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Abstract. Hierarchical data representations in the context of classifi-
cation and data clustering were put forward during the fifties. Recently,
hierarchical image representations have gained renewed interest for seg-
mentation purposes. In this paper, we briefly survey fundamental results
on hierarchical clustering and then detail recent paradigms developed for
the hierarchical representation of images in the framework of mathemat-
ical morphology: constrained connectivity and ultrametric watersheds.
Constrained connectivity can be viewed as a way to constrain an initial
hierarchy in such a way that a set of desired constraints are satisfied.
The framework of ultrametric watersheds provides a generic scheme for
computing any hierarchical connected clustering, in particular when such
a hierarchy is constrained. The suitability of this framework for solving
practical problems is illustrated with applications in remote sensing.
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1 Introduction

Most image processing applications require the selection of an image representa-
tion suitable for further analysis. The suitability of a given representation can be
evaluated by confronting its properties with those required by the application at
hand. In practice, images are often represented by decomposing them into prim-
itive or fundamental elements that can be more easily interpreted. Examples of
decomposition (or simply representation) schemes are given hereafter:

– A functional decomposition decomposes the image into a sum of elementary
functions. The most famous functional decomposition is the Fourier trans-
form which decomposes the image into a sum of cosine functions with a
given frequency, phase, and amplitude. This proves to be a very effective

? A preliminary version of this paper was presented at the workshop
WADGMM 2010 [1] held in conjunction with ICPR 2010, Istanbul, August 2010.
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representation for applications requiring to target structures corresponding
to well-defined frequencies;

– A pyramid decomposition relies on a shrinking operation which applies a
low-pass filter to the image and downsamples it by a factor of two and
an expand operation which upsamples the image by a factor of two using
a predefined interpolation method. Such a scheme is extremely efficient in
situations where the analysis can be initiated at a coarse resolution and
refined by going through levels of increasing resolution;

– A multi-scale representation consists of a one-parameter family of filtered
images, the parameter indicating the degree (scale) of filtering. This scheme
is appropriate for the analysis of complex images containing structures at
various scales;

– A skeleton representation consists in representing the image by a thinned
version. It is useful for applications where the geometric and topological
properties of the image structures need to be measured;

– The threshold decomposition decomposes a grey tone image into a stack of
binary images corresponding to its successive threshold levels. This decom-
position is useful as a basis for some hierarchical representations (see below)
and from a theoretical point of view for generalising operations on binary
images to grey tone images;

– A hierarchical representation of an image can be viewed as an ordered set or
tree (acyclic graph) with some elementary components defining its leaves and
the full image domain defining its root. Examples of elementary components
are the regional minima/maxima/extrema, or the flat zones of the input im-
age. This approach is interesting in all applications where the tree encoding
the hierarchy offers a suitable basis for revealing structural information for
filtering or segmentation purposes.

Note that these schemes are not mutually exclusive. A case in point is the skele-
ton representation defined in terms of maximal inscribed disks since it fits the
multi-scale representation (with morphological openings with disks of increasing
size as structuring elements) as well as the functional decomposition (with spa-
tially localised disks as elementary functions that are unioned to reconstruct the
original pattern).

A given representation scheme can be further characterised by considering the
properties of the operations it relies on. For example, a representation is linear if
it is based on operations invariant to linear transformations of the input image.
The multi-scale representation with Gaussian filters of increasing size fulfils this
property. Morphological representations are non-linear representations relying
on morphological operations. For example, a granulometry is a morphological
multi-scale representation originally proposed by Matheron in his seminal study
on the analysis of porous media [2]. The representation does not need to rely
exclusively on morphological operations to be considered as morphological. For
example, the non-linear scale-space representation with levellings [3] is based
on self-dual geodesic reconstruction using Gaussian filters of increasing size as
geodesic mask.
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This paper deliberately focuses on hierarchical image representations for im-
age segmentation with emphasis on morphological methods. Note that the de-
velopment of hierarchical representations appeared first in taxonomy in the form
of hierarchical clustering methods (see for example [4] for an old but excellent
review on classification including a discussion on hierarchical clustering). In fact,
hierarchical image segmentation can be seen as a hierarchical clustering of spa-
tial data. Graph theory is the correct setting for formalising clustering concepts
as already recognised in [5] and [6], see also the enlightening paper [7] as well
as the detailed survey and connections between graph theory and clustering in
[8] (and [9] for clustering on directed graphs). For this reason, Sec. 2 presents
briefly background notions and notations of graph theory used throughout this
paper. Then, fundamental concepts of hierarchical clustering methods where the
spatial location of the data points is usually not taken into account are reviewed
in Sec. 3. Hierarchical image segmentation methods where the spatial location of
the observations (i.e., the pixels) plays a central role are presented in a nutshell
in Sec. 4. Recent recent paradigms developed for the hierarchical representation
of images in the framework of mathematical morphology known as constrained
connectivity and ultrametric watersheds are then developed in Sec. 5 while high-
lighting their links with hierarchical clustering methods. The framework of ul-
trametric watersheds provides a generic scheme for computing any hierarchical
connected clustering, in particular when such a hierarchy is constrained. Before
concluding, the problem of transition pixels is set forth in Sec. 6.

2 Background definitions and notations on graphs

The objects under study (specimens in biology, galaxies in astronomy, or pixels in
image processing) are considered as the nodes of a graph. An edge is then drawn
between all pairs of objects that need to be compared. The comparison often
relies on a dissimilarity measure that assigns a weight to each edge. Following
the notations of [10], we summarise hereafter graph definitions required in the
context of clustering.

A graph is defined as a pair X = (V,E) where V is a finite set and E is
composed of unordered pairs of V , i.e., E is a subset of {{p, q} ⊆ V | p 6= q}.
Each element of V is called a vertex or a point (of X), and each element of E is
called an edge (of X). If V 6= ∅, we say that X is non-empty.

As several graphs are considered in this paper, whenever this is necessary,
we denote by V (X) and by E(X) the vertex and edge set of a graph X.

Let X be a graph. If u = {p, q} is an edge of X, we say that p and q are
adjacent (for X). Let π = 〈p0, . . . , p`〉 be an ordered sequence of vertices of X, π
is a path from p0 to p` in X (or in V ) if for any i ∈ [1, `], pi is adjacent to pi−1.
In this case, we say that p0 and p` are linked for X. We say that X is connected
if any two vertices of X are linked for X.

Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X), we say
that Y is a subgraph of X and we write Y ⊆ X. We say that Y is a connected
component of X, or simply a component of X, if Y is a connected subgraph of X
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which is maximal for this property, i.e., for any connected graph Z, Y ⊆ Z ⊆ X
implies Z = Y .

Clustering methods generally work on a complete graph (V, V × V ). In this
case, the notion of connected component is not an important one, as any sub-
set is obviously connected. On contrary, this notion is fundamental for image
segmentation.

Let X be a graph, and let S ⊆ E(X). The graph induced by S is the graph
whose edge set is S and whose vertex set is made of all points that belong to an
edge in S, i.e., ({p ∈ V (X) | ∃u ∈ S, p ∈ u}, S).

In the sequel of this paper, X = (V,E) denotes a connected graph, and the
letter V (resp. E) will always refer to the vertex set (resp. the edge set) of X.
We will also assume that E 6= ∅. Let S ⊂ E. In the following, when no confusion
may occur, the graph induced by S is also denoted by S. If S ⊂ E, we denote
by S the complementary set of S in E, i.e., S = E \ S.

Typically, in applications to image segmentation, V is the set of picture
elements (pixels) and E is any of the usual adjacency relations, e.g., the 4- or
8-adjacency in 2D [11]. In all examples, 4-adjacency is used.

We consider in this paper weighted graphs, and either the vertices or the
edges of a graph can be weighted. We denote the weight on the vertives of V by
f , and the weights on the edges of E by F . For application to image processing, f
is generally some information on the pixels (e.g., the grey level of the considered
pixel), and F represents a dissimilarity (e.g., F ({p, q}) = |f(p)− f(q)|).

3 Hierarchical clustering

Clustering can be defined as a method for grouping objects into homogeneous
groups (called clusters) on the basis of empirical measures of similarity among
those objects. Ideally, the method should generate clusters maximising their
internal cohesion and external isolation. Analogously to the categorisation of
classification methods proposed in [12], any clustering methodology can be char-
acterised by three main properties. The first concerns the relation between ob-
ject properties and clusters. It indicates whether the clusters are monothetic or
polythetic. A cluster is monothetic if and only if all its members share the same
common property or properties. The second property regards the relation be-
tween objects and clusters. It indicates whether the clusters are exclusive (i.e.,
non-overlapping) or overlapping. Non-overlapping clustering methods can be de-
fined as partitional in the sense that they realise a partition of the input objects
(a partition of a set is defined as division of this set in disjoint non-empty subsets
such that their union is equal to this set). Non-partitional clustering allows for
overlap between clusters, see [13] for an early reference on this topic and [14] for
recent developments. The third property refers to the relation between clusters.
It indicates whether the clustering method is hierarchical (also called ordered)
or non-hierarchical (unordered).

Because we are chiefly interested in image segmentation applications, we
focus on clustering methods that are monothetic, partitional, and hierarchical.
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The term hierarchical clustering was first coined in [15]. A hierarchical clustering
can be viewed as a sequence of nested clusterings such that a cluster at a given
level is either identical to a cluster already existing at the previous level or
is formed by unioning two or more clusters existing at the previous level. It is
convenient to represent this hierarchy in the form of a tree called dendrogram [16]
or taxonomic tree (see [17] for this latter terminology as well as a procedure
which in essence already defined the concept of hierarchical clustering). The
first detailed study about the use of trees in the context of hierarchical clustering
appeared in [18].

By construction, a hierarchical clustering is parameterised by a non-negative
real number λ indicating the level of a given clustering in the hierarchy. At the
bottom level, this number is equal to zero and each object correspond to a cluster
so that the finest possible partition is obtained. At the top level only one cluster
containing all objects remains. Given any two objects, it is possible to determine
the minimum level value for which these two objects belong to the same cluster.
A key property of hierarchical clustering is that the function that measures
this minimum level is an ultrametric. An ultrametric is a measurement that
satisfies all properties of a metric (distance) plus a condition stronger than the
triangle inequality and called ultrametric inequality. It states that the distance
between two objects is lower than or equal to the maximum of the distances
calculated from (i) the first object to an arbitrary third object and (ii) this third
object to the second object. Denoting by d the ultrametric function and p, q,
and r respectively the first, second and third objects, the ultrametric inequality
corresponds to the following inequality:

d(p, q) ≤ max{d(p, r), d(r, q)}.

The ultrametric property of hierarchical clustering was discovered simultane-
ously in [15,19], see also [20] for a thorough study on ultrametrics in classifica-
tion. An example of dendrogram is displayed in Fig. 1.

0

level λ

Fig. 1. An example of dendrogram starting from 6 objects at the bottom of the
hierarchy (level λ = 0). At the top of the hierarchy, there remains only one cluster
containing all objects.
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The measure of similarity between the input objects requires the selection of
a dissimilarity measurement. A dissimilarity measurement between the elements
of a set V is a function d? from V × V to the set of nonnegative real numbers
satisfying the three following conditions: (i) d?(p, q) ≥ 0 for all p, q ∈ V (i.e.,
positiveness), (ii) d?(p, p) = 0 for all p ∈ V , and (iii) d?(p, q) = d?(q, p) for all
p, q ∈ V (i.e., symmetry). Starting from an arbitrary dissimilarity measurement,
it is possible to construct a hierarchical clustering: if the dissimilarity is increas-
ing with the merging order, an ultrametric distance between any two objects
(or clusters) can be defined as the dissimilarity threshold level from which these
two objects (or clusters) belong to the same cluster; if if the dissimilarity is not
increasing with the merging order, then any increasing function of the merging
order can be used.

In practice, the hierarchy is constructed by an iterative procedure merging
first the object pair(s) with the smallest dissimilarity value so as to form the
first non-trivial cluster(s) (i.e., non reduced to one object). To proceed, the
dissimilarity measurement between objects needs to be extended so as to be
applicable to clusters. Let Ci and Cj denote two clusters obtained at a given
iteration level. The dissimilarity between between these two clusters is naturally
defined as a function of the dissimilarities between the objects belonging to these
clusters:

d?(Ci, Cj) = f{d?(p, q)) | p ∈ Ci and q ∈ Cj}.

Typical choices for the function f are the minimum or maximum. The maxi-
mum rule leads to the complete-linkage clustering (sometimes called maximum
method) and dates back to [21]. Complete-linkage is subject to ties in case the
current smallest dissimilarity value is shared by two or more clusters. Conse-
quently, one of the possible merge must be chosen and often this can only be
achieved by resorting to some arbitrary (order dependent or random) selection.
By construction, complete-linkage favours compact clusters. On the other hand,
the minimum rule is not subject to ties (and is therefore uniquely defined) and
does not favour compact clusters. The resulting clustering is called the single-
linkage clustering1 (sometimes called minimum method). Indeed, only the pair
(link) with the smallest dissimilarity value is playing a role.

The single-linkage clustering is closely related to the minimum spanning
tree [23], defined as follows. To any edge-weighted graph X, the number F (X) =∑
u=∈E(X) F (u) is the weight of the graph. A spanning tree of a connected graph

X is a graph whose vertex set is equal to V (X) and whose edge set is a subset
of E(X) such that no cycles are formed. A spanning tree of X with minimum
weight is called a minimum spanning tree of X.

Indeed, the hierarchy underlying the single-linkage clustering is at the root
of the greedy algorithm of Kruskal [24] for solving the minimum spanning tree

1 The concept of single-linkage and its use for classification purposes were apparently
suggested for the first time in [22] while the terminology single-linkage seems to be
due to Sneath, see [16, p. 180] where it is also called Sneath’s method.
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problem2. In this algorithm, referred to as ’construction A’ in [24], the edges of
the graph are initially sorted by increasing edge weights (in a clustering perspec-
tive, the nodes of the graph are the objects and the edge weights are defined by
the dissimilarity measurements between the objects). Then, a minimum span-
ning tree MST is defined recursively as follows: the next edge is added to MST
if and only if together with MST it does not form a circuit. That is, there is a
one-to-one correspondence between (i) the clusters obtained for a given dissim-
ilarity level and (ii) the subtrees obtained for a distance equal to this level in
Kruskal’s greedy solution to the minimum spanning tree problem.

While the single-linkage is not subject to ties, it is sensitive to the presence of
objects of intermediate characteristics (transitions) that may occur between two
clearly defined populations, see [27] for a detailed discussion as well as Sec. 6.
This effect is sometimes called ’chaining-effect’ although this latter terminology
is somewhat misleading for chaining is the very principle of single-linkage [28].

4 Hierarchical image segmentation

After a brief discussion on the definition of image segmentation and hierarchical
image segmentation (see Sec. 4.1), methods relying on graph representations are
presented (Sec. 4.2) and then those developed in MM (Sec. 4.2).

4.1 From image segmentation to hierarchical image segmentation

A segmentation of the definition domain V of an image is usually defined as a
partition of V into disjoint connected subsets Vi, . . . , Vn (called segments) such
that there exists a logical predicate P returning true on each segment but false
on any union of adjacent segments [29,30]. That is, a series of subsets Vi of the
definition domain V of an image forms a segmentation of this image if and only if
the following four conditions are met (i) ∪i(Vi) = X, (ii) Vi∩Vj = ∅ for all i 6= j,
(iii) P (Vi) = true for all i, and (iv) P (Vi ∪ Vj) = false if Vi and Vj are adjacent.
The first condition requires that every picture element (pixel) must belong to
a segment. The second condition requires that each segment does not overlap
any other segment. The third condition determines what kind of properties each
segment must satisfy, i.e., what properties the image pixels must satisfy to be in
the same segment. The fourth condition ensures that the segments are maximal
in the sense that specifies that any merging of any adjacent regions would violate
the third condition.

Note that uniqueness of the resulting segmentation given a predicate is not
required. If uniqueness is desired, the predicate should rely on an equivalence
relation owing to the one-to-one correspondence between the unique partitions of
a set and the equivalence relations on it, see for example [31, p. 48]. Interestingly,
the relation ’is connected’ is an equivalence relation since it is reflexive (a point

2 The first explicit formulation of the minimum spanning tree problem is attributed
to [25], see detailed account on the history of the problem in [26].
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is connected to itself by a path of length 0), symmetric (if a point p is connected
to a point q then q is connected to p since the reversal of a path is path), and
transitive (if p is connected to q and q to r then p is connected to r since the
concatenation of two paths is a path). Any given connectivity relation partitions
the set of pixels of a given input image into equivalent classes called connected
components [32]. They are maximal subsets of pixels such that every pair of
pixels belonging to such a subset is connected. The resulting partition meets
therefore all conditions of a segmentation.

The segments resulting from a segmentation procedure are analogous to the
clusters obtained when clustering data. Clustering techniques can be applied to
image data for either classification or segmentation purposes. In the former case,
the spatial position of the pixels does not necessarily play a role for clusters
are searched in a parametric space such as the multivariate histogram. The
resulting clusters partition the parametric space into a series of classes and this
partition is used as a look-up-table to indicate the class of each pixel of the
input image. An example of this approach using morphological clustering is
proposed in [33]. Contrary to data clustering applied to non-spatial data, the
dissimilarity measurements between the data samples (i.e., the pixels) are not
measured between all possible pairs. Indeed, the spatial position of the pixels
plays a key role so that measurements are only performed between adjacent pairs
of pixels. That is, the full dissimilarity matrix is very sparse: for a image of m×n
pixels, there are 2mn−m−n entries in the (mn)2× (mn)2 dissimilarity matrix
when considering 4-adjacency relation.

By analogy with hierarchical clustering, hierarchical segmentation can be
defined as a family of fine to coarse image partitions (i.e., family of ordered
partitions) parameterised by a non-negative real number indicating the level of
a given partition in the hierarchy. Hierarchical segmentation is useful to help the
detection of objects in an image. In particular, it can be used to simplify the
image in such a way that the elementary picture elements are not anymore the
pixels but connected sets of pixels. Indeed, in image data, analogues to phonemes
and characters correspond to structural primitives that compress the data to
a manageable size without eliminating any possible final interpretations [34].
It should be emphasised that a hierarchical segmentation does not necessarily
deliver segments directly corresponding to the searched objects. This happens for
instance when an object is not characterised by some homogeneity/separation
criteria but from the consideration of an a priori model of the whole object (e.g.
perceptual grouping and Gestalt theory).

There exists a fundamental difference between segmentation and classifica-
tion. Indeed, contrary to classification, segmentation requires the explicit defi-
nition of an adjacency graph or, more generally, a connection [35,36]. Typically,
the k-nearest neighbouring graph with k equal to 4 or 8 is used for processing
2-dimensional images. With classification, a decision about the class (i.e., label)
of each pixel can be reached without using its spatial context (position) so that it
does not necessarily need the definition of an adjacency graph. Nevertheless, any
classification can be used to generate a segmentation. Indeed, once an adjacency
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graph is added to the classified image, the maximal connected regions of pix-
els belonging to the same class generate a segmentation of the image definition
domain. If the considered adjacency graph is the complete graph, a one-to-one
correspondence between the classes and the resulting connected components is
obtained.

Hereafter, a selection of techniques achieving hierarchical image segmentation
is proposed, extending the initial survey proposed in [37]. We start with generic
methods based on graph representations and then proceed with specific meth-
ods developed in the context of mathematical morphology. Recent developments
related to constrained connectivity and ultrametric watersheds are discussed in
Sec. 5.

4.2 Methods based on graph representations

Horowitz and Pavlidis [29,38] are among the first to suggest a formulation of
hierarchical image segmentation in a graph theoretical framework. It is based on
the split-and-merge algorithm. Because their implementation relies on a regular
pyramid data structure with square blocks, it is not translation invariant and it
favours blocky edges owing to the initial regular split of the image. In addition,
the grouping stage of split-and-merge algorithms is order dependent, a drawback
of all procedures updating the features of a region once new points are added to
it.

The idea of applying the single-linkage clustering method to produce hierar-
chical image segmentation was implemented for the first time by Nagao [39,40]
for processing aerial images using grey level differences between adjacent pix-
els as dissimilarity measurement. For colour images, the resulting dissimilarity
vector led to the notion of differential threshold vector in [41]. The application
of single-linkage clustering to image data are further developed in [42] using a
graph theoretic framework. This latter paper also details a minimax SST (Short-
est Spanning Tree) segmentation allowing for the initial minimum spanning tree
to be partitioned into n subtrees by recursively splitting the subtree with the
larger cost into 2 subtrees (see also recursive SST segmentation into n regions).
Note that single-linkage clustering based on grey level difference dissimilarity
was rediscovered much later in morphological image processing under the term
quasi-flat zones [43,3]. More recently, the more general and appropriate term of
α-connected component was proposed in [37] to refer to any connected compo-
nent (i.e., maximal set of connected pixel) of pixels such that any pair of pixels
of this connected component can be linked by a path such that the dissimilarity
value between two successive pixels of the path does not exceed a given dis-
similarity threshold value (see details in Sec. 5.1). The ultrametric behind the
single-linkage hierarchical image segmentation is analogous to the one defined
for single-linkage clustering, see Sec. 3.

The hierarchy of graphs (irregular pyramids) proposed recently in [44,45]
builds on the graph weighted partitions developed in [46,47] and inspired by the
seminal work of Zahn [7] on point data clustering and its extension to graph cut
image segmentation in [48,49]. It relies on weighted graphs where each element
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of the edge set is given a weight corresponding to the range of the values of
its two nodes. The internal contrast of a connected component corresponds to
the largest weight of all edges belonging to this connected component (an edge
belongs to a connected component if its corresponding nodes belong to it or,
alternatively, to a spanning tree of minimum sum of edge weights). The external
contrast is defined as the smallest weight of the edges linking a pixel of the
considered connected component to another one. The hierarchy is achieved by
defining a dissimilarity measure accounting for both the internal and external
contrasts. The successive levels of the hierarchy are then obtained by iteratively
merging the adjacent connected components of minimum dissimilarity. An up-
to-date survey (including comparisons) of both regular and irregular pyramidal
structures can be found in [50]. A survey on graph pyramids for hierarchical
segmentation is proposed in [51].

The hierarchical image segmentation based on the notion of the cocoons of
a graph relies on a complete-linkage hierarchy and its corresponding ultramet-
ric [52]. The same authors introduced the notion of scale-sets [53] where the
dissimilarity measurement is replaced by a two-term energy minimization pro-
cess where the first term accounts for the amount of information required to
encode the deviation of the data against the region model (typically taken as
the mean of the region) and the second term is proportional to the amount of
information required to encode the shape of the model (typically taken as the
boundary length of the region).

In [54], the extrema mosaic (influence zones of the image regional extrema) is
considered as the base level of the hierarchy. The dissimilarity between the seg-
ments is defined as the average gray level difference along the common boundary
of these segments. This dissimilarity is increasing with the merging order and is
therefore an ultrametric. Generic ultrametric distances obtained by integrating
local contour cues along the regions boundaries and combining this information
with region attributes are proposed in [55].

4.3 Methods developed in mathematical morphology

Mathametical morphology relies on the notion of lattices, and a theory devoted
to segmentation in this context recently appears [35,36]. From a practical point
of view, most of the application schemes use either a watershed-based approach
or a tree-based approach.

Watershed based The waterfall algorithm [56,57,58] can be considered as the
first morphological hierarchical image segmentation method. The elementary
components of the base level of the tree underlying the waterfall hierarchy are
the catchment basins of the gradient of the image. Each basin is then set to the
height of the lowest watershed pixel surrounding this basin while the watershed
pixels keep their original value. The watersheds of the resulting image delivers
basins corresponding to the subsequent level of the hierarchy. The procedure is
then iterated until only one basin matching the image domain is obtained. This
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hierarchy of partitions can be implemented directly on graph data structures as
detailed in [59].

Watershed hierarchies using the notion of contour dynamic is proposed in [60].
The arcs of the watersheds of the gradient of the original image are valued by
their contour dynamic. More precisely, the contour dynamic of an arc of a water-
shed separating two basins is defined as the height difference between the lowest
point of this arc and the height of the highest regional minimum associated with
these two basins. The contour dynamic is a dissimilarity that satisfies all prop-
erties of an ultrametric. The resulting contour dynamic map is a saliency map
representing a hierarchy. Indeed, a fine to coarse family of partitions is obtained
by thresholding the contour dynamic map for increasing contour dynamic values.
By associating other dissimilarity measures to the arcs of the watersheds, other
partition hierarchies are obtained.

Note that, if one wants to obtain theoretical results associating definitions
and properties [61], one has to work on edge-weighted graphs with the watershed-
cut definition [62] that links the watershed with the minimum spanning tree as
initially pointed out in [63].

Tree based Another type of hierarchy is obtained by considering the flat zones
of the image as the finest partition and then iteratively merging the most similar
flat zones. This resulting tree is called binary partition trees in [64]. The tree
always represents a hierarchy indexed by the merging order and not always the
dissimilarity since the one used in [64] is not an ultrametric.

Another tree, known as the component tree [65,66] of the vertices (called
max-tree or min-tree in [67] depending on whether its leaves are matching the
image maxima or minima) represents the hierarchy of the level sets of the image
and are therefore not directly representing a hierarchy of partitions of the image
definition domain.

However, when defined not on the vertices but on the edges, we will see
below that the component tree is indeed a dendrogram representing a hierarchy
of connected partitions.

Reviews on hierarchical methods developed in mathematical morphology
based on watersheds are presented in [68,69], and on trees in [70,71]. Recent
developments related to constrained connectivity and ultrametric watersheds
are developed in the next section.

5 Constrained connectivity and ultrametric watersheds

5.1 Constrained connectivity

Preliminaries Let us first recall the notion of α-connectivity that corresponds
to single-linkage clustering applied to image data, see Sec. 4.2. Two pixels p and
q of an image f are α-connected if there exists a path going from p to q such that
the dissimilarity between any two successive pixels of this path does not exceed
the value of the local parameter α. By definition, a pixel is α-connected to itself.
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Accordingly, the α-connected component of a pixel p is defined as the set of image
pixels that are α-connected to this pixel. We denote this connected component
by α-CC(p): α-CC(p) = {p} ∪

{
q | there exists a path P = 〈p = p1, . . . , pn = q〉,

n > 1, such that F ({pi, pi+1}) ≤ α for all 1 ≤ i < n
}

. In the case of grey level
images and when considering the absolute intensity difference as dissimilarity
measure, the α-connected components of an image are equivalent to its quasi-
flat zones [43,3]. Note that the edges of the connected graph corresponding to a
given α-connected component is defined by the pairs of adjacent pixels belonging
to this α-connected component such that their associated dissimilarity (weight)
does not exceed α.

Definitions and properties The constrained connectivity paradigm [72,37]
originated from the need to develop a method preventing the formation of α-
connected components whose range values exceed that specified by the local
range parameter α (assuming that the dissimilarity between two pixels is the
absolute difference of their intensity values, see [73,74] for other examples of
dissimilarity measures). This is simply achieved by looking for the largest α-
connected components satisfying a global range constraint referred to as the
global range parameter denoted by ω:

(α, ω)-CC(p) =
∨{

αi-CC(p)
∣∣∣ αi ≤ α and R

(
αi-CC(p)

)
≤ ω

}
,

where the range function R calculates the difference between the maximum and
the minimum values of a nonempty set of intensity values. Note that the (α, ω)-
connected components for α ≥ ω are equivalent to those obtained for α = ω.
That is, when α ≥ ω the local range parameter does not play a role. This leads
to the concept of (ω)-connected component3:

(ω)-CC(p) = (α ≥ ω, ω)-CC(p) =
∨{

αi-CC(p) | R
(
αi-CC(p)

)
≤ ω

}
.

The corresponding global dissimilarity measurement d?Ω between two pixels is
defined by the smallest range of the α-connected components containing these
two pixels. This dissimilarity measurement satisfies also the ultrametric inequal-
ity. Accordingly, we obtain the following equivalent definition of a (ω)-connected
component: (ω)-CC(p) = {q | d?Ω(p, q) ≤ ω}. In contrast to what happens with
the local dissimilarity measurement d?A, the range of the values of arbitrary pairs
of pixels belonging to the same (ω)-connected component is limited, the max-
imal value of this range being equal to ω. Therefore, the resulting clustering
bears some resemblance to the complete linkage clustering suggested in [21] but,
contrary to the latter procedure, it is unequivocal (see [16, pp. 181-182] for an ac-
count on the equivocality of the complete linkage clustering). The generalisation
of the concept of constrained connectivity to arbitrary constraints is presented
in [72].

3 The parenthesis is not dropped to avoid confusion with α-connected components
when the Greek letters are replaced by a numerical value indicating the actual value
of the corresponding range parameter.
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Separation value The separation value ∆∧ of an iso-intensity connected com-
ponent (flat-zone) can be defined in terms of grey tone hit-or-miss transforms [75]
with adaptive composite structuring elements. The adaptive hit-or-miss trans-
form of a pixel with the composite structuring element containing the origin o
for the foreground component and its direct neighbours having a strictly lower
value N<(o) for the background component outputs the difference between the
input pixel value and that of its largest lower neighbour(s) if the set of its lower
neighbours is non-empty, 0 otherwise. This adaptive hit-or-miss transform is
denoted by HMT(o,N<(o)):

[HMT(o,N<(o))](p) =

{
f(p)− ∨{f(q) | q ∈ N<(p)} if N<(p) 6= ∅,
0 otherwise.

Similarly, the adaptive hit-or-miss transform HMT(N>(o),o) of a pixel outputs
the difference between the value of its smallest greater neighbour(s) and that
of the pixel itself, if the set of its greater neighbours N>(o) is non-empty, 0
otherwise:

[HMT(N>(o),o)](p) =

{
∧{f(q) | q ∈ N>(p)} − f(p) if N>(p) 6= ∅,
0 otherwise.

The non-zero values of the point-wise minimum between the two hit-or-miss
transforms corresponds to the transition pixels in the sense that these pixels
have simultaneously lower and greater neighbours (and the point-wise minimum
image indicates the minimum height of the transition). The binary mask of
transition pixels can therefore be obtained by the following operator denoted by
TP:

TP = T>0[HMT(o,N<(o)) ∧HMT(N>(o),o)].

In [76], the same mask is obtained by considering the non-zero values of the
point-wise minimum of the gradients by erosion and dilation with the elementary
neighbourhood (the pixel and its direct neighbours) as structuring element. In
this latter case, the point-wise minimum image indicates the maximum height
of the transition.

The minimum separation value of a pixel of an image is defined as the mini-
mum intensity difference between a pixel and its neighbour(s) having a different
value from this pixel if such neighbour(s) exist, 0 otherwise. It is denoted by
[∆∧(f)](p) and can be calculated as follows:

[∆∧(f)](p) =

 [HMT(o,N<(o))(f)](p) if [HMT(o,N<(o))(f)](p) < [HMT(N>(o),o)(f)](p)
and [HMT(o,N<(o))(f)](p) 6= 0,

[HMT(N>(o),o)(f)](p) otherwise.

The minimum separation value of an iso-intensity connected component 0-CC is
then defined as the smallest (minimum) separation value of its pixels:

∆∧(0-CC) = ∧{∆∧(q) | q ∈ 0-CC and ∆∧(q) 6= 0}.
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It is equivalent to the smallest α value such that α-CC 6= 0-CC. Similarly, the
operator that sets each pixel of the image to the minimum separation value of
the iso-intensity connected component it belongs to is defined as follow:

[∆∧(0-CC(f))](p) = ∧{∆∧(q) | q ∈ 0-CC(p) and ∆∧(q) 6= 0}.

It can be viewed as an adaptive operation where the output value at a given
pixel depends on the iso-intensity component of this pixel and the neighbouring
pixels of this component. By replacing the ∧ operation with the ∨ operation
in the minimum separation definitions, we obtain the definitions for maximal
separations. Figure 2 illustrates the map of minimal separation of the pixels and
iso-intensity connected components of a synthetic image.

0 2 9 3 8 5 9

1 0 8 4 9 6 7

3 2 7 9 9 1 1

1 1 9 3 4 2 6

1 0 4 1 1 2 5

2 1 9 8 8 9 1

1 3 8 7 8 8 2

1 2 1 1 1 1 2

1 1 1 1 1 1 1

1 1 1 2 5 1 5

2 1 2 1 1 1 1

1 1 3 2 1 1 1

1 1 1 1 1 1 1

1 2 1 1 1 1 1

1 2 1 1 1 1 2

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 2 1 1 1 1

1 1 3 1 1 1 1

1 1 1 1 1 1 1

1 2 1 1 1 1 1

Fig. 2. Left: a synthetic 7 × 7 image f with its intensity values [37, Fig. 2a]. Middle:
the map of separation value of its pixels ∆∧(f). Right: the map of separation value of
its flat zones ∆∧(0-CC(f)).

The regional maxima RMAX of ∆∧(0-CC(f)) can be used to flag the flat
zones that are the most isolated. Conversely, the regional minima RMIN of
∆∧(0-CC(f)) can be used to flag the flat zones from which an immersion sim-
ulation should be iniated to compute the successive levels of the hierarchy of
constrained components. By doing so, an algorithm similar to the watershed by
flooding simulation [77] can be designed.

Alpha-tree representation Constrained connectivity relies on the definition
of α-connectivity. The later boils down to the single-linkage clustering of the
image pixels given the underlying dissimilarity measure between adjacent pixel
pairs. The corresponding single-linkage dendrogram was described as a spatially
rooted tree in [37]. This spatially rooted tree was introduced as the alpha-tree in
[78,79]. It represents the fine to coarse hierarchy of partitions for an increasing
value of the dissimilarity threshold α. The alpha-tree can also be seen as a com-
ponent tree representing the ordering relations of the α-connected components
of the image. The representation in terms of min-tree is developed in Sec. 5.2.

In the case of constrained connectivity, a given (α, ω)-partition corresponds
to the highest cut of the alpha-tree such that all the nodes below this cut satisfy
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the α and ω constraints. Usually this cut is not horizontal. A given (ω)-partition
corresponds to the highest cut of the alpha-tree such all the nodes below the
cut satisfy the ω constraint. Alternatively, a (ω)-partition can be obtained by
performing a horizontal cut in the dendrogram based on the ultrametric d?Ω (i.e.,
the omega-tree). An example of omega-tree is given [80]. Note however that the
set of all (α, ω)-partitions is itself not ordered given the absence of order between
arbitrary pairs of local and global dissimilarity threshold values.

Edge-weighted graph setting and minimum spanning tree By construc-
tion, the connected components of the graphG[α] = (V, {{p, q} ∈ E | F ({p, q}) ≤
α}) are equivalent to the α-connected components of f . Since α-connectivity cor-
responds to single-linkage clustering, there is an underlying minimum spanning
tree associated to it (see also section 3 and [42] for equivalent image segmen-
tations based on the direct computation of a minimum spanning tree). More
precisely, the minimum spanning tree of the edge-weighted graph of an image is
a tree spanning its pixels and such that the sum of the weights associated with
the edges of the tree is minimal. Denoting by Emin the edge set of a minimum
spanning tree of the edge-weighted graph of an image, the connected components
of the graph (V, {{p, q} ∈ Emin | F ({p, q}) ≤ α}) are equivalent to those of G[α]
(equivalent in the sense that given any node, the set of nodes of the connected
component of (V, {{p, q} ∈ Emin | F ({p, q}) ≤ α}) containing this node is identi-
cal to the set of nodes of the connected component of G[α] containing this very
node). Since the minimum spanning tree representation contains less edges than
the initial edge-weighted graph, it is less memory demanding for further compu-
tations such as global range computations. However, not all computations can
be done on the minimum spannning tree (for example, connectivity constraints
relying on the computation of a connectivity index [37] cannot be derived from
it).

5.2 Ultrametric watersheds: from hierarchical segmentations to
saliency maps

We have several different ways to deal with hierarchies: dendrograms and mini-
mum spanning trees. In the case where a hierarchy is made of connected regions,
then we can also use its connected component tree, e.g., min-tree, max-tree or
alpha-tree. None of these three tools allows for an easy visualisation of a given
hierarchy as an image. We now introduce ultrametric watershed [81,82] as a tool
that helps visualising a hierarchy: we stack the contours of the regions of the hi-
erarchy; thus, the more a contour of a region is present in the hierarchy, the more
visible it is. Ultrametric watershed is the formalisation and the caracterisation
of a notion introduced under the name of saliency map [60].

Ultrametric watersheds The formal definition of ultrametric watershed relies
on the topological watershed framework [83].
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Let X be a graph. An edge u ∈ E(X) is said to be W-simple (for X) if X
has the same number of connected components as X+u = (V (X), E(X)∪{u}).

An edge u such that F (u) = λ is said to be W-destructible (for F ) with lowest
value λ0 if there exists λ0 such that, for all λ1, λ0 < λ1 ≤ λ, u is W-simple for
G[λ1] and if u is not W-simple for G[λ0].

A topological watershed (on G) is a map that contains no W-destructible
edges.

An ultrametric watershed is a topological watershed F such that F (v) = 0
for any v belonging to a minimum of F .

There exists a bijection between ultrametric distances and hierarchies of
partitions [15]; in other word, to any hierarchy of partitions is associated an
ultrametric, and conversely, any ultrametric yields a hierarchy of partitions, see
also Sec. 3. Similarly, there exists a bijection between the set of hierarchies of
connected partitions and the set of ultrametric watersheds [81,82]. In [84], it
is proposed a generic algorithm for computing hierarchies and their associated
ultrametric watershed.

Usage: gradient and dissimilarity Constrained connectivity is a hierarchy
of flat zones of f , in the sense where the 0-connected components of f are the
zones of f where the intensity of f does not change. In a continuous world, such
zones would be the ones where the gradient is null, i.e. ∇f = 0. However, the
space we are working with is discrete, and a flat zone of f can consist in a single
point. In general, it is not possible to compute a gradient on the points or on the
edges such that this gradient is null on the flat zones. To compute a gradient on
the edges such that the gradient is null on the flat zones, we need to “double”
the graph, for example we can do that by doubling the number of points of V
and adding one edge between each new point and the old one.

More precisely, if we denote the points of V by V = {p0, . . . , pn}, we set
V ′ = {p′0, . . . , p′n} (with V ∩ V ′ = ∅), and E′ = {{pi, p′i} | 0 ≤ i ≤ n}. We then
set V1 = V ∪ V ′ and E1 = E ∪ E′.

By construction, as G = (V,E) is a connected graph, the graph G1 = (V1, E1)
is a connected graph. We also extend f to V ′, by setting, for any p′ ∈ V ′,
f(p′) = f(p), where {p, p′} ∈ E′.

We set, as in section 5.1, F ({p, q}) = |f(p)− f(q)|. The map F can be seen
as the “natural gradient” of f [85]. We can then apply the same scheme on this
F as in section 5.1 to find the hierarchy of α-connected components.

We denote by L(G1) the edge graph (also called line graph) of G1. That
is, each vertex of L(G1) represents an edge of G1 and two vertices of L(G1) are
adjacent if and only if their corresponding edges in G1 share a common endpoint
in G1. While the edges of L(G1) are not weighted, the weights of its nodes are
given by the weights of the corresponding edges of G1. It follows that the minima
of L(G1) are equivalent to the 0-connected components of G1. More generally,
the alpha-tree of G1 is contained in the min-tree of L(G1). Interestingly, the min-
tree of L(G1) can be computed efficiently thanks to the quasi-linear algorithm
described in [86]. Hence, the morphological framework of attribute filtering [87]
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can be applied to this min-tree [65,67,66], similarly to the segmentation of an
image into k regions proposed in [88]. This is in particular useful when the
filtering is performed before computing a watershed and this is illustrated in
the next paragraph for the computation of a hierarchy based on constrained
connectivity.

Finding the (α, ω)-CCs can be done by filtering the ultrametric watershed W
of F with R that acts as a flooding on the topological/ultrametric watershed W
of F , and then finding a (topological) watershed of the filtered image. Repeating
these steps for a sequence of ordered (α, ω) vectors, we build a constrained
connectivity hierarchy. In effect, we are viewing a hierarchy as an image (edge-
weighted graph) and transforming it into another hierarchy/image.

Thus, classical tools from mathematical morphology can be applied to con-
strain any hierarchy. Similar examples exist in the literature, for example [53],
where the authors compute what they called a non-horizontal cut in the hierar-
chy, in other words, they compute a flooding on a watershed. In their framework,
the flooding is controlled by an energy.

The advantages of using an ultrametric watershed are numerous. Let us men-
tion the two following ones:

1. an ultrametric watershed is visible. A dendrogram or a component tree can
be drawn, but less information is available from such a drawing, and visual-
ising a MST is not really useful;

2. an ultrametric watershed allows the use any information in the contours
between regions; such information is not available on the component tree,
and is only partially available with a MST (which contains only the pass
between regions).

Let us note that those concepts are theoretically equivalent: even their respective
computational time is in practice nearly identical; thus we can choose the one
the most adapted to the desired usage.

Visualising the hierarchy of constrained connectivity as an ultrametric wa-
tershed allows ones to assess some of its qualities. One can notice in Fig. 3.c a
large number of transition regions (small undesirable regions that persist in the
hierarchy), which is the topic of the next section.

6 Transition pixels

Constrained connectivity prevents the formation of connected components that
would otherwise be created in case samples of intermediate value (transition
pixels) between two populations (homogeneous image structures) are present.
Indeed, these components would violate the global range or other appropriate
constraint. However, sometimes the formation of two distinct connected com-
ponents cannot occur at all. In the extreme case represented in Fig. 4. either
each pixel is a connected component (flat zone) or there is a unique connected
component. One way to address this problem is to propose a definition of tran-
sition pixels and perform some pre-processing to suppress them. This approach
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(a) Original image (b) W 1(logarithmic grey-scale)

(c) W 2 (d) Area-filtering ultrametric watershed

Fig. 3. Constrained connectivity and ultrametric watersheds. (a) Original image (ex-
tract from the panchromatic channel of a Quickbird Imagery c© DigitalGlobe Inc.,
2007, distributed by Eurimage). (b) Ultrametric watershed W 1 for the α-connectivity
(the grey level of a contour corresponds to the α value above which the contour disap-
pears in the α-hierarchy. (c) Ultrametric watershed W 2 for the constrained connectivity
(the grey level of a contour corresponds to the α = ω value above which the contour
disappears in the (α, ω = α)-hierarchy). (d) Ultrametric watersheds corresponding to
one of the possible hierarchies of area-filterings on W 2.

is advocated in [76,80]. For example, assuming that local extrema correspond to
non-transition pixels, they are extracted on then considered as seeds whose values
are propagated in the input image using a seeded region growing algorithm [89].
Note that this approach is linked with contrast enhancement techniques since it
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Fig. 4. A synthetic sample image with its intensity values and its two possible par-
titions into constrained connected components whatever the considered constraints in
case standard α-connectivity is used in the definitions. The two homogeneous regions
show intensity variations of 1 level while the ramp between the two regions also pro-
ceeds by steps of 1 intensity level. In the image at the right, adjacent pixels are linked
by an edge if and only if their range does not exceed 1.

aims at increasing the external isolation of the obtained connected components.
A number of classical morphological schemes (e.g., area filtering of the ultramet-
ric watershed) can be used to remove those transition zones (see Fig. 3.d for an
example).

Another approach is to substitute the α-connectivity with a more restrictive
connectivity. Indeed, the local range parameter α defined in [37] as the intensity
difference between adjacent pixels can be viewed as a special case of dissimilarity
measurement. Although this measurement is the most natural, other dissimi-
larity measurements may be considered. For example, the following alternative
definition of alpha-connectivity may be considered to tackle the problem of tran-
sition regions. Let the α-degree of a pixel (node) be defined as the number of its
adjacent pixels that are within a range equal to α:

α?-deg(p) = #{q | {p, q} ∈ E and |f(q)− f(p)| ≤ α}.

Then two pixels p and q are said to be αn-connected if and only if there exists an
α-path connecting them such that every pixel of the path has a α-degree greater
of equal to n. We obtain therefore the following definition for the αn-connected
component of a pixel p:

αn-CC(p) = {p} ∪ {q | there exists a path 〈p = p1, . . . , pn = q〉, n > 1,

such that |f(pi)− f(pi+1| ≤ α and α?-deg(pi) ≥ n}.

If necessary, other constraints can be considered. Note that α-connectivity is a
special case of αn-connectivity obtained for n = 1. In addition, the following
nesting property holds:

αn′ -CC(p) ⊆ αn-CC(p),

where n ≤ n′. αn-connectivity satisfies all properties of an equivalence relation
and therefore also partitions the image definition domain into unique maxi-
mal connected components. An example is provided in Fig. 5. In this example,
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Fig. 5. A synthetic sample image with its intensity values, the corresponding 1-deg
map, and 13-connected components.

the non singleton 13-connected components match the core of the two homo-
geneous regions. Singleton connected components correspond to pixels whose
degree is smaller than 3. Non-singleton connected components can be used as
seeds for coarsening the obtained partition. Special care is needed to produce
connected components matching one-pixel thick non-transition regions. Alterna-
tive approaches to tackle the problem of transition regions are also presented in
[73] using a dissimilarity value taking into account the values of the gradient by
erosion and dilation at the considered adjacent pixels and in [74] using image
statistics.

7 Conclusion and perspectives

In this paper, we have presented several equivalent tools dealing with hierarchies
of connected partitions. Such a review invites us to look more closely at links
between what have been done in different research domains as, for example,
between clustering and lattice theory [90]. A first step in that direction is [91],
and there is a need for in-depth study of operators acting on lattices of graphs
[92] (or the one of complexes [93]). The question of transition pixels is not only
a theoretical one, regarding its significance for applications. Finally, we want to
stress the importance of having frame work allowing a generic implementation
of existing algorithms, not limited to the pixel framework, but also able to deal
transparently with edges, or, more generally, with graphs and complexes [94].

Finally, when dealing with very large images such as those encountered in
remote sensing or biomedical imaging, the computation of the min-tree of the
edge graph of an image may be prohibitive in terms of memory needs (without
mentioning the additional cost of doubling the graph to make sure that each flat
zone of the original image is matched by a minimum of the edge graph). In this
situation, the direct computation of the alpha-tree of the image may be a valid
alternative. An efficient implementation based on the union-find as originally
presented for the computation of component trees [86] is presented in [79].
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14. BarthÃ c©lemy, J.P., Brucker, F., Osswald, C.: Combinatorial optimization and

hierarchical classifications. 4OR: A Quaterly Journal of Operations Research 2(3)
(2004) 179–219

15. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3) (September
1967) 241–254

16. Sokal, R., Sneath, P.: Principles of Numerical Taxonomy. W. H. Freeman and
Company, San Fransisco and London (1963)

17. Sneath, P.: The application of computers in taxonomy. Journal of general Micro-
biology 17 (1957) 201–226

18. Hartigan, J.: Representation of similarity matrices by trees. American Statistical
Association Journal (1967) 1140–1158

19. Jardine, C., Jardine, N., Sibson, R.: The structure and construction of taxonomic
hierarchies. Mathematical Biosciences 1(2) (1967) 173–179
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