
Standalone Tactics using OpenTheory

Ramana Kumar?1 and Joe Hurd2

1 University of Cambridge
Ramana.Kumar@cl.cam.ac.uk

2 Galois, Inc.
joe@gilith.com

Abstract. Proof tools in interactive theorem provers are usually devel-
oped within and tied to a specific system, which leads to a duplication
of effort to make the functionality available in different systems. Many
verification projects would benefit from access to proof tools developed
in other systems. Using OpenTheory as a language for communicating
between systems, we show how to turn a proof tool implemented for one
system into a standalone tactic available to many systems via the inter-
net. This enables, for example, LCF-style proof reconstruction efforts to
be shared by users of different interactive theorem provers and removes
the need for each user to install the external tool being integrated.

1 Introduction

There are many LCF-style systems for interactively developing machine-checked
formal theories, including HOL4 [1], HOL Light [2], ProofPower [3] and Is-
abelle/HOL [4]. The logic implemented by these systems is essentially the same,
but the collections of theory libraries and proof tools built on top of the logical
kernels differ. Where similar proof tools exist in multiple systems it is usually
the result of duplicated effort.

Examples of duplicated effort on tactics include the integration of external
tools into HOL-based provers. For instance, Kumar and Weber [5] and Kunčar [6]
give independent integrations of a quantified boolean formula solver into HOL4
and HOL Light. Weber and Amjad [7] give high-performance integrations of
SAT solvers into three HOL-based systems; each integration requires a separate
implementation. Sledgehammer [8] is only available for Isabelle/HOL, but its
functionality would also be useful in other systems.

In addition to the development effort, the cost of maintenance can also be
multiplied over different systems, and improvements in functionality can become
restricted to a single system unnecessarily. For instance, the Metis first order logic
prover [9] is integrated in multiple systems in the HOL family, but the HOL4
version is very old compared to the latest version in Isabelle/HOL. Slind’s TFL
package for defining recursive functions [10], originally implemented for both
Isabelle/HOL and HOL4, was superseded in Isabelle/HOL by Krauss’s function

? supported by the Gates Cambridge Trust



definition package [11]. The improvements of Krauss’s method over TFL ought
to be applicable to other HOL-based provers, but a direct reimplementation
would require substantial effort.

It makes sense to speak of similar proof tools in different interactive the-
orem provers not just because they implement essentially the same logic, but
also because there is a shared base of concepts: booleans, inductive datatypes,
recursive functions, natural numbers, lists, sets, etc. The OpenTheory standard
library [12] formalises this shared base as a collection of theory packages contain-
ing proofs written in the simple article format designed for storing and sharing
higher order logic theories [13]. We use OpenTheory as a language for interac-
tive theorem provers to communicate with proof tools on a remote server, and
thereby obtain the following two benefits:

1. Proof Articles: A standard format to encode the goals that will be sent to
the remote proof tools and the proofs that will be received in response.

2. Standard Library: An extensible way to fix the meaning of constants and
type definitions between systems.

We contend that proof tools for interactive theorem provers need only be
written and maintained in one place rather than once per system, using stan-
dalone tactics that are available online and communicate using OpenTheory. An
added advantage when the tactic is an integration of an external tool is that a
user of the interactive theorem prover need not install the external tool: it only
needs to be available on the server hosting the standalone tactic.

The contributions of this rough diamond are:

1. A general method for turning existing proof tools implemented in interactive
theorem provers into standalone tactics (Section 2).

2. Preliminary results profiling the performance of working examples of stan-
dalone tactics (Section 3).

2 Lifting Proof Tools into the Cloud

2.1 OpenTheory for Tactic Communication

An example: the user of an interactive theorem prover faced with the goal

∀n. 8 ≤ n⇒ ∃s, t. n = 3s+ 5t

decides to pass it off to a standalone tactic for linear arithmetic.
The input for the standalone tactic is the goal term, and the output is a

proof of the theorem. Standalone tactics use the OpenTheory article format for
communicating terms and proofs. The interactive theorem prover serializes the
goal term from its local internal format to an article file, and sends the article
over the internet to the standalone tactic. If successful, the standalone tactic
sends back another article file encoding a proof of the goal, which the interactive
theorem prover replays through its logical kernel to create the desired theorem.

This example illustrates the key requirements for an interactive theorem
prover to use standalone tactics:



1. Ability to replay proofs by reading OpenTheory articles.
2. Ability to write terms as OpenTheory articles.
3. Ability to communicate with external programs.

Requirements 1 and 2 can be satisfied for an interactive theorem prover by
implementing an OpenTheory interface that can interpret and construct articles.
The central concept in OpenTheory is that of a theory package, Γ . ∆, which
proves that the set of theorems ∆ logically derive from the set of assumptions
Γ . An article is a concrete representation of a theory package, consisting of
instructions for a virtual machine whose operations include construction of types
and terms, and the primitive inference rules of higher order logic. To read an
article, an interactive theorem prover performs the primitive inferences and other
instructions listed in the file. The OpenTheory logical kernel is based on HOL
Light’s logical kernel, and the instructions are chosen to make it easy to read
articles into any system that can prove theorems of higher order logic.

An article file represents a theory Γ . ∆. By taking ∆ to be the set of
theorems proved by a proof tool and Γ to be the set of theorems used by the
proof tool, we can view the result of executing a proof tool as a logical theory.
In our example above of using a linear arithmetic standalone tactic on the given
goal, this theory might be` ∀n. n+ 0 = n

` ∀m,n. mn = nm
· · ·

 .
{
` ∀n. 8 ≤ n⇒ ∃s, t. n = 3s+ 5t

}
where the assumptions consist of a collection of standard arithmetic facts.

The main benefit of using OpenTheory for communication is that it pro-
vides a standard ontology for fixing the meanings of constants and type op-
erators between different systems. For example, the numerals 3, 5 and 8 in
the example goal term can be encoded in binary using the standard constants
Number.Natural.bit0 and Number.Natural.bit1. The full names and proper-
ties of these constants are indicated in the OpenTheory standard library, and
interactive theorem provers can maintain translations to and from their local
names and theorems. A system using a different encoding for numbers (say
unary, with Number.Natural.suc and Number.Natural.zero) could use addi-
tional standalone tactics to translate between encodings.

Implementing an OpenTheory interface to satisfy Requirements 1 and 2
above carries the additional benefit of giving the interactive theorem prover
access to all logical theories stored as OpenTheory packages, not just those that
are the output of standalone tactics.

2.2 Extracting Tactics from Interactive Theorem Provers

There are two approaches to obtaining a standalone tactic: either write one
directly; or extract an existing tactic from an interactive theorem prover. We
have experimented with the second approach, extracting tactics from HOL4 and
from HOL Light. The procedure is reasonably lightweight, but less flexible than



writing a standalone tactic directly. For tactic extraction to succeed, the key
requirements on the interactive theorem prover are:

1. Ability to read and write OpenTheory article files.
2. Ability to record proofs and reduce them to the OpenTheory kernel.
3. Ability to make a standalone executable encompassing the tactic function-

ality separated from the usual interface to the interactive theorem prover.

Just as the requirements for an interactive theorem prover to use standalone
tactics also enable it to import OpenTheory packages in general, the first two re-
quirements to create standalone tactics also enable a system to create and export
OpenTheory packages. (The last requirement enables running on a server.)

Requirement 2 poses the highest barrier: a standalone tactic must record each
proof at a level of detail sufficient to prove the same theorem using the OpenThe-
ory kernel. The following method can be used if the system implementing the
tactic has an LCF-style design, that is, theorems can only be created by a small
number of primitive inference rules: (i) augment the internal theorem type with
a type of proofs to track the system primitive inferences used; and (ii) express
each system primitive inference as a derived rule of the OpenTheory kernel. We
applied this method to meet Requirement 2 for both HOL4 and HOL Light. For
some primitive inferences (such as reflexivity of equality) there is a direct trans-
lation to the OpenTheory logical kernel. But, for example, HOL4’s primitive rule
for definition by specification must be emulated in the OpenTheory kernel, for
example by using Hilbert choice. Although Isabelle/HOL uses the LCF architec-
ture, its logical kernel is quite different from OpenTheory; we therefore expect
translating Isabelle/HOL proofs to be more difficult than HOL4 and HOL Light
proofs.

To satisfy Requirement 3 in HOL4, we used the ‘export’ facility of the
Poly/ML compiler, which creates a standalone executable that runs an ML func-
tion. For each tactic, we captured a function that reads an article representing the
input term, runs the tactic (recording the proof), and writes an article contain-
ing the proof. The situation for HOL Light is more complicated because OCaml
does not provide such an ‘export’ facility, and a HOL Light session typically
starts by proving the standard library. We used a general-purpose checkpointing
facility to capture a HOL Light session at the point where it is ready to read an
article and run a tactic.

3 Preliminary Performance Results

We collected preliminary performance data for two test standalone tactics ex-
tracted from HOL4, and called from HOL Light. They are QBF [5], which proves
quantified boolean formulas, and SKICo, which rewrites terms to combinatory
form like so: ` (∀x. x ∨ ¬x) = (∀) (S (∨) (¬)). We used the following three test
goals:

1. ∀x. x ∨ ¬x



Tactic- Goal Remote Proof Total Local
Problem Size Time Time Size Time Time Time

(b) (s) (s) (b) (s) (s) (s)

QBF-1 927 0.001 1.064 10,991 0.022 1.088 0.002
QBF-2 1,474 0.001 1.892 79,944 0.139 2.034 0.024
QBF-3 1,546 0.001 1.821 91,639 0.172 1.996 0.024
SKICo-1 927 0.001 1.212 20,047 0.041 1.255 0.000
SKICo-2 1,474 0.002 1.557 52,249 0.113 1.673 0.001
SKICo-3 1,546 0.002 1.716 60,642 0.125 1.844 0.005

Table 1. Performance profiling for the test standalone tactics.

2. ∃p. (∀q. p ∨ ¬q) ∧ ∀q. ∃r. r
3. ∃x. ∀y. ∃z. (¬x ∨ ¬y) ∧ (¬z ∨ ¬y)

For each invocation of a standalone tactic on a test goal, Table 1 profiles the
time and space requirements of the three phases of execution: encoding the goal
as an article; communicating with and executing the standalone tactic remotely;
and replaying the proof article received. For comparison, the time to run the
tactic locally within HOL4 is given in the rightmost column.

The sizes of the articles for the test goals and the resulting proofs are com-
parable to the typical size of web requests and the resulting pages, so we can
be confident that we are within the normal operating range of the web tools we
use (curl on the client and CGI scripts on the server). For problems involving
larger articles (bigger goals or longer proofs) we may wish to compress them us-
ing gzip before sending them over the network—previous experiments showed
a compression ratio of 90% is typical for article files [13].

Turning now to execution time, we can see that it is significantly more ex-
pensive to call a standalone tactic over the internet compared to executing it
locally. However, most of the time is spent on ‘Remote Time’, which includes
communicating with the remote standalone tactic and waiting for it to read
the goal article, run the proof tool, and write the resulting proof article. Using
traceroute we see a 0.173s network delay between the test client in Portland,
OR, USA and the test server in Cambridge, UK, which accounts for at least
0.346s of delay. The overall time is in the 1–2s range, which is very slow for
workaday tactics but may well be tolerated by the user to gain access to the
functionality of a proof tool on another system.

4 Related Work

The PROSPER project [14] pioneered the technique of sending goals over the in-
ternet to a remote solver, and packaging such procedures as tactics in the HOL4
theorem prover. The standalone tactics described in this paper further system-
atize this by using OpenTheory as a standard language and ontology to make it
easier for interactive theorem provers and remote solvers to communicate.



An impressive example of providing reasoning infrastructure over the internet
is System on TPTP [15], which enables a user to remotely execute a collection
of automatic theorem provers on a problem expressed in a standard format.
The usual scenario is to decide the validity of first order logic formulas (TPTP
format), but there is also support for higher order terms (THF format), and for
returning proofs expressed in a standard language (TSTP format).

The idea of separate reasoning tools communicating to enhance a proof de-
velopment environment is also being pursued in the Evidential Tool Bus [16] and
the MathServe System [17]. This idea is a natural extension of the integration
of automatic tools with interactive theorem provers.

5 Conclusion

We have shown how, using OpenTheory for communication, we can write tools
for higher order logic reasoning tasks as standalone tactics, making them avail-
able to multiple interactive theorem provers and independently maintainable.
Existing proof tools can be extracted from their home systems for reuse. There
is a substantial but hopefully tolerable overhead of communicating goals and
proofs in article files over the internet.

References

1. Slind, K., Norrish, M.: A brief overview of HOL4. [18] 28–32
2. Harrison, J.: HOL Light: An overview. In Berghofer, S., Nipkow, T., Urban, C.,

Wenzel, M., eds.: TPHOLs. Volume 5674 of LNCS., Springer (2009) 60–66
3. Arthan, R.: ProofPower manuals. (2004) http://lemma-one.com/ProofPower.
4. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. [18] 33–38
5. Kumar, R., Weber, T.: Validating QBF validity in HOL4. [19] 168–183
6. Kunčar, O.: Proving valid quantified boolean formulas in HOL Light. [19] 184–199
7. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL the-

orem provers. Journal of Applied Logic 7(1) (2009) 26–40
8. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Is-

abelle/HOL. In Tinelli, C., Sofronie-Stokkermans, V., eds.: FroCos. Volume 6989
of LNCS., Springer (2011) 12–27

9. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In Archer,
M., Vito, B.D., Muñoz, C., eds.: STRATA 2003. Number NASA/CP-2003-212448
in NASA Technical Reports (September 2003) 56–68

10. Slind, K.: Reasoning about Terminating Functional Programs. PhD thesis, Tech-
nischen Universität München (1999)

11. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
J. Autom. Reasoning 44(4) (2010) 303–336

12. Hurd, J.: The OpenTheory standard theory library. In Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R., eds.: NFM 2011. Volume 6617 of LNCS., Springer
(April 2011) 177–191

13. Hurd, J.: OpenTheory: Package management for higher order logic theories. In
Reis, G.D., Théry, L., eds.: PLMMS, ACM (August 2009) 31–37



14. Dennis, L.A., Collins, G., Norrish, M., Boulton, R., Slind, K., Robinson, G., Gor-
don, M., Melham, T.: The PROSPER toolkit. In Graf, S., Schwartzbach, M., eds.:
TACAS. Volume 1785 of LNCS., Springer (2000) 78–92

15. Sutcliffe, G.: The TPTP world: Infrastructure for automated reasoning. In Clarke,
E.M., Voronkov, A., eds.: LPAR. Volume 6355 of LNCS., Springer (2010) 1–12

16. Rushby, J.M.: An evidential tool bus. In Lau, K.K., Banach, R., eds.: ICFEM.
Volume 3785 of LNCS., Springer (2005) 36–36

17. Zimmer, J., Autexier, S.: The MathServe system for semantic web reasoning ser-
vices. In Furbach, U., Shankar, N., eds.: IJCAR. Volume 4130 of LNCS., Springer
(2006) 140–144

18. Mohamed, O.A., Muñoz, C., Tahar, S., eds.: TPHOLs. Volume 5170 of LNCS.,
Springer (2008)

19. van Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F., eds.: ITP. Volume
6898 of LNCS., Springer (2011)


