwick [14] proved a B2-
formula size upper bound of O(n3.21) improved to O(n3.13) by Paterson and
Zwick [15].

In the case of MAJ3-formula, the full adder FA3 can be constructed by y1 =
[1, [1̄, 2̄, 3̄], [1̄, 2, 3]] and y2 = [1, 2, 3]. So the corresponding occurrence matrix is

M =
(

3 2 2
1 1 1

)
. From this, we can obtain the following MAJ3-formula size upper

bound for the majority function.

Theorem 5. LMAJ3(MAJ2l+1) ∈ O(n3.7925) where n = 2l + 1.

Proof. For the occurrence matrix,M =
(

3 2 2
1 1 1

)
, the inequality ‖x‖γ ≤ ‖M ·x‖γ

which appears in the theorem of Paterson, Pippenger and Zwick [14] can be
interpreted as

p(a, b, c, γ) = (3 · a+ 2 · b+ 2 · c)γ + (a+ b+ c)γ − aγ − bγ − cγ ≥ 0.

If LMAJ3(MAJn) ∈ O(nγ), there exists a, b, c > 0 such that p(a, b, c, γ) < 0. We
set a = 0.729608, b = c = 1 and 1/γ = 3.7925. Then, we have

p(a, b, c, γ) ≈ −0.0000256657 < 0.

This certifies that the maximum value of 1/γ which satisfies ‖x‖γ ≤ ‖M ·x‖γ
for any vectors x ≥ 0 is less than 3.7925. (The optimality of the value γ can be
confirmed by numerical analysis. That is, the minimum value of p(a, b, c, γ) > 0
for γ = 3.7924.) Thus we have obtained the upper bound. ut

The best monotone U2-formula size upper bound for the majority function
is O(n5.3) by a probabilistic construction of Valiant [18]. Following the anal-
ysis of Valiant’s construction replaced by balanced compositions of the 3-bit
majority function with random variables, we can construct a monotone MAJ3-
formula whose size is O(n4.2945) (⊇ O(nlog3/2 3+log2 3)). The size of its conversion
into a monotone U2-formula is O(n6.2913) (⊇ O(nlog3/2 5+log2 5)) and larger than
Valiant’s bound.

6 Concluding Remarks

In this paper, we have introduced the notion of MAJ3-formula and have shown
the upper and lower bounds for MAJ3-formula size of several Boolean functions.
The results shown in this paper are summarized in Figure 2. The figure also shows
comparison with U2-formula complexity and B2-formula complexity.

B2-formula MAJ3-formula U2-formula

Parity Θ(n) O(n1.7329) [4] Θ(n2) [10]

Ω(n1.2618), O(n1.3333) [4]

Majority O(n3.13) [14, 15] O(n3.7925) O(n4.57) [14, 15]

Ω(n logn) [5] Ω(n1.2618) Ω(n2) [10]

Recursive Majority Θ(n) O(n1.4650) [11]

Ω(n1.2618) [11]

Andreev Ω(n1.8927) Θ(n3−o(1)) [6]

Fig. 2. Formula Size Upper and Lower Bounds

There are still large gaps between the upper and lower bounds even for the
parity function while we have its matching bounds for U2-formula and B2-
formula. The obvious open questions are how to close these gaps. We hope that
a new technical discovery to clarify MAJ3-formula complexity will also shed
light on resolving the stiff barrier against formula complexity of the existing
models.

Acknowledgment

This research is supported by the Kyoto University Hakubi Project and Grants-
in-Aid for Scientific Research from the Japan Society for the Promotion of Sci-
ence.

References

1. A. E. Andreev. On a method for obtaining more than quadratic effective lower
bounds for the complexity of π-scheme. Moscow University Mathematics Bulletin,
42(1):63–66, 1987.

2. J. C. Bioch and T. Ibaraki. Decompositions of positive self-dual boolean functions.
Discrete Mathematics, 140(1-3):23–46, 1995.

3. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with boolean blocks,
part I: Post’s lattice with applications to complexity theory. ACM SIGACT News,
34(4):38–52, 2003.

4. H. Chockler and U. Zwick. Which bases admit non-trivial shrinkage of formulae?
Computational Complexity, 10(1):28–40, 2001.

5. M. J. Fischer, A. R. Meyer, and M. S. Paterson. Ω(n logn) lower bounds on length
of Boolean formulas. SIAM Journal on Computing, 11(3):416–427, Aug. 1982.

6. J. H̊astad. The shrinkage exponent of De Morgan formulas is 2. SIAM Journal on
Computing, 27(1):48–64, Feb. 1998.

7. P. Hrubeš, S. Jukna, A. Kulikov, and P. Pudlák. On convex complexity measures.
Theoretical Computer Science, 411:1842–1854, 2010.

8. T. Ibaraki and T. Kameda. A theory of coteries: Mutual exclusion in dis-
tributed systems. IEEE Transactions on Parallel and Distributed Computing,
PDS-4(7):779–794, July 1993.

9. M. Karchmer, E. Kushilevitz, and N. Nisan. Fractional covers and communication
complexity. SIAM Journal on Discrete Mathematics, 8(1):76–92, Feb. 1995.

10. V. M. Khrapchenko. Complexity of the realization of a linear function in the case
of π-circuits. Mathematical Notes, 9:21–23, 1971.

11. S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and classical
formula size lower bounds. Computational Complexity, 15(2):163–196, 2006.

12. T. Lee. A new rank technique for formula size lower bounds. In Proceedings of
the 24th Annual Symposium on Theoretical Aspects of Computer Science (STACS
2007), Lecture Notes in Computer Science 4393, pages 145–156. Springer, 2007.

13. E. I. Neciporuk. A boolean function. DOKLADY: Russian Academy of Sciences
Doklady. Mathematics (formerly Soviet Mathematics–Doklady), 7:999–1000, 1966.

14. M. S. Paterson, N. Pippenger, and U. Zwick. Optimal carry save networks. In
Boolean function complexity, volume 169 of London Mathematical Society Lecture
Note Series, pages 174–201. Cambridge University Press, 1992.

15. M. S. Paterson and U. Zwick. Shallow circuits and concise formulae for multiple
addition and multiplication. Computational Complexity, 3(3):262–291, 1993.

16. E. L. Post. The two-valued iterative systems of mathematical logic, volume 5 of
Annals Mathematical Studies. Princeton University Press, 1941.

17. V. R. Pratt. The effect of basis on size of Boolean expressions. In Proceedings of
the 16th Annual Symposium on Foundations of Computer Science (FOCS 1975),
pages 119–121. IEEE, 13–15 Oct. 1975.

18. L. G. Valiant. Short monotone formulae for the majority function. Journal of
Algorithms, 5(3):363–366, Sept. 1984.

