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Abstract We consider online preemptive scheduling of jobs with fixed starting times
revealed at those times onm uniformly related machines, with the goal of maximizing
the total weight of completed jobs. Every job has a size and a weight associated with
it. A newly released job must be either assigned to start running immediately on a
machine or otherwise it is dropped. It is also possible to drop an already scheduled
job, but only completed jobs contribute their weights to the profit of the algorithm. In
the most general setting, no algorithm has bounded competitive ratio, and we consider
a number of standard variants. We give a full classification of the variants into cases
which admit constant competitive ratio (weighted and unweighted unit jobs, and C-
benevolent instances,which is awide class of instances containingproportional-weight
jobs), and cases which admit only a linear competitive ratio (unweighted jobs and D-
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benevolent instances). In particular, we give a lower bound of m on the competitive
ratio for scheduling unit weight jobs with varying sizes, which is tight. For unit size
and weight we show that a natural greedy algorithm is 4/3-competitive and optimal
on m = 2 machines, while for large m, its competitive ratio is between 1.56 and 2.
Furthermore, no algorithm is better than 1.5-competitive.

Keywords Online scheduling · Online algorithms · Related machines

1 Introduction

Scheduling jobs with fixed start times to maximize (weighted) throughput is a well-
studied problem with many applications, for instance work planning for personnel,
call control and bandwidth allocation in communication channels [1,3]. In this paper,
we consider this problem for uniformly related machines. Jobs with fixed starting
times are released online to be scheduled on m machines. Each job needs to start
immediately or else be rejected. The completion time of a job is determined by its
length and the speed of a machine. As pointed out by Krumke et al. [13], who were
the first to study them for uniformly related machines, problems like these occur when
jobs or material should be processed immediately upon release, but there are different
machines available for processing, for instance in a large factory where machines of
different generations are used side by side. Because on identical machines, the size
of the job together with its fixed start time determine the time interval that one of the
machines has to devote to the job in order to complete it, this problem is commonly
known as interval scheduling [6–10]. In fact, Krumke et al. [13] used the name interval
scheduling on related machines, but we refrain from it as different speeds translate
into different time intervals for different machines, albeit with a common start time.

We consider the preemptive version of this problem, where jobs can be preempted
(and hence lost) at any time (for example, if more valuable jobs are released later).
Without preemption, it is easy to see that no online algorithm can be competitive for
most models. The only exception is the simplest version of this problem, where all
jobs have unit size and weight. For this case, preemption is not needed.

1.1 Our Results

It is known (cf. Sect. 1.3) that if both the weight and the size of a job are arbitrary,
then no (randomized) algorithm is competitive on identical machines, a special case
of related machines. Therefore, we study several restricted models.

One of them is the case of jobs with unit sizes and unit weights, studied in Sect. 2.
While a trivial greedy algorithm is 1-competitive in this case on identical machines
(cf. Sect. 1.3), attaining this ratio on related machines is impossible. We give a lower
bound of (3 ·2m−1−2)/(2m −1) on the competitive ratio for this case, which for large
m tends to 3/2 from below. The high level reason why this holds is that the optimal
assignment of jobs to machines may depend on the timing of future arrivals. We also
show that a simple greedy algorithm is 2-competitive and we use a more complicated
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lower bound construction to show that it is not better than 1.56-competitive for largem.
For m = 2 machines, we show that it is 4/3-competitive, matching the lower bound.

Next, in Sect. 3, we consider two extensions of this model: weighted jobs of unit
sizes and a model where the weight of a job is determined by a fixed function of its
size, f : R+

0 → R
+
0 (where R+

0 denotes the non-negative reals).
A function is C-benevolent if it is convex, f (0) = 0, and f (p) > 0 for all p > 0.

This includes the important case of proportional weights given by f (x) = ax for
some a > 0. The property that a function is C-benevolent implies in particular that f
is continuous in (0,∞), and monotonically non-decreasing. We consider instances,
called C-benevolent instances, where the weights of jobs are given by a fixed C-
benevolent function f of their sizes, that is, w( j) = f ((p( j)). We call such an
instance f -benevolent.

We give a 4-competitive algorithm, which can be used both for f -benevolent
instances and for weighted unit-sized jobs. This generalizes the results of Woegin-
ger [15] for these models on a single machine; cf. Sect. 1.3.

Finally, in Sect. 4, we give a lower bound of m for unit-weight variable-sized jobs,
which is tight due to a trivial 1-competitive algorithm for a single machine [4,6] and
the following simple observation.

Fact 1.1 If algorithm Alg is R-competitive on a single machine, then an algorithm
that uses only the fastest machine by simulating Alg on it is (R · m)-competitive on
m related machines.

Proof Fix an instance and the optimum schedule for it on m related machines. To
prove our claim, it suffices to show that a subset of jobs from that schedule with
total weight no smaller than a 1/m fraction of the whole schedule’s weight can be
scheduled on the fastest machine. Clearly, one of the machines is assigned a subset of
sufficient weight in the optimum schedule, and this set can be scheduled on the fastest
machine. ��

Instances with unit-weight variable-sized jobs are a special case of D-benevolent
instances: a function f is D-benevolent if it is decreasing on (0,∞), f (0) = 0, and
f (p) > 0 for all p > 0. (Hence such functions have a discontinuity at 0.) Hence our
lower bound of m applies to D-benevolent instances as well, and again we obtain an
optimal (up to a constant factor) algorithm by combining a 4-competitive algorithm
for a single machine [15] with Fact 1.1. Note that in contrast, C-benevolent functions
are not a generalization of unit weights and variable sizes, because the constraint
f (0) = 0 together with convexity implies that f (cx) ≥ c · f (x) for all c > 0, x > 0,
so the weight is at least a linear function of the size.

We give an overview of our results and the known results in Table 1. In this table,
a lower bound for a class of functions means that there exists at least one function in
the class for which the lower bound holds.

1.2 Notation

There are m machines, M1, M2, . . . , Mm , in order of non-increasing speed. Their
speeds, all no larger than 1, are denoted by s1 ≥ s2 ≥ · · · ≥ sm respectively. We say
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Table 1 An overview of old and new results for deterministic algorithms; upper bounds by randomized
algorithms (UBr) are also given for a single machine

Size, weight 1 machine 2 related machines m related machines

LB UB UBr LB UB LB UB

1, 1 1 1 [4,6] 1 [4,6] 4/3 4/3 3·2m−1−2
2m−1 2

1, variable 4 [15] 4 [15] 2 [8] 2 [9] 4 1.693 [5,7] 4

Variable, 1 1 1 [4,6] 1 [4,6] 2 2 m m

Variable, D-benevolent 3 [15]a 4 [15] 2 [10] 2 8 m 4m

Variable, C-benevolent 4 [15] 4 [15] 2 [10] 1.693 [5,7] 4 1.693 [5,7] 4

Variable, proportional 4 [15] 4 [15] 2 [10] 1.693 [5,7] 4 1.693 [5,7] 4

Variable, variable ∞ [15] – – ∞ – ∞ –

The upper bounds of m and 4m follow from Fact 1.1 below
a This lower bound holds for all surjective functions

that machine i1 is faster than machine i2 if i1 < i2 (even if si1 = si2 ). For an instance
I and algorithm Alg, Alg(I ) and Opt(I ) denote the total weight of jobs completed
by Alg and an optimal schedule, respectively. The algorithm is R-competitive if
Opt(I ) ≤ R · Alg(I ) for every instance I .

For a job j , we denote its size by p( j), its release time by r( j), and its weight by
w( j) > 0. Any job that an algorithm runs is executed in a half-open interval [r, d),
where r = r( j) and d is the time at which the job completes or is preempted. We call
such intervals job intervals. If a job (or a part of a job) of size p is run on machine Mi

then d = r + p
si
. A machine is called idle if it is not running any job, otherwise it is

busy.

1.3 Previous Work

As mentioned before, if both the weight and the size of a job are arbitrary, then
no (randomized) algorithm is competitive, either on one machine [3,15] or identical
machines [3]. For completeness, we formally extend this result to any set of related
machines and show that for the most general setting, no competitive algorithm can
exist (not even a randomized one).

Proposition 1.2 For any set of m machine speeds, the competitive ratio of every
randomized algorithm for variable lengths and variable weights is unbounded.

Proof Let Algm be an arbitrary randomized preemptive algorithm for m machines
of speeds s1, . . . , sm . Recall that s1 = max1≤i≤m si . Let C be an arbitrary constant,
and let C ′ = mC . Define the following algorithm Alg for one machine of speed s1:
Alg chooses an integer i in {1, 2, . . . ,m} uniformly with probability 1/m and acts as
Algm acts on machine i . Since the speed of i is at most s1, this is possible. Note that
Alg is randomized even if Algm is deterministic. For every input J , E(Alg(J )) =
1
m · E(Algm(J )).
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Let Optm denote an optimal solution for m machines, and Opt1 on one machine.
Clearly Opt1(J ) ≤ Optm(J ) for every input J . Let I be an input such that
Opt1(I ) ≥ C ′ ·E(Alg(I )) (its existence is guaranteed, since Alg’s competitive ratio
is unbounded [3]). Then C ·E(Algm(I )) = mC ·E(Alg(I )) ≤ Opt1(I ) ≤ Optm(I ).
Thus the competitive ratio of Algm is unbounded. ��

For this general case on one machine, it is possible to give an O(1)-competitive
algorithm, and even a 1-competitive algorithm, using constant resource augmentation
on the speed; that is, the machine of the online algorithm is O(1) times faster than the
machine of the offline algorithm that it is compared to [11,12].

Baruah et al. [2] considered online scheduling with deadlines, including the special
case (zero laxity) of interval scheduling. They focused on the proportional weight case
and gave a 4-competitive algorithm for a singlemachine and a 2-competitive algorithm
for two identical machines. Woeginger [15] considered interval scheduling on a single
machine and gave a 4-competitive algorithm for unit sized jobs with weights, C-
benevolent jobs, and D-benevolent jobs. He also showed that this algorithm is optimal
for the first two settings.

Faigle and Nawijn [6] and Carlisle and Lloyd [4] considered the version of jobs
with unit weights on m identical machines. They gave a 1-competitive algorithm for
this problem.

For unit sized jobs with weights, Fung et al. [9] gave a 3.59-competitive randomized
algorithm for one and two (identical) machines, as well as a deterministic lower bound
of 2 for two identical machines. The upper bound for one machine was improved to
2 by the same authors [8] and later generalized to the other nontrivial models [10].1

See [5,14] for additional earlier randomized algorithms. A randomized lower bound
of 1.693 for one machine was given by Epstein and Levin [5]; Fung et al. [7] pointed
out that it holds for parallel machines as well, and gave an upper bound for that setting
(not shown in the table): a 2-competitive algorithm for evenm and a (2+2/(2m−1))-
competitive algorithm for odd m ≥ 3.

2 Unit Sizes and Weights

In this section we consider the case of equal jobs, i.e., all the weights are equal to 1
and also the size of each job is 1. We first note that it is easy to design a 2-competitive
algorithm, and for 2 machines we find an upper bound of 4/3 for a natural greedy
algorithm.

The main results of this section are the lower bounds. First we prove that no online
algorithm on m machines can be better than (3 · 2m−1 − 2)/(2m − 1)-competitive.
This matches the upper bound of 4/3 for m = 2 and tends to 1.5 from below for
m → ∞. For Greedy on m = 3n machines we show a larger lower bound of
(25 · 2n−2 − 6)/(2n+2 − 3), which tends to 25/16 = 1.5625 from below. Thus,
somewhat surprisingly, Greedy is not 1.5-competitive.

1 The paper [10] is an extended version of [8].

123



Algorithmica (2016) 74:156–176 161

2.1 Greedy Algorithms and Upper Bounds

As noted in the introduction, in this case preemptions are not necessary. We may
furthermore assume that whenever a job arrives and there is an idle machine, the job
is assigned to some idle machine. We call such an algorithm greedy-like.

Fact 2.1 Every greedy-like algorithm is 2-competitive.

Proof Let Alg be a greedy-like algorithm. Consider the following charging from the
optimum schedule to Alg’s schedule. Upon arrival of a job j that is in the optimum
schedule, charge j to itself in Alg’s schedule if Alg completes j ; otherwise charge j
to the job Alg is running on the machine where the optimum schedule assigns j . As
every Alg’s job receives at most one charge of either kind, Alg is 2-competitive. ��

We also note that some of these algorithms are indeed no better than 2-competitive:
If there is onemachinewith speed 1 and the remainingm−1 have speeds no larger than
1
m , an algorithm that assigns an incoming job to a slow machine whenever possible
has competitive ratio no smaller than 2− 1

m . To see this, consider an instance in which
m − 1 successive jobs are released, the i-th of them at time i − 1, followed by m
jobs all released at time m − 1. It is possible to complete them all by assigning the
firstm −1 jobs to the fast machine, and then the remainingm jobs each to a dedicated
machine. However, the algorithm in question will not complete any of the first m − 1
jobs before the remaining m are released, so it will complete exactly m jobs.

Algorithm Greedy: Upon arrival of a new job: If some machine is idle, schedule the
job on the fastest idle machine. Otherwise reject it.

While we cannot show that Greedy is better than 2-competitive in general, we
think it is a good candidate for such an algorithm. We support this by showing that it
is optimal for m = 2.

Theorem 2.2 Greedy is 4/3-competitive algorithm for interval scheduling of unit
size and weight jobs on 2 related machines.

Proof Consider a schedule of Greedy and split it into non-overlapping intervals
[Ri , Di ) as follows. Let R1 ≥ 0 be the first release time. Given Ri , let Di be the first
time after Ri when each one of the machines has the property that it is either idle,
or it has just started a new job (the case that it just completed a job and did not start
a new job is contained in the case that it is idle). Given Di , Ri+1 is defined if there
exists at least one job with a release time in [Di ,∞). In this case, let Ri+1 be the
first release time that is larger than or equal to Di . If Ri+1 > Di , then obviously no
job is released in the interval [Di , Ri+1), and both machines are idle during this time
interval. If Di = Ri+1, then at least one job is released at time Di , and at least one
machine of Greedy starts a new job at this time. By the definition of the values Ri

and the algorithm, at least one machine of Greedy (i.e., machine M1) starts a job at
time Ri , for all values of i ≥ 1 such that Ri is defined.

We consider an optimal schedule Opt. We will compare the number of jobs started
by Greedy and by Opt during one time interval [Ri , Di ). First, we will show that
the number of jobs that Opt starts can be larger than the number of jobs that Greedy
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can start by at most 1. Next, we will show that if Greedy started one or two jobs,
then the number of jobs that Opt started cannot exceed that of Greedy. This will
show that during each [Ri , Di ), Opt starts at most 4/3 times the number of jobs that
Greedy does, which will imply the claimed competitive ratio. Thus, in what follows,
we discuss a specific time interval [Ri , Di ).

Consider a maximal time interval that a machine M� of Greedy is busy. Since all
jobs are unit jobs, the number of jobs that Opt starts during this time interval on M�

does not exceed the number of jobs that Greedy runs on M� during this interval. On
the other hand, if a machine is idle during a (maximal) time interval [t1, t2) (where
t1 < t2 ≤ Di ), then no jobs are released during (t1, t2), so Opt does not start any jobs
during (t1, t2). If t1 = Ri , then [t1, t2) must be an interval of idle time on M2 (since
M1 is not idle at time Ri ), and Opt possibly starts a job at time t1. If t1 > Ri , then
we claim that no job is released at time t1. Assume by contradiction that a job j is
released at this time. If Greedy does not run j , then we get a contradiction, since
it has an idle machine at time t1. Thus, it runs j on the other machine, and we find
that the time t1 is such that one machine is idle, and the other one just started a job.
Thus, by the definition of Ri we get Ri ≤ t1, a contradiction as well. Thus, Opt can
start as most as many jobs as Greedy during the time intervals that both machines of
Greedy are running jobs, and it can start at most one job during all intervals that a
machine of Greedy is idle.

If Greedy starts only one job in [Ri , Di ), then exactly one job is released at time
Ri , and no jobs are released during (Ri , Di ), so Opt can start at most one job during
[Ri , Di ). Consider the case that Greedy starts two jobs in [Ri , Di ). In this case, the
first job is started on M1 at time Ri . If no job is started on M2 strictly before the time
Ri + 1

s1
, then Di = Ri + 1

s1
, contradicting the assumption that a second job is started

by Greedy during [Ri , Di ). Since M1 is idle during the time [Ri + 1
s1

, Di ), no jobs
are released during this time interval (this time interval can be empty if s1 = s2 and
both jobs are released at time Di ). Since s1 ≥ s2, Opt cannot start more than one job
on each machine during [R,Ri + 1

s1
), and thus it starts at most two jobs as well. This

completes the proof. ��

2.2 Lower Bounds

We give two lower bounds, for any deterministic algorithmAlg and for Greedy that,
with the number of machines tending to infinity, tend to 3/2 and 25/16 respectively
from below. In this section we see an offline solution as an adversary. For both con-
structions, we have m machines with geometrically decreasing speeds (as a function
of the indices). The instance has two sets of jobs. The first part, Im , is the set of jobs
that both the algorithm and the adversary complete. The other part, Em , consists of
jobs that are completed only by the adversary.

Intuitively, the instance (Im, Em) for the general lower bound can be described
recursively. The set Im contains m jobs that are called leading that are released in
quick succession, so that no two can be assigned to the same machine. The adversary
schedules these m jobs on different machines, cyclically shifted, so that one of them
finishes later than in Alg but the remaining m − 1 finish earlier. For each one of these
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Greedy
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Greedy

Adv

Greedy

Adv

M1

M2

M3

j1

j2

j3

e2

e3

j1

j2

(I1, E1)

(I2, E2)

R3 R2R1

Fig. 1 The instance (I3, E3) as applied to Greedy. The leading jobs of I3 are gray. Common jobs in
Greedy and Adv schedule are joined using dotted lines. Jobs that only Adv completes are thicker. In this
figure, for simplicity we have used one common value εi = ε (i = 1, 2, 3). We will argue later that this is
sufficient for Greedy

m − 1 jobs, upon its completion, the adversary releases and schedules a job from Em ;
the adversary maintains the invariant that at the time of release of any of these jobs
from Em , all the machines are busy in the schedule of Alg. To ensure this, the instance
Im also contains m − 1 subinstances I1, . . . , Ik−1 (which recursively contain further
subinstances themselves). Each subinstance Ii is released at a time when m − i of the
leading jobs are still running, and its jobs occupy the machines of Alg when the job
of Em arrives. The main technical difficulty lies in ensuring this property no matter
how Alg assigns the leading jobs of Im or of any subinstance. We need to make the
offsets of the leading jobs geometrically decreasing in the nested subinstances, and
adjust the timing of the subinstances carefully depending on the actual schedule.

This construction for k = 3 with |I3| = 7 and |E3| = 3 as applied to Greedy is
illustrated in Fig. 1; the constructions for k = 1, 2 appear as subinstances of a single
job (|I1| = 1, E1 = ∅) and of four jobs (|I2| = 3, |E2| = 1) respectively. ForGreedy,
we of course know in advance how any leading job will be scheduled (on the fastest
availablemachine) and it is straightforward to determine the timing of the subinstances
I1 and I2 to ensure that the machines are busy when e2 and e3 arrive. In fact, as we
will see below, for Greedy we can slightly improve upon this construction.

Theorem 2.3 Let Alg be an online algorithm for interval scheduling of unit size and
unit weight jobs on m related machines. Then the competitive ratio of Alg is at least
(3 · 2m−1 − 2)/(2m − 1).

Proof Following Sect. 2.1, we may assume that Alg is greedy-like. Let Adv denote
the schedule of the adversary which we construct along with the instance.

Fix m, the number of machines and the speeds sk = 4−k . Thus a job processed
on Mk takes time 1

sk
= 4k . Let Mk = {M1, . . . , Mk} denote the set of k fastest

machines from M. For k = 1, . . . ,m, let εk = mk−m−1. Note that εk < 1 and
kεk < mεk = εk+1 for all k < m, while εm = 1

m . To prove the bound, we are going to
inductively construct a sequence of instances (I1, E1), (I2, E2), …, (Im, Em). Each
instance Ik is run by both Alg and Adv on machines Mk .

The precondition for invoking an occurrence of (Ik, Ek) at time Rk is that the
machines in M\Mk in the schedule of Alg are busy with already released jobs

123



164 Algorithmica (2016) 74:156–176

throughout the interval [Rk, Rk + 1
sk

+ kεk), whereas the machines in Mk are idle
starting from time Rk for both Adv and Alg. All jobs of (Ik, Ek) will be released in
[Rk, Rk + 1

sk
+ kεk).

Now we describe the recursive construction of Ik and Ek together with the sched-
ule of Adv. The construction depends on the actual schedule of Alg before the
current time; this is sound, as during the construction the current time only increases.
(Note that this also means that different occurrences of (Ik, Ek) may look slightly
different.)

The first k jobs of Ik are called its leading jobs and are denoted by j1, j2, . . . , jk . For
i = 1, . . . , k, the job ji is released at time Rk + iεk < Rk + 1. When the last of these
jobs arrives, which is before any of them can finish since si < 1 for i = 1, . . . ,m, it is
known where ALG assigned each of the jobs and exactly when they will finish. Alg
assigns all the leading jobs to machines in Mk in one-to-one correspondence, since
Alg is greedy-like (and we assume the precondition holds). Denote the completion
time of the leading job on machine Mi of Alg by Ci for i = 1, . . . , k.

For i = 1, . . . , k−1,Adv schedules ji on the machine whereAlg schedules ji+1;
Adv schedules jk on the machine where Alg schedules j1. Hence, at time Ci + kεk ,
Adv still has at most k − i unfinished leading jobs of Ik left, which are running on the
slowest machines of Mk .

We have

Ci+1 − Ci > 4i+1 − 4i − kεk > 2 · 4i + iεi (1)

> kεk, (2)

using that iεi < kεk ≤ 1 for 1 ≤ i < k ≤ m. By (2), there will be exactly k − 1
disjoint intervals of length εk in [Rk, Rk + 1

sk
+ kεk] of the form [Ci − εk,Ci ] in

which Alg has one more unfinished leading job than Adv. We call these intervals
good intervals.

For each i = 1, . . . , k − 1 in increasing order, we now do the following. If [Ci −
εk,Ci ] is good, release an extra job at timeCi −εk .Adv schedules this job onmachine
Mi . Regardless of whether [Ci − εk,Ci ] is good, let

Ri := Ci+1 − 1

si
− iεi , (3)

and construct recursively an occurrence of the instance (Ii , Ei ), includingAdv sched-
ule, at time Ri . Note that the precondition for (Ik, Ek) plus the fact that there are still
k − i leading jobs running in the whole interval [Ri ,Ci+1] (due to 1) implies that the
precondition holds for the subinstance (Ii , Ei ) as well.

For the rest of the construction and of the proof, let (Ii , Ei ) denote this particular
occurrence. Denote the set of the k − 1 extra jobs released in good intervals by E0.
Finally, let Ik = { j1, j2, . . . , jk} ∪ I1 ∪ · · · ∪ Ik−1 and Ek = E0 ∪ E1 ∪ · · · ∪ Ek−1.
This completes the description of (Ik, Ek). ��
Claim 2.4 If the precondition holds, both Alg and Adv complete all jobs from Ik on
machines Mk no later than Rk + 1

sk
+ kεk .
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Proof This follows for the leading jobs of Ik since all these jobs are released no later
than at time Rk + kεk (and since the k fastest machines are idle for bothAlg andAdv
by the precondition), and for the other jobs from the fact that (Ii , Ei ) is released at
time Ci+1 − 1

si
− iεi , meaning all jobs in Ii complete by time Ci+1 by induction in

both the schedule of Alg and Adv; in particular, all jobs in Ik−1 complete by time
Ck ≤ Rk + 1

sk
+ kεk . ��

The following claim implies that Alg cannot schedule any extra job. Notice that
an extra job of (Ik, Ek) is released at time Ci − εk for some i ≤ k.

Claim 2.5 For any occurrence of (Ik, Ek), if the precondition holds at time Rk , then
for any i ≤ k, at time Ci − εk , all machines fromM are busy running jobs in Alg.

Proof Consider any i ≤ k. Machines Mi , i > k are busy in Alg by the precondition.
Machines Mi , …, Mk are running the leading jobs of (Ik, Ek) by the construction. We
now use induction on k to prove that machines from Mi−1 are busy. If i = 1, this is
trivial.

Let i > 1. The leading job of (Ii−1, Ei−1) (i.e., the occurrence of (Ii−1, Ei−1)

from the construction of (Ik, Ek) released at Ri−1 = Ci − 1
si−1

− iεi−1) scheduled by

Alg on Mi−1 completes at some timeC ′ ∈ [Ci − (i −1)εi−1,Ci ], by the construction
of the leading jobs. By the induction assumption for (Ii−1, Ei−1), at time C ′ − εi−1
all machines are busy in Alg. Since the jobs these machines are running are from
(Ii−1, Ei−1), by Claim 2.4 used for (Ii−1, Ei−1) they complete by Ci . Thus they must
be running already before time Ci − εk , as εk < 1. Since C ′ − εi−1 ≥ Ci − iεi−1 ≥
Ci − εk , they are running also after Ci − εk and thus also at Ci − εk . ��

The input for the algorithm is now simply one instance of (Im, Em); we set Rm = 0.
For this instance, the precondition trivially holds.

As noted above (below (3)), this implies that the precondition also holds for all
subinstances (Ii , Ei ).

Finally, by Claim 2.5, Alg does not run any extra job, while Adv runs all of
them since they are released in good intervals. It remains to count the number of
jobs in Ik and Ek . We claim that |Ik | = 2k − 1 and |Ek | = 2k−1 − 1. This is clear
for k = 1, since |I1| = 1 and E1 = ∅. Using the inductive assumption, we get
|Ik | = k+∑k−1

i=1 |Ii | = k+∑k−1
i=1 (2i −1) = 2k −1 and |Ek | = k−1+∑k−1

i=1 |Ei | =
k − 1 + ∑k−1

i=1 (2i−1 − 1) = 2k−1 − 1. Hence the competitive ratio of Alg is at least(
(2m − 1) + (2m−1 − 1)

)
/(2m − 1) = (3 · 2m−1 − 2)/(2m − 1). ��

The second lower bound is higher, however it only works for Greedy. We observe
that cyclic shift of the leading jobs may not be the best permutation for the adversary.
Instead, we create triples of machines of equal speeds (among the three machines of
the triple) and shift the jobs cyclically among the triples. That is, the permutation of
the leading jobs has three independent cycles of lengthm/3. There is one triple where
the speeds are not equal, and this is the set of the three fastest machines for which we
use different speeds and the previous construction as a subinstance.

Consider the previous construction I as applied to Greedy, as shown for three
machines in Fig. 1. We make two changes. The first change is already shown in Fig. 1:
sinceGreedy prefers faster machines, we now set εi = ε = 1

m at every recursive step
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of the construction. We denote the modified version of (Ik, Ek) by (I ′
k, E

′
k) for all k.

For any instance (I ′
i , E

′
i ), assuming the precondition (with εi replaced by ε) for time

R′
i ,Greedy assigns leading job j ′i which arrives at time R′

i + iε to machine Mi . Thus
in the construction of (I ′

k, E
′
k), as in (3) we let R′

i = Ci+1 − iε − 1
si
and thus ensure

that Greedy completes j ′i at exactly the same time as the leading job on machine
Mi+1 in the schedule of Greedy for (I ′

k, E
′
k). This defines the input I

′.
Using the same cyclically shifted assignment as before, the only machine where

Adv completes leading jobs later than (or at the same time as) Greedy is M1, on all
other machines it completes each leading job ε time earlier. By induction, it is straight-
forward to show that when Greedy completes any leading job on some machine Mi ,
it also completes a leading job on machines M1, . . . , Mi−1 at exactly the same time.
It follows (also by induction) that ε time before the leading job of the top-level subin-
stance (Ii , Ei ) completes (i = 1, . . . , k − 1), all machines of Greedy are busy,
whereas i machines of Adv are idle, namely machines M2, . . . , Mi+1.

We now further modify I ′ as follows. Every machine M4, . . . , Mk is replaced by a
cluster of three machines of identical speed. E.g., machine M4 of speed s4 is replaced
by three machines of speed s4. Every time that one job of I ′

k which is scheduled by
Greedy on some machine Mi , i > 3 or a job of E ′

k arrives which is only scheduled by
Adv on some machine Mi , i > 3, we instead let three jobs arrive simultaneously. For
Greedy, as explained above this means that every leading job j ′i for i > 3 is replaced
by three simultaneous jobs. Every extra job which Adv puts on some machine Mi ,
i > 3 is also replaced by three jobs.

On the other hand, every time that a subinstance (I ′
1, E

′
1) or (I ′

2, E
′
2) is invoked

within some instance (I ′
k, E

′
k) for k > 3 in I ′, we omit this invocation and let no jobs

arrive. (Thus these two subinstances are only invoked to create instances (I ′
3, E

′
3), and

(I ′
1, E

′
1) is only invoked to create (I ′

2, E
′
2).) This defines the input I

′′, cf. Fig. 2.
Since Greedy prefers faster machines and no two jobs arrive simultaneously in I

or I ′ by construction and by using the precondition, this means that the schedule of
Greedy for I ′′ is determined exactly by its schedule for input I ′: the schedule for
machines M1, M2, M3 remains the same, apart from omitting jobs that do not arrive
in I ′′, whereas for i > 3, the schedule for each machine of speed si is the same as the
schedule for the single machine of speed si in I ′.

Fig. 2 An instance of (I ′′5 , E ′′
5 ). The figure shows the schedule of Greedy, using the same conventions

as before. The value of ε is exaggerated in this figure for clarity; in the actual construction, the first (left
most) nine jobs all overlap. On the left and in the middle, groups of three leading jobs are marked, which
the adversary schedules on the machines indicated by the arrows. In particular, the last three leading jobs
of (I ′′5 , E ′′

5 ) are scheduled later by Adv than by Greedy, which is why there is no reason to invoke
constructions of (I ′′1 , E ′′

1 ) and (I ′′2 , E ′′
2 ) there. In the two instances of (I ′′3 , E ′′

3 ) that are marked by the
dotted lines, the schedule of the adversary is as in the previous figure
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Adv again uses a cyclically shifted schedule, but now for k > 3, jobs are shifted in
groups of three: each job that Greedy assigns to a machine of speed si is assigned to
a machine of speed si+1 for i = 2, . . . , k − 1; the leading jobs of Ik on M1, M2, M3
are assigned to machines of speed s4, and the leading jobs of Ik on the machines of
speed sk are assigned to M1, M2, M3. This in particular means that the leading jobs
on the three slowest machines complete later in the schedule ofAdv than inGreedy,
which explains why we do not create subinstances (I1, E1) and (I2, E2) here: there
is no point in occupying the faster machines when the leading jobs on M2 and M3
complete in the schedule of Greedy, since Adv is still busy running them.

It follows immediately that Greedy schedules all the jobs in I ′′
m and none of the

jobs in E ′′
m , and it remains to calculate the numbers of these jobs. We claim that for

k > 3, |I ′′
k | = 16 · 2k−4 − 3 and |E ′′

k | = 9 · 2k−4 − 3. For k = 4, we indeed have
|I ′′
4 | = 6 + |I ′′

3 | = 13 (there are six leading jobs, and only one subinstance, namely
I ′′
3 ) and |E ′′

4 | = 6 (three jobs in E ′′
3 and three jobs for the leading jobs on the machines

of speed s4). For k > 4, using the inductive assumption,

|I ′′
k | = 3(k − 2) +

k−1∑

i=3

|I ′
i | = 3(k − 2) + 7 + 16

k−5∑

i=0

2i − 3(k − 4) = 16 · 2k−4 − 3

and

|E ′′
k | = 3(k − 3) +

k−1∑

i=3

|E ′
i | = 3(k − 2) + 9

k−5∑

i=0

2i − 3(k − 4) = 9 · 2k−4 − 3.

Theorem 2.6 The competitive ratio of the Greedy algorithm for interval scheduling
of unit size and unit weight jobs on m = 3(k − 2) related machines is at least (25 ·
2k−4 − 6)/(16 · 2k−4 − 3) for k > 3.

Proof From the above equalities, the competitive ratio of Greedy is at least ((16 ·
2k−4 − 3) + (9 · 2k−4 − 3))/(16 · 2k−4 − 3) = (25 · 2k−4 − 6)/(16 · 2k−4 − 3). ��

3 A Constant Competitive Algorithm for Two Input Classes

In this section we consider two types of instances. The first type are jobs of equal sizes
(of 1), whose weights can be arbitrary. We also consider f -benevolent input instances
with a fixed function f .

Algorithm Alg: On arrival of a new job j , do the following.

1. Use an arbitrary idle machine if such a machine exists.
2. Otherwise, if no idle machines exist, preempt the job of minimum weight among

the jobs running at time r( j) having a weight less thanw( j)/2, if at least one such
job exists.

3. If j was not scheduled in the previous steps, then reject it.
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Note that we do not use the speeds in this algorithm in the sense that there is
preference of slower or faster machines in any of the steps. But clearly, the eventual
schedule depends on the speeds, since they determine whether a job is still running at
a given time.

Definition 3.1 A chain is a maximal sequence of jobs j1, . . . , jn that Alg runs on
one machine, such that jk is preempted when jk+1 arrives (k = 1, . . . , n − 1). Let
[rk, dk) be the time interval in which jk is run (k = 1, . . . , n), and let wk = w( jk),
pk = p( jk).

For a job j ′ thatAlg runs, we let d( j ′) be themaximum time such that the algorithm
runs j ′ during [r( j ′), d( j ′)). If j ′ = j� of some chain, then by the definition of chains,
d( j ′) = d�.

Observation 3.2 For a chain j1, . . . , jn thatAlg runs onmachine i , j1 starts running
on an idle machine, and jn is completed by Alg. Then it holds that rk = r( jk),
dn − rn = pn/si , and for k < n, dk − rk < p( jk)/si and dk = rk+1 hold.

The following observation holds due to the preemption rule.

Observation 3.3 For a chain j1, . . . , jn, 2wk < wk+1 for 1 ≤ k ≤ n − 1.

Consider a fixed optimal offline solution Opt, that runs all its selected jobs to
completion. We say that a job j that is executed by Opt is associated with a chain
j1, . . . , jn if Alg runs the chain on the machine where Opt runs j , and j is released
while this chain is running, i.e., r( j) ∈ [r1, dn)).
Claim 3.4 Every job j that is executed by Opt, such that j is not the first job of any
chain of Alg, is associated with some chain.

Proof Assume that j is not associated with any chain. The machine i that is used to
execute j in Opt is therefore idle at the time r( j), as otherwise j would have been
associated with the chain running at this time on machine i . Thus, j is assigned in step
1 (to some idle machine that is not machine i), and it is the first job of a chain. ��

Thus, in particular, every job run by Opt but not by Alg is associated with a chain.
We assume without loss of generality that every job in the instance either belongs to a
chain or is run by Opt (or both), since other jobs have no effect on Alg and on Opt.

For the analysis, we assign the weight of every job thatOpt runs to jobs and chains
ofAlg, and analyse the total weight of jobs assigned to a given chain compared to the
weight of its last job (thatAlg completes). The chain can receiveweight assignments as
an entire chain, but its specific jobs can also receiveweight assignment. The assignment
of the weight of a job j is split between j (it will be counted later towards the weight
assigned to the chain that it belongs to in Alg) and the entire chain of Alg that j is
associated with, where one of the two parts can be zero. In particular, if Alg does not
run j then the first part must be zero, and if j is not associated with a chain then the
second part must be zero. The assignment is defined as follows. Consider job j that
Opt runs on machine i .
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1. If j is not associated with any chain, then assign a weight of w( j) to j .
2. If j is associated with a chain of Alg (of machine i), then let j ′ be the job of the

chain such that r( j) ∈ [r( j ′), d( j ′)). Assign a min{w( j), 2 · w( j ′)} part of the
weight of j to this chain, and assign the remaining weight max{w( j)−2 ·w( j ′), 0}
to j itself.

For unit jobs, given a job j ′ that belongs to a chain, there is at most one job j
assigned to this chain such that r( j) ∈ [r( j ′), d( j ′)), since Opt cannot complete any
job on this machine before time d( j ′) if it is released no earlier than time r( j ′). For
an f -benevolent instance, multiple jobs that are associated with a chain on a machine
i can be released while a given job j ′ of that chain is running, but we claim that only
the last one can possibly have weight above w( j ′). Consider a job j that Opt runs on
i , that is released during [r( j ′), d( j ′)), and such that there exists at least one other job
with the same properties that is released later. Job j satisfies r( j) + p( j)

si
≤ d( j ′) and

r( j) ≥ r( j ′), so p( j) ≤ p( j ′) and therefore w( j) ≤ w( j ′) by the C-benevolence
of f . The complete weight of j is assigned to the chain. If there exists a job j̃ thatOpt
runs on i , that is released during [r( j ′), d( j ′)), but is completed by Opt after time
d( j ′), then j̃ may have some weight assigned to itself, if its weight is above 2w( j ′);
however, this can happen only if Alg runs this job on another machine, as we now
show. If Alg does not run j̃ , then Alg does not preempt any of the jobs it is running,
including the job j ′ on the machine that Opt runs j̃ on, then w( j̃) ≤ 2w( j ′) (and the
weight of j̃ is fully assigned to the chain it is associated with ). If Alg runs a job j̃ on
the same machine as Opt, then j̃ = j ′ must hold, and the weight of j̃ is completely
assigned to the chain (and not assigned to itself).

For any chain, we can compute the total weight assigned to the specific jobs of the
chain (excluding the weight assignment to the entire chain).

Claim 3.5 For a chain j1, . . . , jn that Alg runs on machine i , the weight assigned to
j1 is at most w1. The weight assigned to jk for 2 ≤ k ≤ n is at most wk − 2wk−1. The
total weight assigned to the jobs of the chain is at most wn − ∑n−1

k=1 wk .

Proof The property for j1 follows from the fact that the assignedweight never exceeds
the weight of the job. Consider job jk for k > 1. Then wk > 2wk−1 by Observation
3.3. If there is a positive assignment to jk , then the machine i ′ where Opt runs jk
is not i . At the time rk all machines are busy (since the scheduling rule prefers idle
machines, and jk preempts jk−1). Moreover, the job j ′ running on machine i ′ at time
rk satisfies w( j ′) ≥ wk−1. Thus jk is assigned wk − 2 · w( j ′) ≤ wk − 2wk−1. The
total weight assigned to the jobs of the chain is at most w1 + ∑n

k=2 (wk − 2wk−1) =
w1 + ∑n

k=2 wk − 2
∑n−1

k=1 wk = ∑n
k=1 wk − 2

∑n−1
k=1 wk = wn − ∑n−1

k=1 wk . ��
For a job j that has positive weight assignment to a chain of Alg it is associated

with (such that the job j ′ of this chain was running at time r( j)), we define a pseudo-
job π( j). The only goal of pseudo-jobs is to bound the total weight assigned to a chain
(excluding the weight that is assigned to specific jobs of the chain). The pseudo-job
π( j) will have a weight w(π( j)) that is equal to the amount of the weight of j that
is assigned to the chain associated with j , and since this weight may be smaller than
w( j), its size p(π( j)) may be smaller than p( j). The pseudo-job π( j) has the same
release time as j and its weight is min{w( j), 2 · w( j ′)}.
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If the input consists of unit jobs, then the size of π( j) is 1. If the instance is f -
benevolent, then the size p (π( j)) of π( j) is such that f (p (π( j))) = w(π( j)). We
let p (π( j)) = f −1 (w(π( j))). Note that this is well defined due to f ’s continuity
and monotonicity in (0,∞); in particular p(π( j)) = p( j) if w(π( j)) = w( j) and
otherwise, when w( j) > 2w( j ′), p(π( j)) is a unique number in

(
p( j ′), p( j)

)
.

Definition 3.6 For a given chain j1, . . . , jn of Alg running on machine i , an alt-

chain is a set of jobs or pseudo-jobs j ′1, . . . , j ′n′ such that r( j ′k) ≥ r( j ′k−1) + p( j ′k−1)

si
for 2 ≤ k ≤ n′, r( j ′1) ≥ r1, r( j ′n′) < dn , (that is, all jobs of the alt-chain are released
during the time that the chain of Alg is running, and they can all be assigned to run
on machine i in this order). Moreover, it is required that if r( j ′k) ∈ [r�, d�), then
w( j ′k) ≤ 2 · w�.

Lemma 3.7 For unit jobs, a chain j1, . . . , jn of Alg on machine i and any alt-chain
j ′1, . . . , j ′n′ satisfy

n′
∑

k=1

w( j ′k) ≤
n∑

�=1

w� + 2wn .

Proof For every job j�, there can be at most one job of the alt-chain that is released in
[r�, d�), since the time to process a job on machine i is 1

si
and thus difference between

release times of jobs in the alt-chain is at least 1
si
, while d� ≤ r� + 1

si
. However,

every job of the alt-chain j ′k must have a job of the chain running at r( j ′k). If job j ′k
of the alt-chain has r( j ′k) ∈ [r�, d�) then by definition w( j ′k) ≤ 2 · w�, which shows
∑n′

k=1 w( j ′k) ≤ 2
∑n

�=1 w�.
Using wk > 2wk−1 for 2 ≤ k ≤ n we find wk < wn

2n−k for 1 ≤ k ≤ n and
∑n−1

k=1 wk < wn . Thus
∑n′

k=1 w( j ′k) ≤ ∑n
�=1 w� + 2wn . ��

Lemma 3.8 For C-benevolent instances, a chain j1, . . . , jn ofAlg on machine i and
any alt-chain j ′1, . . . , j ′n′ satisfy

n′
∑

k=1

w( j ′k) ≤
n∑

�=1

w� + 2wn .

The proof can be deduced from a claim in the algorithm’s original analysis for a single
machine [15]. For completeness, we present a detailed proof (see Appendix).

Observation 3.9 For a chain j1, . . . , jn of Alg, the list of pseudo-jobs (sorted by
release times) assigned to it is an alt-chain, and thus the total weight of pseudo-jobs
assigned to it is at most

∑n
�=1 w� + 2wn.

Proof By the assignment rule, every job that is assigned to the chain (partially or
completely) is released during the execution of some job of the chain. Consider a
pseudo-job j assigned to the chain, and let j ′ be the job of the chain executed at time
r( j).
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The pseudo-job π( j) has weight at most min{w( j), 2 · w( j ′)}. Since the set of
pseudo-jobs assigned to the chain results from a set of jobs that Opt runs of machine
i , by possibly decreasing the sizes of some jobs, the list of pseudo-jobs can still be
executed on machine i . ��
Theorem 3.10 The competitive ratio of Alg is at most 4 for unit length jobs, and for
C-benevolent instances.

Proof The weight allocation partitions the total weight of all jobs between the chains,
thus it is sufficient to compare the total weight a chain was assigned (to the entire
chain together with assignment to specific jobs) to the weight of the last job of the
chain (the only one which Alg completes), which is wn .

Consider a chain j1, . . . , jn of Alg. The total weight assigned to it is at most

(wn −
n−1∑

k=1

wk) +
(

n∑

�=1

w� + 2wn

)

= 4wn,

wherethe first summand is an upper bound on the weight assigned to individual jobs
of the chain, by Claim 3.5, and the second one an upper bound on the weight assigned
to the chain itself, by Observation 3.9. ��

4 Lower Bound for Unit Weights and Variable Sizes

We give a matching lower bound to the upper bound of m shown in the introduction.
Note that Krumke et al. [13] claimed an upper bound of 2 for this problem, which we
show is incorrect.

Fix 0 < ε < 1
2 such that 1

ε
is integer. Our goal is to show that no online algorithm

can be better than (1 − ε)m-competitive. We define M = ( 1
ε

− 1)m and N = m3 +
Mm2 + Mm. Consider a specific online algorithm Alg.

Input One machine is fast and has speed 1. The other m − 1 machines have speed
1/N . The input sequence will consist of at most N jobs, which we identify with
their numbers. Job j will have size p( j) = 2N− j and release time r( j) ≥ j ; we let
r(1) = 1. The input consists of phases which in turn consist of subphases. Whenever
a (sub)phase ends, no jobs are released for some time in order to allow the adversary
to complete its most recent job(s). Alg will only be able to complete at most one
job per full phase (before the next phase starts). The time during which no jobs are
released is called a break. Specifically, if Alg assigns job j to a slow machine or
rejects it, then the adversary assigns it to the fast machine instead, and we will have
r( j + 1) = r( j) + p( j). We call this a short break (of length p( j)). A short break
ends a subphase. If Alg assigns job j to the fast machine, then in most cases, job
j is rejected by the adversary and we set r( j + 1) = r( j) + 1. The only exception
occurs when Alg assigns m consecutive jobs to the fast machine (since at most N
jobs will arrive, and p( j) = 2N− j , each of the first m − 1 jobs is preempted by Alg
when the next job arrives). In that case, the adversary assigns the first (i.e., largest)
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of these m jobs to the fast machine and the others to the slow machines (one job per
machine). After them-th job is released, no further jobs are released until the adversary
completes all thesem jobs. The time during which no jobs are released is called a long
break, and it ends a phase. The input ends after there have been M long breaks, or if
m2 + bm short breaks occur in total (in all phases together) before b long breaks have
occurred. Thus the input always ends with a break.

Before giving the details of the analysis, we give a sketch of its structure together
with the proofs of some simple properties.Wewill show that if there arem2+bm short
breaks in total before the b-th long break, then Alg can complete at most b − 1 + m
jobs from the input (one per long break plus whatever jobs it is running when the input
ends), whereas Opt earns m2 + bm during the short breaks alone. This implies a ratio
of m and justifies ending the input in this case (after the (m2 + bm)-th short break).

If the M-th long break occurs, then the input stops. In this case,Alg has completed
at most M jobs and can complete at most m − 1 additional ones. Opt completes
at least Mm jobs in total (not counting any short breaks). The ratio is greater than
Mm/(M + m) = (1 − ε)m for M = ( 1

ε
− 1)m.

For every long break there is a unique critical job that determines its length; this
is the second largest of the m jobs. Precisely, if the last m jobs released before the
long break are j, . . . , j + m − 1, then the break has length Np( j + 1) − (m − 2) =
Np( j)/2 − m + 2 = N2N− j−1 − m + 2 (and we set r( j + m) to be r( j + m − 1)
plus this last value). We show that it is indeed possible to complete all jobs until
time r( j + m). The adversary assigns job j to the fast machine, where it requires
time p( j) − (m − 1) starting from the beginning of the break (the break starts at
time r( j + m − 1)). Using p( j) − (m − 1) < Np( j)/2 − (m − 2), we see that
this job completes before r( j + m). After this, for k = 1, . . . ,m − 1, job j + k is
released at time r( j + k), has size p( j)/2k and after time r( j + m − 1) it requires
time Np( j)/2k − (m − 1 − k) ≤ Np( j)/2 − (m − 2), where the inequality is easily
proved using N > 4m. Note that we have r( j + m) = r( j) + 1 + Np( j)/2.

We show that at most N jobs will be released as claimed. This holds because
between each long break and the previous break (short or long), m jobs are released,
and between any short break and the previous break (short or long), at most m jobs
are released, out of which the last one is assigned to a slow machine by Alg, and the
previous ones are all assigned to the fast machine. Since there are at most m2 + Mm
short breaks, at most m3 + Mm2 jobs are released before short breaks, for a total of
m3 + Mm2 + Mm = N jobs.

Observation 4.1 The length of short breaks and critical jobs are decreasing at least
geometrically: after a short break (critical job) of length x, the next short break (critical
job) has length at most x/2 (x/2m).

For a long break b, let tb be the arrival time of the largest job jb that the adversary
completes during this break. The critical job of this break is then job jb + 1. If the
adversary does not create any long breaks, we let t1 be the time at which the last short
break (i.e., the input) finishes, and j1 be the index of the last job that arrived plus one.

Lemma 4.2 For b = 1, . . . , M, the following statements hold.
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(i) The input ends before time tb + 2N− jb+1(N − 1).
(ii) No job that is running on a slow machine in the schedule of Alg can complete

before the input ends.

Proof (i) If there are no long breaks, this holds trivially. Else, the critical job of long
break b takes time 2N− jb−1N to process on a slow machine, so the total time used by
the adversary to process all the critical jobs that are released after time tb is at most
2N− jb−1N (1+2−m +2−2m +· · · ) = 2N− jb−1N/(1−2−m) by Observation 4.1. The
total length of all short breaks after time tb is at most 2N− jb−m(1+1/2+1/22+· · · ) <

2N− jb−m+1 by Observation 4.1 and because the first job which is released after long
break b has size exactly 2N− jb−m . At most N other jobs are released at 1 time unit
intervals. The total time that can pass after time tb until the input ends is thus at most
2N− jb−1N
1−2−m + 2N− jb−m+1 + N . This is less than 2N− jb+1(N − 1) if

N

(
2m

2m − 1
+ 2 jb+1−N

)

+ 22−m < 4N − 4

Using jb ≤ N , this holds if N (2 − 2m
2m−1 ) > 22−m + 4, which is true for N >

4 · 2m+1
2m · 2m−1

2m−2 = 4 · 22m−1
22m−2m+1 . For m ≥ 2, this last expression is at most 8, and we

have N > m3 ≥ 8.
(ii) If tb = 1, there is nothing to show: Alg does not run any job of the first phase

on a slow machine. If b > 1 and there are no jobs between long break b − 1 and
the jobs that the adversary completes during long break b, then the claim follows by
induction: no new jobs were started by Alg on slow machines after the previous long
break.

In the remaining cases (including the case where there are no long breaks), job
jb − 1 was placed on a slow machine by Alg and caused a short break. Thus it
was released at time tb − 2N− jb+1 and Alg can complete it at the earliest at time
tb − 2N− jb+1 + 2N− jb+1N = tb + 2N− jb+1(N − 1), by which time the input has
ended by (i).

If b > 1, then by induction, no job that was released before the jobs which led to
long break b − 1 can be completed by Alg on a slow machine before the input ends.
We will now lower bound the completion time of the other (more recent) jobs on the
slow machines (if they exist), also for the case b = 1. Each such job caused a short
break.

We first consider a simple case, where all these jobs were released consecutively
immediately before the jobs which led to long break b. In this case, the k-th such job
(counting backwards from time tb) was released at time tb − 2N− jb+1(1 + 2 + · · · +
2k−1) ≥ tb − k2N− jb+k and does not complete before time tb + (N − k)2N− jb+k >

tb + (N − 1)2N− jb+1, so we are again done using (i). The inequality holds because
N (2k − 2) > k2k − 2 which is true for all k ≥ 2, N ≥ k + 1.

Note that this proves that any job which is released during an arbitrarily long
sequence of consecutive short breaks that immediately precedes a long break can only
finish (on a slow machine) after the input ends. There may also be jobs that Alg
assigns to the fast machine in between. Consider all such jobs starting from the last
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one before time tb. We can insert these jobs one by one into the sequence, starting
from the end. The effect of each insertion is that the release time of all preceding jobs
is decreased by 1 compared to the calculations above, whereas their sizes are doubled.
Thus after any such job is inserted, we still have that no job which Alg is running at
time tb on a slow machine can complete before the input ends. ��
Lemma 4.3 Alg cannot complete any job on the fast machine except during long
breaks.

Proof First, consider any maximal set of consecutive jobs that Alg assigns to the fast
machine. By construction, these jobs arrive at consecutive integer times, and all except
maybe the very last one of the input has size more than 1. This shows that Alg could
only possibly complete the last job of each such set. If the set has sizem, this happens
during the long break that follows. This can be seen as follows. Consider long break
b. The adversary completes job jb + 1 which has size 2N− jb−1 on a slow machine
during this break. The job that Alg assigned to the fast machine when break b started
is job jb + m − 1, which arrives at time tb + m − 1 and has size 2N− jb−m+1. Since
m − 1 + 2N− jb−m+1 < N2N− jb , Alg completes it during the long break.

For a set of size less than m, at least one short break starts one time unit after the
last job in the set arrives. Say this last job has size 2N− j . Then the short break which
follows has size 2N− j−1, and by Observation 4.1, the total length of all possible later
short breaks is at most 2N− j−1(1+ 1/2+ · · · + 1/2−m2−Mm) < 2N− j . So the job of
size 2N− j cannot complete before either the input ends or another job is assigned by
Alg to the fast machine. ��

It follows from Lemmas 4.2 and 4.3 that after the b-th long break, Alg has com-
pleted at most b jobs (the ones that it was running on the fast machine when each long
break started), and none of the jobs that were released so far and that were assigned
to slow machines can complete before the input ends.
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Appendix: Proof of Lemma 3.8

The proof is an induction on n. Since we only consider the execution of jobs on a
specific machine i , we use terms such as “contained”, “completion time”, and “a job
is released during the execution of another job”.

Consider a chain j1, j2, . . . , jn . Let Algn = ∑n
k=1 wk be the total weight of all

jobs in this chain. Denoting by Alt∗
n the maximum possible total weight of jobs of an

alt-chain of the chain j1, j2, . . . , jn , we are to prove that

Alt∗
n ≤ Algn + 2wn .
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We are going to prove a stronger claim. Call an alt-chain proper if it is contained in
its corresponding chain, i.e., if its last job ends before dn , and letAltn be themaximum
possible total weight of jobs of a proper alt-chain of the chain j1, j2, . . . , jn . Then it
suffices to prove

Altn ≤ Algn, (4)

since any alt-chain that is not itself proper becomes proper when its last job, of weight
at most 2wn by definition of a chain and an alt-chain, is removed.

Recall that job interval of j� may be shorter than p�

si
due to a preemption. For a

chain with n jobs, every prefix can be seen as a chain as well, only the last job of the
prefix may be preempted in the complete chain.

The base case of n = 0 and an empty chain holds trivially.
Consider a chain of length n > 0. If there is no job released during [rn, dn), the last

released job has weight at most 2wn−1 by definition, and the preceding jobs form a
proper alt-chain for the chain j1, . . . , jn−1. By induction, the total profit of the entire
proper alt-chain is then at most Algn−1 + 2wn−1 < Algn .

Else, we merge all jobs released during [rn, dn) into one job. Merging the two last
jobs a and b of a proper alt-chain is done as follows. The two jobs are replaced by job
c with weight w(c) = w(a) + w(b) and size p(c) = f −1 (w(c)), determined by the
C-benevolent function f (corresponding to the instance).

The resulting job is placed so that it ends precisely at dn , the end of the chain. Note
that when c is formed by merging a and b, p(c) ≤ p(a) + p(b) since f is convex,
and therefore the job formed by merging two jobs starts no earlier than the earliest
of those jobs. This extends naturally to merges of more than two jobs. After merging
the suffix contained in [rn, dn), the resulting set of jobs forms a proper alt-chain with
smaller cardinality but the same weight. The last job has weight at most wn .

After merging the jobs contained in [rn, dn), denote the resulting job by b. If the
penultimate job a of the alt-chain ends no later than at dn−1 = rn , the jobs before b
form a proper alt-chain for the chain j1, . . . , jn−1. By induction, the total profit of the
entire proper alt-chain is then at most Algn−1 + wn = Algn .

Else, a weighs at most 2wn−1 < wn by definition of the alt-chain. Note that both
a and b weigh less than wn , and therefore have size at most pn . If a is larger than b,
swap the two jobs while preserving the end time of the later one, and the start time of
the earlier one. Rename them so that again a is followed by b. If a now finishes before
dn−1, we are done as before.

Let L be the total size of a and b, t1 the release time of a, and t2 its completion
time, t3 the release time of b, and t4 its completion time. By possibly extending b, we
can assume that t2 = t3 and t4 = dn+1. Now increase the size of b up to pn , i.e., by
pn − p(b), decreasing the size of a and the release date of b by the same amount.
As this increases the size of the larger job, by convexity of f , the total weight of a
and b does not decrease in the process. Afterwards, a and the preceding jobs form an
alt-chain properly contained in the chain j1, . . . , jn−1, while b has weight wn . We are
done by induction.
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