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Abstract. In this paper we present an active learning procedure for the
two-class supervised classification problem. The utilized methodology
exploits the Bayesian modeling and inference paradigm to tackle the
problem of kernel-based data classification. This Bayesian methodology
is appropriate for both finite and infinite dimensional feature spaces.
Parameters are estimated, using the kernel trick, following the evidence
Bayesian approach from the marginal distribution of the observations.
The proposed active learning procedure uses a criterion based on the
entropy of the posterior distribution of the adaptive parameters to select
the sample to be included in the training set. A synthetic dataset as well
as a real remote sensing classification problem are used to validate the
followed approach.

1 Introduction

In many real applications large collections of data are extracted whose class is
unknown. Those applications include, for instance, most image classification ap-
plications, text processing, speech recognition, and biological research problems.
While extracting the samples is straightforward and inexpensive, classifying each
one of those samples is a tedious and often expensive task. Active learning is a
supervised learning technique that attempts to overcome the labeling bottleneck
by asking queries in the form of unlabeled samples to be labeled by an oracle
(e.g., a human annotator) [I0]. An active learning procedure queries only the
most informative samples from the whole set of unlabeled samples. The objec-
tive is to obtain a high classification performance using as few labeled samples
as possible, minimizing, this way, the cost of obtaining labeled data.

Kernel methods in general and Support Vector Machines (SVMs) in particular
dominate the field of discriminative data classification [§]. This problem has also
been approached from a Bayesian point of view. For example, the relevance vec-
tor machine [I3] assumes a Gaussian prior over the adaptive parameters and uses
the EM algorithm to estimate them. In practice, this prior enforces sparsity be-
cause the posterior distribution of many adaptive parameters is sharply peaked
around zero. Lately, Gaussian Process Classification [7] has received much at-
tention. Adopting the least-squares SVM formulation may alternatively allow to
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perform Bayesian inference on SVMs [12]. A huge benefit is obtained by apply-
ing Bayesian inference on these machines since hyperparameters may be learned
directly from data using a consistent theoretical framework.

In this paper we make use of the Bayesian paradigm to tackle the problem
of active learning on kernel-based two-class data classification. The Bayesian
modeling and inference approach to the kernel-based classification we propose
in this paper allows us to derive efficient closed-form expressions for parameter
estimation and active learning.

The general two-class supervised classification problem [2] we tackle here im-
plies a classification function of the form:

y(x) = (X)W +b+e, (1)

where the mapping ¢ : X — H embeds the observed x € X into a higher L-
dimensional (possibly infinite) feature space H. The output y(x)€ {0, 1} consists
of a binary coding representation of its classification, w is a vector of size L x 1
of adaptive parameters to be estimated, b represents the bias in the classifica-
tion function, and € is an independent realization of the Gaussian distributions
N(0,0?%).

While kernel-based classification in static scenarios has been extensively stud-
ied, the problem related to the emerging field of active learning [10] is still
unsolved. Let us assume that we have access to P vectors in the feature space
denoted by ¢(x;),i = 1,..., P for which the corresponding output y(x;),i =
1,..., P can be provided by an oracle. The key is to decide which elements x; to
acquire from the set of P possible samples in order to build an optimal compact
classifier. Active learning aims at efficiently sampling the observations space to
improve the model performance by incrementally building training sets. Such
sets are obtained by selecting from the available samples the best ones accord-
ing to a selection strategy and querying the oracle only for the label of those
samples. Many selection strategies have been devised in the literature, which are
based on different heuristics: 1) large margin, 2) expert committee, and 3) pos-
terior probability (see [10] for a comprehensive review). The first two approaches
typically exploit SVM methods. The latter requires classifiers that can provide
posterior probabilities.

In [6], a Bayesian active learning procedure for finite dimensional feature
spaces is proposed. Assuming that ¢(x;),s = 1,..., P has L components, the
design matrix @. . is of size P x L, whose i row, i = 1,..., P is given by ¢(x;) .
Then, a subset of size C' of the L columns of @. ., denoted by . 1., is selected
using the differential entropy instead of the response functions y(x;) [6]. Notice
that this approach is in contrast to other basis selection techniques which make
explicit use of the response functions, for example, [3] in the context of SVM, [4]
in the context of sparse representation, and [I] considering compressive sensing.
To select the rows of @. 1., for which the response associated to ¢(x;) will be
queried, a criterion based again on differential entropy is utilized (see [6] for
details). See also [B] for the general theory and [9] for the use of the approach in
compressive sensing.
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Here, the Bayesian modeling and inference paradigm is applied to two-class
classification problems which utilize kernel-based classifiers. This paradigm is
used to tackle both active learning and parameter estimation for infinite dimen-
sional feature spaces, and consequently for problems where basis selection cannot
be carried out explicitly. As we will see later, the proposed approach will make
extensive use of the marginal distribution of the observations to avoid dealing
with infinite dimensional feature spaces and the posterior distribution of the
infinite dimensional w.

The rest of the paper is organized as follows. Section 2lintroduces the models
we use in our Bayesian framework. Then, in section 3] Bayesian inference is per-
formed. We calculate the posterior distribution of w, and propose a methodology
for parameter estimation, active learning, and class prediction. Experiments il-
lustrating the performance of the proposed approach on a synthetic and a real
remote sensing classification problem are presented in sectiondl Finally, section 5]
concludes the paper.

2 Bayesian Modeling

Let us assume that the target variable y(x;) follows the model in Eq. (). If we
already know the classification output y(x;) associated with the feature samples

¢(x;),i=1,..., M, with M the number of samples, we can then write
M
p(y|w,0?) = [[N(w(xi)|¢" (x:)w +b,57). (2)
i=1
Since x;, ¢ =1,..., M, will always appear as conditioning variable, for the sake
of simplicity, we have removed the dependency on xi,...,xps in the left-hand

side of the equation. We note that, for infinite dimensional feature vectors ¢(x;),
w is infinite dimensional.

The Bayesian framework allows us to introduce information about the possible
value of w in the form of a prior distribution. In this work we assume that each
component of w independently follows a Gaussian distribution A/(0,~2). When
the feature vectors are infinite dimensional, we will not make explicit use of this
prior distribution but still we will be able to carry out parameter estimation and
active learning tasks.

3 Bayesian Inference

Bayesian inference extracts conclusions from the posterior distribution p(wly,v?,
02). The posterior distribution of w is given by [2]

p(wly, 52, 02) = N(W|2w|yﬁzya2o’_2¢—r(y —b1), Xy .42.02), (3)

where
X (072 d +47)7 !

h

ly,v2,02 =

and @ is the design matrix whose i*® row is ¢(x;)".



A Bayesian Active Learning Framework 45

It is important to note that we do not need to know the form of @ explicitly to
calculate this posterior distribution. We only need to know the Gram matrix K =
&@ " which is an M x M symmetric matrix with elements K., = k(X,,Xm) =
(%) T ¢(%m), which has to be a positive semidefinite matrix [8]. This leads to
the construction of kernel functions k(x,x’) for which the Gram matrix K is
positive semidefinite for all possible choices of the set {x,,} [I1]. Note that, even
if @ has an infinite number of columns, which correspond to the case of x; being
an infinite dimensional feature vector, we can still calculate K of size M x M
by means of the kernel function. Note also that we are somewhat abusing the
notation here because w is infinite dimensional for infinite dimensional feature
vectors.

3.1 Parameter Estimation

To estimate the values of 42 and 02 we use the Evidence Bayesian approach
without any prior information on these parameters. According to it, we maximize
the marginal distribution obtained by integrating out the vector of adaptive
parameters w. It can easily be shown, see for instance [2], that

p(Y|7270’2) = N(y|b17 2y|72702)7 (4)

where
Eyh,z,gz = ’72¢¢T + o1

The value of b can be easily obtained from Eq. @) as

1 M
= =3y, (5)
i=1

Differentiating 2 In p(y|vy?, 02) with respect to 42 and equating to zero, we obtain
tr[(V2 PP +0?) 1P| = (6)
tr[(y — 01) " (2BB" + 0’1) "' BD ' (2B +0’T) " (y — b1)).

Diagonalizing #@ ", we obtain UP U = D, where U is an orthonormal

matrix and D is a diagonal matrix with entries A\;,2 = 1,..., M. We can then
rewrite the above equation as
M M
)\k 2 )\1,
—_— = Z 7
2T TR "

where U(y — b1) = z with components z;,i = 1,..., M.
Multiplying both sides of the above equation by v? we have

M i

2 2)\+U2

v _Z 2 2 Z“l 2 2° (8)
i= 1Zk: 1 2, +02'7)\ +0 i=1 )\ +0
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where
Ai
L Y2 Xit+o?
L v (9)
k=1 v2X\,+02

Note that p; > 0 and Zf‘il i = 1.
Similarly, differentiating 2 Inp(y|y?, 02) with respect to 02 and equating it to
zero, we obtain
M M

1 _ 9 1
Z ,yz)\k + 02 ;Zi (72/\1_ + 02)2' (10)

k=1

Following the same steps we already performed to estimate 2, we obtain

lel 2A +U2’ (11)

where

1
v, = &_ (12)
Zk 1 72>\k+02

Note that, again, v; > 0 and Z 1 VZ =1.

To obtain estimates of ¥2 and o2 we use an iterative procedure where the
values of the old estimates of 72 and o2 are used on the right hand side of
Equations (8) and () to obtain the updated values of the parameters in the
left hand side of these equations. Although we have not formally established the
convergence and unicity of the solution, we have not observed any convergence
problems in the performed experiments. Note that to estimate 42 and o2 we
have not made use of the posterior distribution of the components of w.

3.2 Active Learning

Active learning starts with a small set of observations whose class is already
known. From these observations, the posterior distribution of w and the pa-
rameters b, 72 and o2 can be estimated using the procedure described in the
previous sections. Now we want that the system learns new observations incre-
mentally. Let us assume that we want to add a new observation associated to
¢(x4), whose corresponding y(x) will be learned by querying the oracle. The
covariance matrix of the posterior distribution of w when ¢(x) is added is
given by
B s = (02T 4 lx ) (x4)) + 72D

Since we have a set of observations that could be added and whose class is
unknown (but can be learned by querying the oracle), the objective of active
learning is to select the observation that maximizes the performance of the sys-
tem, minimizing in this way the number of queries answered by the oracle. To
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select this new feature vector, in this paper, we propose to maximize the differ-
ence between the entropies of the posterior distribution before and after adding
the new feature vector (see [69]) to obtain

1 N _
X4+ = argmax o 10g | Xy 12,02 [| Xy 42,02 1 (13)
Then we have
1 x _
5 log |2w\y,72,02 | |2w‘y772)02| 1
1
= Slog[l+02¢(x)¢ (x)(0 2@ &+ 721) |
1
= 5log(1+07%¢ (x)(0 @& +77"1) " ¢(x)),
and using
(072@"® 4+ =41 — 1T (0°1 + 12 PP )P, (14)

we can finally write

1 _
§log|2vvly,72,d2| ’ |2§V\y,72»02| '

= % log (1+ 072729 (x)p(x) — 0 27'¢ " (x)D (0?1 +7°PD ") ' Pep(x))

= J1og (1407270 ()600) — 0 T ()87 5,1 Bo(x)) . (15)

ylv?,02

Consequently, all needed quantities to select x; can be calculated without knowl-
edge of the feature vectors and the posterior distribution of the possibly infi-
nite dimensional adaptive parameters and using only kernel functions and the
marginal distribution of the observations.

Notice that, given 2;‘1%702, we can easily calculate the new precision matrix
E;L (x4) 72,02 of the marginal distribution of y when the observation correspond-
ing to x4 has been added. We have

M —Mvd!
-1 N
2y7y(x+)|7727‘72 h < —d 'vM d'+d v Mv ) ’ (16)

with v =2@¢(x1), d = 0> +72¢T (x4 )p(x4 ), and M = (Xy |2 2 —dtvv )7L
To calculate M we use the Sherman-Morrison-Woodbury formula to obtain

1
_ g1 -~ -1 T y—1
M= Eyh2><72 —d4+vTX1 VEyl"ﬂa2VV 2y|72702’
ylvy?,0?
and consequently X! , can be calculated from the previous X', , in

yvy(x4)|v3o ylv2o

a straightforward manner.

Hence, starting with an initial estimation of the parameters, to perform active
learning we alternate between the selection of a new sample using Eq. (I3]) and
the estimation of the unknown parameters b, v2, and o2 using the procedure
described in section 31
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3.3 Prediction

Once the system has been trained, we want to predict the value of y(x,) for a
new value of x, denoted by x,. To calculate this predicted value, we make use of
the distribution of ¢ ' (x.)w + b where the posterior distribution of w is given
in Eq. @). Its mean value, ¢ ' (x.)E[w] + b, is given by

¢ (x)EW] +b=0" (%) Zwiy2020 2P (y —b1) +b, (17)
where we have made use of Eq. (I4]) to obtain

¢ (x)E[W] +b =702 (x.)® (y - b1) (18)
— 710720 (x,)B " (0°T 4+ V?PD ) 'PD " (y — b1) + b,

which can be calculated without knowing the feature vectors if the kernel func-
tion is known.

4 Experimental Results

We have tested the proposed active learning algorithm on a synthetic dataset
and a real remote sensing classification problem. The synthetic data set, due to
Paisley [6], consists of 200 observations, 100 from each one of the two classes, in
a bi-dimensional space. The data, plotted in figure[dl is composed of two classes
defined by two manifolds, which are not linearly separable in this bi-dimensional
space.

We have compared the proposed active learning method with random sam-
pling and the recently proposed Bayesian method in [6]. Random sampling was
implemented using the proposed method but, instead of selecting the samples
according to Eq. (I3]), samples are selected randomly from the available training
set. In all cases, a Gaussian kernel was used, whose optimal width parameter
was selected by maximizing the standard cross-validation accuracy.

We divided the full set of 200 samples into two disjoint sets of 100 randomly
selected samples each, one for training and the other for testing. We started our
active learning process with a seed, a single labeled sample, randomly selected
from the data set, that is, M = 1 at the beginning and the rest of the training
set was used to simulate the oracle queries. We run the three algorithms for 99
iterations adding one sample at each iteration, that is, querying the oracle one
sample each time so, at the end, M = 100. To obtain meaningful results, the
process was repeated 10 times with different randomly selected training and test
sets.

The performance of the algorithms is measured utilizing the samples in the
test set using the mean confusion matrix, the mean overall accuracy (OA) and
OA variance, and the mean kappa index. Each cell (i, j) of the mean confusion
matrix contains the mean number of samples, over the ten executions of the
algorithms using the different training and test sets, belonging to the j-th class,
classified in the i-th class. The overall accuracy is the proportion of correctly
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.(a) - : '(t'))

Fig. 1. First 15 selected samples for (a) the method in [6] and (b) the proposed method

classified samples over the total number of samples. The mean OA averages
the ten OA results of the ten different algorithm executions. The variance of
the OA in all the executions is reported as OA variance. The kappa index is
a statistical measure, which reflects agreement between the obtained accuracy
and the accuracy that would be expected by randomly classifying the samples.
Unlike the Overall Accuracy, the kappa index avoids the chance effect. A value
of the kappa index greater than 0.8 is considered to be ”very good”. Since ten
runs of the algorithm are performed, the mean kappa over all the executions
index is used.

In Figure[Ilwe show the first 15 selected samples for the method in [6] and the
proposed method. It can be seen that both algorithms select samples that effi-
ciently represent the two manifolds. Figure 2 shows the average learning curves
for random sampling, the method in [6] and the proposed method. From the
figure, it is clear that random sampling provides the lowest convergence rate,
while the method in [6] and the proposed method have a similar learning rate to
the full set overall accuracy. At convergence, when 100 samples are included in
the training set, all methods have the same accuracy but the proposed method
reaches this value with 18.4 samples on the average while the method in [6] needs
28.2 samples and random sampling needs 36.4 samples.

In the second experiment a real remote sensing dataset was used. Satellite
or airborne mounted sensors usually capture a set of images of the same area
in several wavelengths or spectral channels forming a multispectral image. This
multispectral image allows for the classification of the pixels in the scene into
different classes to obtain classification maps used for management, policy mak-
ing and monitoring. A critical problem in remote sensing image segmentation is
that few labeled pixels are typically available: in such cases, active learning may
be very helpful [I4].

We evaluated the methods on a real Landsat 5 TM image, whose RGB bands
are depicted in Fig.[3h. The region of interest is a 1024 x 1024 pixels area centered
in the city of Granada, in the south of Spain. The Landsat TM sensor provides a
six bands multispectral image that covers RGB, near-infrared and mid-infrared
ranges with a spatial resolution of 30 meters per pixel, that is, each pixels captures
the energy reflected by the Earth in a square area of side equal to 30 meters.
The dataset, created by the RSGIS Laboratory at the University of Granada,
divides the scene into two classes, vegetation and no-vegetation. Note that the
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Average Learning Curves
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Fig. 2. Average learning curves for the active learning techniques using random sam-
pling, the Bayesian method in [6] (Paisley method), and the proposed method for the
synthetic experiment

(a) (b) (c)
Fig. 3. (a) Multispectral image, (b) classification map with the proposed method, and

(c) classification map with the method in [6]. Pixels classified as vegetation are shown
in green color and pixels classified as no-vegetation are shown in brown.

no-vegetation class includes bare soil that has a very similar spectral signature to
vegetation making the correct classification of the pixels a challenging problem.

A total of 336 samples, whose class is precisely known by visual inspection of
the images and by terrain inspection, were selected from the image, 174 samples
corresponding to the vegetation class and 162 samples corresponding to the no-
vegetation class. Each sample has six characteristics, each one corresponding to
the mean value of a 3x 3 area centered in the pixel under study for each one of the
six bands that comprise the multispectral information provided by the Landsat
TM satellite. Again, the same Gaussian kernel was used for all methods.

From the labeled dataset a test set of 150 samples was randomly selected,
and the remaining 186 samples were used to simulate the oracle queries. We run
the experiments 10 times with different training and test sets. All the algorithms
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Table 1. Mean confusion matrix, mean kappa index, mean overall accuracy and its
variance for ten runs of the method in [6] on different test sets

Predicted/actual|vegetation|no-vegetation| Mean Kappa = 0.9453
vegetation 74.4 3.5 Mean OA = 97.27%
no-vegetation 0.6 71.5 OA variance = 4.39 x 107°

Table 2. Mean confusion matrix, mean kappa index, mean overall accuracy and its
variance for ten runs of the proposed method on different test sets

Predicted/actual|vegetation|no-vegetation| Mean Kappa = 0.96
vegetation 74.4 2.4 Mean OA = 98.00%
no-vegetation 0.6 72.6 OA variance = 9.87 x 107°

were run for 185 iterations, starting from a training set with a single labeled
pixel, that is M = 1, and adding one pixel to the training set at each iteration
(query).

Again, the proposed method is compared with random sampling and the
Bayesian method in [6]. For the method in [6] we did not perform the basis se-
lection step. We want to note that, since this basis selection procedure discards
features from the samples, better results are expected when all the features are
used although the computational cost will be higher.

Figure Ml shows the average learning curves. The method in [6] provides a
lower convergence rate to the full set overall accuracy than the proposed method.
However, the method in [6] starts learning faster than the proposed one. It may
be due to the fact that the active learning is carried out in an M-dimensional
feature space while the proposed method works in an infinite-dimensional space.
However, at convergence, when 186 samples have been included in the training
set, the proposed method performs better than the method in [6]. Note also that,
at convergence, random sampling obtains the same results with the proposed
method, obtaining better classification accuracy than the method in [6]. This
was expected since it uses the same classification procedure as the proposed
method, except for the active learning selection procedure. Note, however, that
the convergence rate is much slower than the other two methods.

Figures Bb and Bk depict the classification map for the full image using the
proposed method and the method in [6]. The random sampling classification is
not shown since, at convergence, coincides with the proposed method. The mean
of the confusion matrices as well as the mean kappa index, the mean overall
accuracy, and the overall accuracy variance are shown in Tables[Iland 2 for the
method in [6] and the proposed method, respectively. From these figures of merit
it is clear that the proposed method discriminates better between vegetation and
no-vegetation than the method in [6].

All compared methods were implemented using Matlab®© and run on a Intel
i7 @ 2.67GHz. The proposed method took 1.23 sec to complete the 185 iterations
while the method in [6] took 48.44 sec and random sampling took 1.01 sec. It
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Fig. 4. Learning curve for the active learning techniques using random sampling, the
Bayesian method in [6] (Paisley method), and the proposed method for the real remote
sensing dataset

is worth noting that computing the precision matrix Z;’;(XHW,UQ in Eq. (I6])
takes most of the time, which explains the similar cost between the proposed
method and random sampling. It is worth noting that the proposed method
provided better figures of merit than the method in [6] for both mean kappa
index and mean overall accuracy, learning with less interaction with the oracle
and, also, with a much lower computational cost.

5 Conclusions

We presented an active learning procedure that exploits Bayesian learning and
parameter estimation to tackle the problem of two-class kernel-based data clas-
sification. Using the Bayesian modeling and inference, we developed a Bayesian
method for classification both finite and infinite dimensional feature spaces. The
proposed method allows us to derive efficient closed-form expressions for pa-
rameter estimation and incremental and active learning. The method was ex-
perimentally compared to other methods and its performance was assessed on
remote sensing multispectral image as well as synthetic data.

Acknowledgments. This work has been supported by the Spanish research
programme Consolider Ingenio 2010: MIPRCV (CSD2007-00018) and the “Con-
sejeria de Innovacién, Ciencia y Empresa of the Junta de Andalucia” under
contract PO7-TIC-02698. We want to thank V. F. Rodriguez-Galiano and Prof.
M. Chica from the RSGIS laboratory (Group RNM122 of the Junta de An-
dalucia), who are supported by the Spanish MICINN (CGL2010-17629), for the
image of the neighborhood of the city of Granada and the classified samples that
conformed the real dataset used in this paper.



A Bayesian Active Learning Framework 53

References

10.

11.

12.

13.

14.

Babacan, D., Molina, R., Katsaggelos, A.: Bayesian compressive sensing using
Laplace priors. IEEE Transactions on Image Processing 19(1), 53-63 (2010)
Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer (2007)

Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery 2, 121-167 (1998)

Elad, M.: Sparse and Redundant Representations - From Theory to Applications
in Signal and Image Processing. Springer (2010)

MacKay, D.J.C.: Information-based objective functions for active data selection.
Neural Computation 4(4), 590-604 (1992)

Paisley, J., Liao, X., Carin, L.: Active learning and basis selection for kernel-based
linear models: A Bayesian perspective. IEEE Transactions on Signal Processing 58,
26862700 (2010)

Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. MIT
Press, NY (2006)

Schélkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambrigde (2002)
Seeger, M.W., Nickisch, H.: Compressed sensing and Bayesian experimental design.
In: International Conference on Machine Learning 25 (2008)

Settles, B.: Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin—Madison (2009)

Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
Univ. Press (2004)

Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.:
Least Squares Support Vector Machines. World Scientific, Singapore (2002)
Tipping, M.E.: The relevance vector machine. Journal of Machine Learning
Research 1, 211-244 (2001)

Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J.: A survey of active
learning algorithms for supervised remote sensing image classification. IEEE J. Sel.
Topics Signal Proc. 4, 606-617 (2011)



	A Bayesian Active Learning Framework for a Two-Class Classification Problem
	Introduction
	Bayesian Modeling
	Bayesian Inference
	Parameter Estimation
	Active Learning
	Prediction

	Experimental Results
	Conclusions


