Skip to main content

Computing Shapley Value in Supermodular Coalitional Games

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Abstract

Coalitional games allow subsets (coalitions) of players to cooperate to receive a collective payoff. This payoff is then distributed “fairly” among the members of that coalition according to some division scheme. Various solution concepts have been proposed as reasonable schemes for generating fair allocations. The Shapley value is one classic solution concept: player i’s share is precisely equal to i’s expected marginal contribution if the players join the coalition one at a time, in a uniformly random order. In this paper, we consider the class of supermodular games (sometimes called convex games), and give a fully polynomial-time randomized approximation scheme (FPRAS) to compute the Shapley value to within a (1 ±ε) factor in monotone supermodular games. We show that this result is tight in several senses: no deterministic algorithm can approximate Shapley value as well, no randomized algorithm can do better, and both monotonicity and supermodularity are required for the existence of an efficient (1 ±ε)-approximation algorithm. We also argue that, relative to supermodularity, monotonicity is a mild assumption, and we discuss how to transform supermodular games to be monotonic.

This work was supported in part by NSF grant CCF-0728779 and by grants from Oberlin College and Carleton College. Thanks to Josh Davis for helpful discussions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Approximation and collusion in multicast cost sharing. Games and Economic Behavior 47, 36–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aziz, H.: Algorithmic and complexity aspects of simple coalitional games. PhD thesis, University of Warwick (2009)

    Google Scholar 

  3. Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A.D., Rosenschein, J.S., Saberi, A.: Approximating power indices: theoretical and empirical analysis. In: Autonomous Agents and Multi-Agent Systems, vol. 20, pp. 105–122 (2010)

    Google Scholar 

  4. Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review 19, 317–343 (1965)

    Google Scholar 

  5. Barua, R., Chakravarty, S.R., Roy, S.: Measuring power in weighted majority games. Technical report. Department of Economics, Iowa State University (2007)

    Google Scholar 

  6. Bonacich, P.: Power and centrality: A family of measures. American Journal of Sociology 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  8. Curiel, I.J., Maschler, M., Tijs, S.: Bankruptcy games. Zeitschrift für Operations Research 31, 143–159 (1987)

    MathSciNet  MATH  Google Scholar 

  9. Davis, M., Maschler, M.: The kernel of a cooperative game. Naval Research Logistics Quarterly 12, 223–259 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deegan, J., Packel, E.W.: A new index of power for simple n-person games. International Journal of Game Theory 7(2), 113–123 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, X., Fang, Q.: Algorithmic cooperative game theory. Pareto Optimality, Game Theory and Equilibria 17(1), 159–185 (2008)

    Article  MathSciNet  Google Scholar 

  12. Deng, X., Papadimitriou, C.: On the complexity of cooperative solution concepts. Mathematics of Operations Research 19(2), 257–266 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fatima, S.S., Wooldridge, M., Jennings, N.R.: A randomized method for the Shapley value for the voting game. In: Proc. 6th Conference on Autonomous Agents and Multiagent Systems, pp. 955–962 (May 2007)

    Google Scholar 

  14. Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for the Shapley value. Artificial Intelligence 172(14), 1673–1699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feigenbaum, J., Papadimitriou, C., Shenker, S.: Sharing the cost of multicast transmissions. J. Computing Systems Sciences 63, 21–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Felsenthal, D., Machover, M.: The measurement of voting power: Theory and practice, problems and paradoxes. Public Choice 102(3-4), 373–376 (2000)

    Google Scholar 

  17. Gillies, D.B.: Solutions to general non-zero-sum games. Contributions to the Theory of Games 4, 47–85 (1959)

    MathSciNet  Google Scholar 

  18. Herzog, S., Shenker, S., Estrin, D.: Sharing the “cost” of multicast trees: an axiomatic analysis. IEEE/ACM Transactions on Networking 5, 847–860 (1997)

    Article  Google Scholar 

  19. Ieong, S., Shoham, Y.: Marginal contribution nets: a compact representation scheme for coalitional games. In: Proc. 6th ACM Conference on Electronic Commerce (2005)

    Google Scholar 

  20. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. In: Proc. 32nd Symposium on Theory of Computing, pp. 97–106 (2000)

    Google Scholar 

  21. Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative games. In: Proc. 33rd ACM Symposium on Theory of Computing (2001)

    Google Scholar 

  22. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  23. Kleinberg, J., Tardos, E.: Balanced outcomes in social exchange networks. In: Proc. 40th Symposium on Theory of Computing (2008)

    Google Scholar 

  24. Leech, D.: An empirical comparison of the performance of classical power indices. Political Studies 50(1), 1–22 (2002)

    Article  Google Scholar 

  25. Mann, I., Shapley, L.S.: Values of large games, IV: Evaluating the electoral college by Monte-Carlo techniques. Technical report. The Rand Corporation, Santa Monica, CA (1960)

    Google Scholar 

  26. Maschler, M., Peleg, B., Shapley, L.S.: The kernel and bargaining set for convex games. International Journal of Game Theory 1, 73–93 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nucleolus, and related solution concepts. Mathematics of Operations Research 4(4), 303–338 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matsui, Y., Matsui, T.: A survey of algorithms for calculating power indices of weighted majority games. Journal of the Operations Research Society of Japan 43(1), 71–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted majority games. Theoretical Computer Science 263(1-2), 305–310 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Motwani, R., Raghavan, P.: Randomized Algorithms, Cambridge (1995)

    Google Scholar 

  31. O’Neill, B.: A problem of rights arbitration from the Talmud. Mathematical Social Sciences 2(4), 345–371 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory B 80, 346–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schulz, A.S., Uhan, N.A.: Approximating the least core value and least core of cooperative games with supermodular costs. Working paper (2010)

    Google Scholar 

  34. Schulz, A.S., Uhan, N.A.: Sharing supermodular costs. Operations Research 58(4), 1051–1056 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press (1953)

    Google Scholar 

  36. Shapley, L.S.: Cores of convex games. International Journal of Game Theory 1, 11–26 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shapley, L.S., Shubik, M.: On the core of an economic system with externalities. American Economic Review 59, 678–684 (1969)

    Google Scholar 

  38. Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Research 26(2), 305–321 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yao, A.C.: Probabilistic computations: Toward a unified measure of complexity. In: Proc. 18th Symposium on Foundations of Computer Science, pp. 222–227 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liben-Nowell, D., Sharp, A., Wexler, T., Woods, K. (2012). Computing Shapley Value in Supermodular Coalitional Games. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics