Skip to main content

Bidirectional Texture Function Simultaneous Autoregressive Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7252))

Abstract

The Bidirectional Texture Function (BTF) is the recent most advanced representation of visual properties of surface materials. It specifies their altering appearance due to varying illumination and viewing conditions. Corresponding huge BTF measurements require a mathematical representation allowing simultaneously extremal compression as well as high visual fidelity. We present a novel Markovian BTF model based on a set of underlying simultaneous autoregressive models (SAR). This complex but efficient BTF-SAR model combines several multispectral band limited spatial factors and range map sub-models to produce the required BTF texture space. The BTF-SAR model enables very high BTF space compression ratio, texture enlargement, and reconstruction of missing unmeasured parts of the BTF space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, J., Khotanzad, A.: Multispectral random field models for synthesis and analysis of color images. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(3), 327–332 (1998)

    Article  Google Scholar 

  2. Blinn, J.: Simulation of wrinkled surfaces. SIGGRAPH 1978 12(3), 286–292 (1978)

    Article  Google Scholar 

  3. Dana, K.J., Nayar, S.K., van Ginneken, B., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: CVPR, pp. 151–157. IEEE Computer Society (1997)

    Google Scholar 

  4. De Bonet, J.: Multiresolution sampling procedure for analysis and synthesis of textured images. In: ACM SIGGRAPH 1997, pp. 361–368. ACM Press (1997)

    Google Scholar 

  5. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Fiume, E. (ed.) ACM SIGGRAPH 2001, pp. 341–346. ACM Press (2001), citeseer.nj.nec.com/efros01image.html

  6. Favaro, P., Soatto, S.: 3-D shape estimation and image restoration: exploiting defocus and motion blur. Springer-Verlag New York Inc. (2007)

    Google Scholar 

  7. Filip, J., Haindl, M.: Bidirectional texture function modeling: A state of the art survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11), 1921–1940 (2009)

    Article  Google Scholar 

  8. Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(7), 439–451 (1988)

    Article  MATH  Google Scholar 

  9. Haindl, M.: Texture synthesis. CWI Quarterly 4(4), 305–331 (1991)

    MATH  Google Scholar 

  10. Haindl, M., Filip, J.: Fast BTF texture modelling. In: Chantler, M. (ed.) Proceedings of Texture 2003, pp. 47–52. IEEE Press, Edinburgh (2003)

    Google Scholar 

  11. Haindl, M., Filip, J.: A Fast Probabilistic Bidirectional Texture Function Model. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004, Part II. LNCS, vol. 3212, pp. 298–305. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Haindl, M., Filip, J., Arnold, M.: BTF image space utmost compression and modelling method. In: Kittler, J., Petrou, M., Nixon, M. (eds.) Proceedings of the 17th IAPR International Conference on Pattern Recognition, vol. III, pp. 194–197. IEEE, Los Alamitos (2004), http://dx.doi.org/10.1109/ICPR.2004.1334501

    Chapter  Google Scholar 

  13. Haindl, M., Hatka, M.: BTF Roller. In: Chantler, M., Drbohlav, O. (eds.) Proceedings of the 4th International Workshop on Texture Analysis, Texture 2005, pp. 89–94. IEEE, Los Alamitos (2005)

    Google Scholar 

  14. Haindl, M., Hatka, M.: A roller - fast sampling-based texture synthesis algorithm. In: Skala, V. (ed.) Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 93–96. UNION Agency - Science Press, Plzen (2005)

    Google Scholar 

  15. Haindl, M., Havlíček, V.: Multiresolution colour texture synthesis. In: Dobrovodský, K. (ed.) Proceedings of the 7th International Workshop on Robotics in Alpe-Adria-Danube Region, pp. 297–302. ASCO Art, Bratislava (1998)

    Google Scholar 

  16. Haindl, M., Havlíček, V.: A multiscale colour texture model. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, pp. 255–258. IEEE Computer Society, Los Alamitos (2002), http://dx.doi.org/10.1109/ICPR.2002.1044676

    Google Scholar 

  17. Haindl, M., Filip, J.: Advanced textural representation of materials appearance. In: SIGGRAPH Asia 2011 Courses, SA 2011, pp. 1:1–1:84. ACM, New York (2011), http://doi.acm.org/10.1145/2077434.2077435

  18. Haindl, M., Havlícek, V.: A Multiresolution Causal Colour Texture Model. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 114–122. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Hatka, M.: Btf textures visualization in blender. In: Proceedings of the Graduate Students Days, pp. 37–46. FNSPE CTU (2009)

    Google Scholar 

  20. Hatka, M., Haindl, M.: Btf rendering in blender. In: Zhang, X., Pan, Z., Dong, W., Liu, Z.Q. (eds.) Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, VRCAI 2011, pp. 265–272. ACM, New York (2011), http://doi.acm.org/10.1145/2087756.2087794

    Google Scholar 

  21. Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis and rendering of bidirectional texture functions. In: Eurographics 2004. STAR - State of The Art Report, pp. 69–94. Eurographics Association (2004)

    Google Scholar 

  22. Wang, L., Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., Shum, H.: View-dependent displacement mapping. ACM Transactions on Graphics 22(3), 334–339 (2003)

    Article  Google Scholar 

  23. Woodham, R.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1), 139–144 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haindl, M., Havlíček, M. (2012). Bidirectional Texture Function Simultaneous Autoregressive Model. In: Salerno, E., Çetin, A.E., Salvetti, O. (eds) Computational Intelligence for Multimedia Understanding. MUSCLE 2011. Lecture Notes in Computer Science, vol 7252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32436-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32436-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32435-2

  • Online ISBN: 978-3-642-32436-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics