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Abstract

A systematic technique to bound factor-revealing linear programs is presented. We
show how to derive a family of upper bound factor-revealing programs (UPFRP), and
show that each such program can be solved by a computer to bound the approximation
factor of an associated algorithm. Obtaining an UPFRP is straightforward, and can be used
as an alternative to analytical proofs, that are usually very long and tedious. We apply
this technique to the Metric Facility Location Problem (MFLP) and to a generalization
where the distance function is a squared metric. We call this generalization the Squared
Metric Facility Location Problem (SMFLP) and prove that there is no approximation factor
better than 2.04, assuming P 6= NP. Then, we analyze the best known algorithms for the
MFLP based on primal-dual and LP-rounding techniques when they are applied to the
SMFLP. We prove very tight bounds for these algorithms, and show that the LP-rounding
algorithm achieves a ratio of 2.04, and therefore has the best factor for the SMFLP. We
use UPFRPs in the dual-fitting analysis of the primal-dual algorithms for both the SMFLP
and the MFLP, improving some of the previous analysis for the MFLP.
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1 Introduction
Let C and F be finite disjoint sets. Call cities the elements of C and facilities the elements of F .
For each facility i and city j, let ci j be a non-negative number representing the cost to connect i
to j. Additionally, let fi be a non-negative number representing the cost to open facility i. For
each city j and subset F ′ of F , let c(F ′, j) = mini∈F ′ ci j. The FACILITY LOCATION PROBLEM

(FLP) consists of the following: given sets C and F , and c and f as above, find a subset F ′

of F such that ∑i∈F ′ fi + ∑ j∈C c(F ′, j) is minimum. Hochbaum [9] presented an O(logn)-
approximation for the FLP.

A well-studied particular case of the FLP is its so called metric variant. We say that an
instance (C,F,c, f ) of the FLP is metric if ci j ≤ ci j′ + ci′ j′ + ci′ j, for all facilities i and i′, and
cities j and j′. In the context of the FLP, this inequality is called the triangle inequality. The
METRIC FLP, denoted by MFLP, is the particular case of the FLP that considers only metric
instances. Several algorithms were proposed in the literature for the MFLP [2, 5, 7, 10, 12,
13, 15, 16]. In particular, the best known algorithm for the MFLP is a 1.488-approximation
proposed by Li [13]. Also, Guha and Khuller [8] proved an inapproximability result that states
that there is no approximation algorithm for the MFLP with a ratio smaller than 1.463, unless
NP ⊆ DTIME[nO(log logn)]. This result was strengthened by Sviridenko, who showed that the
lower bound holds unless P = NP (see [17]).

The EUCLIDEAN FLP is a particular case of the MFLP also considered in the literature.
In the EUCLIDEAN FLP, one is given a position in an Euclidean space for each city and for
each facility, and the cost ci j is the Euclidean distance between the position of facility i and the
position of city j. There is a PTAS for the Euclidean FLP in 2-dimensional space, by Arora,
Raghavan, and Rao [1].

Yet another variant considered in the literature is the so called SQUARED EUCLIDEAN

FLP, denoted here by E2FLP. In this variant, as in the Euclidean case, one is given a position
in an Euclidean space for each city and for each facility. Here, the cost ci j is the square of
the Euclidean distance between the position of facility i and the position of city j. This cost
measure is known as `2

2, and was, for instance, considered by Jain and Vazirani [12, pp. 292–
293] in the context of the FLP. Their approach implies a 9-approximation for the E2FLP.

We consider instances (C,F,c, f ) of the FLP such that a relaxed version of the triangle
inequality is satisfied. We say that a cost function c is a squared metric, if, for all facilities i
and i′, and cities j and j′, we have √ci j ≤

√ci j′ +
√ci′ j′ +

√ci′ j. The particular case of the
FLP that only considers instances with a squared metric is called SQUARED METRIC FLP,
and is denoted by SMFLP. Notice that the SMFLP is a generalization of the E2FLP and of
the MFLP. Thus any approximation for the SMFLP is also an approximation for the E2FLP or
the MFLP, and the inapproximability results for the MFLP are also valid for the SMFLP. The
9-approximation of Jain and Vazirani [12] applies also to the SMFLP and, to our knowledge, it
has the best previously known approximation factor. The choice of squared metrics discourages
excessive distances in the solution. This effect is important in several applications, such as k-
means and classification problems.

Although there are several algorithms for the MFLP in the literature, there are very few
works on the SMFLP. Nevertheless, one may try to solve an instance of the SMFLP using
good algorithms designed for the MFLP. Since these algorithms and their analysis are based
on the assumption of the triangle inequality, it is reasonable to expect that they generate good
solutions also for the SMFLP. However, there is no trivial way to derive an approximation
factor from the MFLP to the SMFLP, so each algorithm must be reanalyzed individually. In
this paper, we analyze three primal-dual algorithms (the 1.861 and the 1.61-approximation
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algorithms of Jain et al. [10], and the 1.52-approximation of Mahdian, Ye, and Zhang [15]) and
an LP-rounding algorithm (Chudak and Shmoys’s algorithm [6] used in the 1.5-approximation
of Byrka and Aardal [2]) when applied to SMFLP instances. We show that these algorithms
achieve ratios of 2.87, 2.43, 2.17, and 2.04 for the SMFLP, respectively. The last approximation
factor is the best possible, as we show a 2.04-inapproximability limit for the SMFLP. This was
obtained by extending the metric case hardness results of Guha and Khuller [8].

The original analysis of the three primal-dual algorithms are based on the so called fami-
lies of factor-revealing linear programs [10, 15]. The value of a computer calculated optimal
solution for any program in this family gives a lower bound on the approximation factor. An
upper bound, however, is obtained analytically by bounding the value of every program in this
family, which requires long and tedious proofs. In this paper, we propose a way to obtain a
new family of upper bound factor-revealing programs, as an alternative technique to achieve an
upper bound. Now, the upper bound on the approximation factor is also obtained by a computer
calculated solution of a single program. We note that, for the SMFLP, our factor-revealing pro-
grams are nonlinear, since the squared metric constraints contain square roots. We tackle this
by replacing these constraints with an infinite set of linear constraints.

Recently, Mahdian and Yan [14] introduced the strongly factor-revealing linear programs.
Our upper bound factor-revealing program is similar to a strongly factor-revealing program.
The techniques involved in obtaining our program, however, are different. To obtain a strongly
factor-revealing linear program, one projects a solution of an arbitrarily large linear program
into a linear program with a constant number of variables, and guesses how to adjust the restric-
tions to obtain a feasible solution. In our approach, we define a candidate dual solution for a
program with a fixed number of variables, and obtain an upper bound factor-revealing program
directly in the form of a minimization program using only straightforward calculations. For the
case of the SMFLP, we observed that calculating the dual upper bound program is easier than
projecting the solutions on the primal. Also, we have considered the case of the MFLP, for
which the obtained lower and upper bound factor-revealing programs converge.

Our contribution is two-folded. First, we make an important step towards generalizing
the squared Euclidean distance and successfully analyze this generalization in the context of
the FLP. Second, more importantly, we propose a new technique to systematically bound
factor-revealing programs. This technique is used in the dual-fitting analysis of the primal-dual
algorithms for both the SMFLP and the MFLP. We hope that this technique can also be used
in the analysis of other dual-fitting algorithms analyzed through factor-revealing LPs.

The paper is organized as follows. In Section 2, we present the new technique analyzing
the performance of the first algorithm of Jain et al. [10] for the SMFLP. Section 3 applies the
technique in the analysis of the second algorithm of algorithm of Jain et al. [10]. Section 4
analyzes the performance of the algorithm of Mahdian, Ye, and Zhang [15] for the SMFLP. In
Section 5, we present the analysis of the algorithm of Li [13], which happens to be optimal for
SMFLP, according to the complexity result we present in Section 6. Finally we make some
concluding remarks in Section 7.

2 A new factor-revealing analysis
We analyze the algorithms of Jain et al. [10] using a new systematic factor-revealing technique.
For each algorithm, Jain et al. [10] analysis uses a family of factor-revealing LPs parameterized
by some k. The optimal value zk of the corresponding LP in the family is such that supk≥1 zk is
the approximation factor of the algorithm. Thus each value zk is a lower bound on the approx-
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imation factor and one has to analytically upper bound supk≥1 zk to obtain an approximation
factor. This is a nontrivial analysis, since it is done by guessing a general suboptimal dual solu-
tion for the LP, usually inspired by numerically obtained dual LP solutions for small values of k.
In this section, we show how to derive a family of upper bound factor-revealing programs (UP-
FRP) parameterized by some t, so that, for any given t, the optimal value xt of one such program
is an upper bound on supk≥1 zk. Obtaining a UPFRP and solving it using a computer is much
simpler and more straightforward than using an analytical proof to obtain the approximation
factor, since this does not include a guessing step and a manual verification of the feasibility of
the solution. Additionally, as a property of the UPFRPs, we may tighten the obtained factor by
solving the LP for larger values of t. In fact, in some cases (see Theorem 1 below), the lower
and upper bound factor-revealing programs converge, that is, supk≥1 zk = inft≥1 xt .

We use a UPFRP to show that, when applied to SMFLP instances, the first algorithm of Jain
et al. [10], denoted by A1, is a 2.87-approximation. For the sake of completeness, the algorithm
is described in the following.

Algorithm A1 (C,F,c, f ) [10]

1. Set U := C, meaning that every facility starts unopened, and every city unconnected.
Each city j has some budget α j, initially 0, and, at every moment, the budget that an
unconnected city j offers to some unopened facility i equals to max(α j− ci j,0).

2. While U 6= /0, the budget of each unconnected city is increased continuously until one of
the following events occur:

(a) For some unconnected city j and some open facility i, α j = ci j. In this case, connect
city j to facility i and remove j from U .

(b) For some unopened facility i, ∑ j∈U max(α j−ci j,0) = fi. In this case, open facility i
and, for every unconnected city j with α j ≥ ci j, connect j to i and remove j from U .

The analysis presented by Jain et al. [10] uses the dual fitting method. That is, their al-
gorithms produce not only a solution for the MFLP, but also a vector α = (α1, . . . ,α|C|) such
that the value of the solution produced is equal to ∑ j α j. Moreover, for the first algorithm,
following the dual fitting method, Jain et al. [10] proved that the vector α/1.861 is a feasible
solution for the dual linear program presented as (3) in [10], concluding that the algorithm is a
1.861-approximation for the MFLP. To present a similar analysis for the SMFLP, we use the
same definitions and follow the steps of Jain et al. analysis. We start by adapting Lemma 3.2
from [10] for a squared metric.

Lemma 1. For every facility i, cities j and j′, and vector α obtained by the first algorithm of
Jain et al. [10] given an instance of the SMFLP,

√
α j ≤

√
α j′+

√ci j′+
√ci j.

Proof. If α j ≤ α j′ , the inequality obviously holds. So assume α j > α j′ . Let i′ be the facility to
which the algorithm connects city j′. Thus α j′ ≥ ci′ j′ and facility i′ is open at time α j′ < α j. If
α j > ci′ j, then city j would have connected to facility i′ at some time t ≤ max(α j′,ci′ j) < α j,
and α j would have stopped growing then, a contradiction. Hence α j ≤ ci′ j. Furthermore, by
the squared metric constraint, √ci′ j ≤

√ci′ j′+
√ci j′+

√ci j. Therefore √α j ≤
√

α j′+
√ci j′+√ci j.
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A facility i is said to be γ-overtight for some positive γ if, at the end of the algorithm,

∑
j

max
(α j

γ
− ci j,0

)
≤ fi. (1)

Observe that, if every facility is γ-overtight, then the vector α/γ is a feasible solution for the
dual linear program presented as (3) in [10]. Jain et al. proved that, for the MFLP, every facility
is 1.861-overtight. We want to find a γ for the SMFLP, as close to 1 as possible, for which every
facility is γ-overtight.

Fix a facility i. Let us assume without loss of generality that α j ≥ γ ci j only for the first k
cities. Following the lines of Jain et al. [10], we want to obtain the so called (lower bound)
factor-revealing program. We define a set of variables f , d j, and α j, corresponding to facility
cost fi, distance ci j, and city contribution α j. Then, we capture the intrinsic properties of the
algorithm using constraints over these variables. We assume without loss of generality that
α1 ≤ ·· · ≤ αk. Also, we use Lemma 3.3 from [10], that states that the total contribution offered
to a facility at any time is at most its cost, that is, ∑

k
l= j max(α j− dl,0) ≤ f . Additionally, we

have the inequalities from Lemma 1. Subject to all of these constraints, we want to find the
minimum γ such that the facility is γ-overtight. In terms of the defined variables, we want the
maximum ratio ∑

k
j=1 α j/( f +∑

k
j=1 d j). We obtain the following lower bound factor-revealing

program:

zA1
k = max

∑
k
j=1 α j

f+∑
k
j=1 d j

s.t. α j ≤ α j+1 ∀ 1≤ j < k√
α j ≤

√
αl +

√
d j +
√

dl ∀ 1≤ j, l ≤ k
∑

k
l= j max(α j−dl,0)≤ f ∀ 1≤ j ≤ k

α j,d j, f ≥ 0 ∀ 1≤ j ≤ k.

(2)

The next lemma has the same statement of Lemma 3.4 in [10], but it refers to program (2).
Since the proof is the same, we omit it.

Lemma 2. Let γ = supk≥1 zA1
k . Every facility is γ-overtight.

Therefore supk≥1 zA1
k is an upper bound on the approximation factor of the algorithm for the

SMFLP. A slight modification of the example presented in Theorem 3.5 of [10] shows that this
upper bound is tight. (Take ci j = (

√
di +

√
d j +
√

αi)
2 if k ≥ i 6= j.)

Although the constraints comming from Lemma 1 are defined by square roots, they are
convex. Indeed, the next lemma, whose proof is presented in Appendix A, shows that they can
be expressed by an infinite set of linear inequalities.

Lemma 3. Given an instance of the SMFLP, for every facility i, cities j and j′, the vector α

produced by the first algorithm of Jain et al. [10] is such that, for every positive β , γ , and δ ,

α j ≤ (1+β +
1
γ
)α j′+(1+ γ +

1
δ
)ci j′+(1+δ +

1
β
)ci j.

As a consequence, for any candidate solution for program (2) not satisfying a constraint
comming from Lemma 1, there exists some violated linear inequality.

2.1 A first analysis
Our first step is to relax (2) into a linear program. For that, we adjust the objective function
as in [10], and we approximate the inequalities with square roots using inequalities given by
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Lemma 3. For simplicity, here we will use only the inequalities corresponding to β = γ = δ = 1.
With this, we will prove that supk≥1 zA1

k is not greater than 3.236. Later, we will improve the
obtained result by using a whole set of inequalities from Lemma 3, and using a more standard
factor-revealing analysis for the SMFLP. The relaxed lower factor-revealing linear program is:

ẇk = max ∑
k
j=1 α j

s.t. f +∑
k
j=1 d j ≤ 1

α j ≤ α j+1 ∀ 1≤ j < k
α j ≤ 3αl +3d j +3dl ∀ 1≤ j, l ≤ k
x jl ≥ α j−dl ∀ 1≤ j ≤ l ≤ k
∑

k
l= j x jl ≤ f ∀ 1≤ j ≤ k

α j,d j, f ,x jl ≥ 0 ∀ 1≤ j ≤ l ≤ k.

(3)

As (3) is a relaxation of (2), we have that zA1
k ≤ ẇk and thus an upper bound on supk≥1 ẇk is

also an upper bound on supk≥1 zA1
k . Solving linear program (3) using CPLEX for k = 540, we

obtain the next lemma.

Lemma 4. supk≥1 ẇk ≥ 3.220.

To obtain an upper bound on their factor-revealing linear program, Jain et al. [10] presented
a general dual solution of a relaxed version of the lower bound factor-revealing linear program.
This solution is deduced from computational experiments and empirical results for small values
of k. In their analysis, they guessed 2- and 3-step functions for a set of dual variables, and used
a long verification to show that the value of such solution was not greater than 1.861. For
the squared metric case, if we use step functions for the dual variables, the bound on the factor
would be as bad as 3.625. One can improve the obtained factor to 3.512 by guessing a piecewise
function whose pieces are either constants or hyperboles.

Instead of looking for a good general dual solution, we use an alternative analysis and
derive a linear minimization program from (3) whose feasible solutions are upper bounds on
supk≥1 ẇk. Afterwards, we give an upper bound on the approximation factor by presenting a
feasible solution for this program of value less than 3.236.

The idea is to determine a conical combination of the inequalities of (3) that imply inequal-
ity (1) for a γ as small as possible. The linear minimization program will help us to choose the
coefficients of such conical combination.

First, rewrite the third inequality of program (3), so that the right-hand side is zero. For
each j and l, we multiply the corresponding inequality by ϕ jl . Denote by A the sum of all these
inequalities, that is,

k

∑
j=1

k

∑
l=1

ϕ jl(α j−3αl−3dl−3d j)≤ 0.

The fourth and fifth inequalities of program (3) can be relaxed to the set of inequalities
∑

l
i= j(α j − di) ≤ f , one for each l such that j ≤ l ≤ k. For each j and l, we multiply the

corresponding inequality by θ jl and denote by B the inequality resulting of summing them up,
that is,

k

∑
j=1

k

∑
l= j

θ jl ∑
l
i= j(α j−di)≤

(
k

∑
j=1

k

∑
l= j

θ jl

)
f .

The coefficients of α j in A and B are, respectively,

coeffA[α j] =
k

∑
l=1

(ϕ jl−3ϕl j) and coeffB[α j] =
k

∑
l= j

(l− j+1)θ jl,
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and the coefficients of −d j in A and B are, respectively,

coeffA[−d j] =
k

∑
l=1

3(ϕ jl +ϕl j) and coeffB[−d j] =
j

∑
i=1

k

∑
l= j

θil.

Now, we sum inequalities A and B and obtain a new inequality C:

k

∑
j=1

coeffC[α j] α j−
k

∑
j=1

coeffC[−d j] d j ≤ coeffC[ f ] f . (4)

We want to find values for γ , θ jl , and ϕ jl so that the corresponding coefficients of C are
such that inequality (4) implies, for sufficiently large k, that

k

∑
j=1

α j− γ

k

∑
j=1

d j ≤ γ f . (5)

Moreover, we want γ as small as possible. To obtain inequality (5) from inequality (4), it is
enough that, for each j, coefficient coeffC[α j]≥ 1, coeffC[−d j]≤ γ , and coeffC[ f ]≤ γ . Hence,
this can be expressed by the following linear program.

yk = min γ

s.t. coeffC[α j]≥ 1 ∀ 1≤ j ≤ k
coeffC[−d j]≤ γ ∀ 1≤ j ≤ k
coeffC[ f ]≤ γ

ϕ jl ≥ 0 ∀ 1≤ j, l ≤ k
θ jl ≥ 0 ∀ 1≤ j ≤ l ≤ k.

(6)

The interested reader may observe that program (6) is the dual of a relaxed version of the
lower bound factor-revealing linear program (3). Therefore, its optimal value is an upper bound
on the optimal value of (3), that is, ẇk ≤ yk for every k.

Lemma 5. supk≥1 ẇk ≤ 3.236.

Proof. We start by observing that supk≥1 ẇk does not decrease if we restrict attention to values
of k that are multiples of a fixed positive integer t. Indeed, for an arbitrary positive integer p,
by making t replicas of a solution of (3) for k = p, and scaling the variables by 1/t, we obtain
a solution of (3) for k = pt, that is, we deduce that ẇp ≤ ẇpt . So we may assume that k has the
form k = pt with p and t positive integers, and our goal is to prove that ẇk ≤ 3.236.

We will use program (6) to obtain a tight upper bound on ẇk. The size of this program how-
ever depends on k, which can be arbitrarily large. So we will use a scaling argument to create
another linear minimization program with a fixed number (depending only on t) of variables,
and obtain a feasible solution for program (6) from a solution for this smaller program. Then,
we will show that the value of the generated solution for (6) is bounded by the value of the
small solution.

Consider variables γ ′ ∈ R+, ϕ ′jl ∈ R+ for 1≤ j, l ≤ t, and θ ′jl ∈ R+ for 1≤ j ≤ l ≤ t. For
an arbitrary n, let n̂ = d n

pe. We obtain a candidate solution for program (6) by taking

ϕ jl =
ϕ ′

ĵl̂

p
, θ jl =

θ ′
ĵl̂

p2 , and γ = γ
′. (7)
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Let us calculate each coefficient of C for this solution.

coeffC[α j] =
k

∑
l=1

(ϕ jl−3ϕl j)+
k

∑
l= j

(l− j+1)θ jl

=
k

∑
l=1

(
ϕ ′

ĵl̂

p
−3

ϕ ′
l̂ ĵ

p
)+

k

∑
l= j

(l− j+1)
θ ′

ĵl̂

p2

≥
pt

∑
l=1

(
ϕ ′

ĵl̂

p
−3

ϕ ′
l̂ ĵ

p
)+

pt

∑
l=p ĵ+1

(l− p ĵ)
θ ′

ĵl̂

p2

=
t

∑
l′=1

p(
ϕ ′

ĵl′

p
−3

ϕ ′
l′ ĵ

p
)+

t

∑
l′= ĵ+1

θ ′
ĵl′

p2

p−1

∑
i=0

(pl′− i− p ĵ)

=
t

∑
l′=1

(ϕ ′ĵl′−3ϕ
′
l′ ĵ)+

t

∑
l′= ĵ+1

θ ′
ĵl′

p2 (p2 l′− p(p−1)
2

− p2 ĵ)

≥
t

∑
l′=1

(ϕ ′ĵl′−3ϕ
′
l′ ĵ)+

t

∑
l′= ĵ+1

(l′− ĵ− 1
2
)θ ′ĵl′.

coeffC[−d j] =
k

∑
l=1

3(ϕ jl +ϕl j)+
j

∑
i=1

k

∑
l= j

θil

=
pt

∑
l=1

3(
ϕ ′

ĵl̂

p
+

ϕ ′
l̂ ĵ

p
)+

j

∑
i=1

pt

∑
l= j

θ ′
îl̂

p2

≤
t

∑
l′=1

p ·3(
ϕ ′

ĵl′

p
+

ϕ ′
l′ ĵ

p
)+

ĵ

∑
i′=1

p ·
t

∑
l′= ĵ

p ·
θ ′i′l′

p2

=
t

∑
l′=1

3(ϕ ′ĵl′+ϕ
′
l′ ĵ)+

ĵ

∑
i′=1

t

∑
l′= ĵ

θ
′
i′l′.

coeffC[ f ] =
k

∑
j=1

k

∑
l= j

θ jl =
pt

∑
j=1

pt

∑
l= j

θ ′
ĵl̂

p2 ≤
t

∑
j′=1

p ·
t

∑
l′= ĵ

p ·
θ ′j′l′

p2 =
t

∑
j′=1

t

∑
l′= ĵ

θ
′
j′l′.

Now, we want to find the minimum value of γ ′ and values for ϕ ′jl and θ ′jl such that the
candidate solution for program (6) is feasible. We may define the following linear program,
named the upper bound factor-revealing program.

ẋt = min γ ′

s.t. ∑
t
l=1(ϕ

′
jl−3ϕ ′l j)+∑

t
l= j+1(l− j− 1

2)θ jl ≥ 1 ∀ 1≤ j ≤ t

∑
t
l=1 3(ϕ ′jl +ϕ ′l j)+∑

j
i=1 ∑

t
l= j θ ′il ≤ γ ′ ∀ 1≤ j ≤ t

∑
t
j=1 ∑

t
l= j θ ′jl ≤ γ ′

ϕ ′jl ≥ 0 ∀ 1≤ j, l ≤ t
θ ′jl ≥ 0 ∀ 1≤ j ≤ l ≤ t.

(8)
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Consider an optimal solution for program (6). Replacing it in (4), that is, in inequality C,
we obtain ∑

k
j=1 α j− γ ∑

k
j=1 d j ≤ γ f . Thus, ẇk ≤ γ = yk. Now, consider an optimal solution

for program (8) and the corresponding generated solution for program (6). We obtain yk ≤ γ =
γ ′ = ẋt and conclude that ẇk ≤ ẋt , and that holds for every positive integer k.

Using CPLEX to solve program (8), we obtained ẋ800 ≈ 3.23586 < 3.236, and this con-
cludes the proof of Lemma 5.

2.2 An improved factor-revealing analysis
In Lemma 5, we obtained the minimization program (8) from a conical combination of con-
straints from program (3) that bounds the approximation factor. This process is similar to ob-
taining the dual and using a scaling argument. Indeed, we propose a systematic way to obtain
an upper bound factor-revealing program.

Consider the dual program of a traditional maximization factor-revealing linear program
for some k. Take k in the form k = pt, for a fixed t. We want to create a minimization program
that mimics the dual, but depends only on t and bounds the dual optimal value for every k.
The idea is to constrain the variables of the small program to obtain a feasible solution for the
dual program. To obtain a linear program independent of k, we scale the variables by p. The
strategy to obtain an upper bound factor-revealing program may be summarized as follows:

1. obtain the dual P(k) of the lower bound factor-revealing linear program;

2. consider a block variable x′i for variables x(i−1)p+1, . . . ,x(i−1)p+p of P(k);

3. identify each variable xi with the block variable x′di/pe scaled by p;

4. replace identified variables in P(k), canceling factors p.

Denote the resulting program by P′(t). If P′(t) depends only on t, both in number of variables
and constraints, then any feasible solution of P′(t) is an upper bound on the solution of P(pt)
for every p. Also, if it is the case that the value of P(k) is not greater than the value of P(kt), for
every t, then a solution of P′(t) for any t is also a bound on the approximation factor. Therefore,
we call P′(t) an upper bound factor-revealing program.

Although program (2) is nonlinear, we can still use the presented strategy. If the nonlinear
constraint is convex, we can approximate it by using a set of linear inequalities, and calculate
the dual normally. In order to derive a better upper bound factor-revealing linear program, this
time we will use a whole set of linear inequalities. Consider m tuples (βi,γi,δi) of positive real
numbers and Bi = 1+βi +

1
γi

, Ci = 1+ γi +
1
δi

, Di = 1+δi +
1
βi

for 1≤ i≤m. Using Lemma 3,
we insert inequalities corresponding to the given tuples, replacing the nonlinear constraint, and
obtain that zA1

k ≤ wA1
k , where wA1

k is given by

wA1
k = max ∑

k
j=1 α j

s.t. f +∑
k
j=1 d j ≤ 1

α j ≤ α j+1 ∀ 1≤ j < k
α j ≤ Biαl +Cid j +Didl ∀ 1≤ j, l ≤ k, 1≤ i≤ m
x jl ≥ α j−dl ∀ 1≤ j ≤ l ≤ k
∑

k
l= j x jl ≤ f ∀ 1≤ j ≤ k

α j,d j, f ,x jl ≥ 0 ∀ 1≤ j ≤ l ≤ k.

(9)

The following lemma gives a lower bound on the approximation factor of the algorithm for
the SMFLP using a cutting plane insertion strategy.
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Lemma 6. supk≥1 zA1
k ≥ 2.86.

Proof. Although program (2) contains nonlinear constraints, we may use linear program pack-
ages to solve it. We start by solving program (9) with a fixed number of inequalities. Then,
we employ a cutting plane insertion strategy: if the obtained solution violates some inequality
with square roots of (2), we derive a cutting plane using Lemma 3, and resolve the linear pro-
gram with this additional constraint. Using CPLEX with the cutting plane strategy, we obtained
zA1

700 ≈ 2.86099 > 2.86.

Now, we can bound the approximation factor of the algorithm using an upper bound factor-
revealing program.

Lemma 7. supk≥1 zA1
k ≤ 2.87.

Proof. It is easy to see that, for program (9), as in the proof of Lemma 5, we can restrict
attention to values of k that are multiples of a fixed positive integer t, that is, zA1

k ≤ wA1
kt , for

every positive integer t. So we assume that k has the form k = pt, with p and t positive integers.
The dual of the linear program (9) is

wA1
k = min γ

s.t. a j−a j−1 +
m
∑

i=1

k
∑

l=1
c jli−

m
∑

i=1
Bi

k
∑

l=1
cl ji +

k
∑

l= j
e jl ≥ 1 ∀ 1≤ j ≤ k

m
∑

i=1
Ci

k
∑

l=1
c jli +

m
∑

i=1
Di

k
∑

l=1
cl ji +

j
∑

l=1
el j ≤ γ ∀ 1≤ j ≤ k

k
∑
j=1

h j ≤ γ

e jl ≤ h j ∀ 1≤ j ≤ l ≤ k

a0 = ak = 0,a j,h j,e jl,c jli ≥ 0 ∀ 1≤ j, l ≤ k
1≤ i≤ m.

(10)

We can derive the upper bound factor-revealing linear program. We would like to define
variables as in equation (7). Just using a scale factor is not sufficient to preserve the variables a j
in program (10). The variables a j correspond to the ordering restrictions of primal variables α j
in program (9), and computational experiments have indicated that removing such restrictions
does not change the optimal value significantly, for large values of k. So, we could just set
a j = 0 for all j. However, we want to preserve such restrictions, as they will shortly be needed
to prove Lemma 9. To do this, we can interpolate the variables of the upper bound factor-
revealing program to obtain the variables of the lower bound program. Again, we group sets
of variables based on their indices. For that, we denote the group of a variable of index n as n̂.
Let n̂ = d n

pe and consider prime variables γ ′,a′j,c
′
jli,e

′
jli,h

′
j. We obtain a candidate solution for

program (10) by defining

γ = γ
′, a j = pa′ĵ(p ĵ− j)(a′ĵ−a′ĵ−1), c jli =

c′
ĵl̂i

p
, e jl =

e′
ĵl̂

p
, and h j =

h′
ĵ

p
. (11)

In the following, we will use definition (11) to obtain a candidate solution for program (10)
from a small set of prime variables. Then, for each constraint of program (10), we obtain the
expression formed by the dependent terms, and calculate it as a function of the considered
variables. Notice that there is an expression for each primal variable of program (9). These
expressions are analogous to the primal variables coefficients used in Lemma 5, thus, for each

9



primal variable x, we say that this is the coefficient expression for x, and we will denote it by
coeff[x].

Now we create the minimization upper bound factor-revealing program. The objective
value is obtained by applying definition (11) to the objective value of program (10). Then, for
each group of coefficient expressions that has the same value, we include a constraint in the
upper bound program that bounds the expression by the independent term. Notice that each
upper bound factor-revealing linear program constraint may correspond to an arbitrarily large
number of constraints of the factor-revealing linear program. In the following, we calculate and
bound each coefficient expression.

First notice that a j− a j−1 = a′
ĵ
− a′

ĵ−1. To see this, it is enough to use definition (11) and

consider the cases ĵ = ˆ( j−1), and ĵ = ˆ( j−1)+1. Now we have:

coeff[α j] = a j−a j−1 +
m

∑
i=1

k

∑
l=1

c jli−
m

∑
i=1

Bi

k

∑
l=1

cl ji +
k

∑
l= j

e jl

= a′ĵ−a′ĵ−1 +
m

∑
i=1

pt

∑
l=1

c′
ĵl̂i

p
−

m

∑
i=1

Bi

pt

∑
l=1

c′
l̂ ĵi

p
+

pt

∑
l= j

e′
ĵl̂

p

≥ a′ĵ−a′ĵ−1 +
m

∑
i=1

t

∑
l′=1

p
c′

ĵl′i

p
−

m

∑
i=1

Bi

t

∑
l′=1

p
c′

l′ ĵi

p
+

t

∑
l′= ĵ+1

p
e′

ĵl′

p

= a′ĵ−a′ĵ−1 +
m

∑
i=1

t

∑
l′=1

c′ĵl′i−
m

∑
i=1

Bi

t

∑
l′=1

c′l′ ĵi +
t

∑
l′= ĵ+1

e′ĵl′ ≥ 1.

coeff[d j] = γ−
m

∑
i=1

Ci

k

∑
l=1

c jli−
m

∑
i=1

Di

k

∑
l=1

cl ji−
j

∑
l=1

e jl

= γ
′−

m

∑
i=1

Ci

pt

∑
l=1

c′
ĵl̂i

p
−

m

∑
i=1

Di

pt

∑
l=1

c′
l̂ ĵi

p
−

j

∑
l=1

e′
ĵl̂

p

≥ γ
′−

m

∑
i=1

Ci

t

∑
l′=1

p
c′

ĵl′i

p
−

m

∑
i=1

Di

t

∑
l′=1

p
c′

l′ ĵi

p
−

ĵ

∑
l′=1

p
e′

ĵl′

p

= γ
′−

m

∑
i=1

Ci

t

∑
l′=1

c′ĵl′i−
m

∑
i=1

Di

t

∑
l′=1

c′l′ ĵi−
ĵ

∑
l′=1

e′ĵl′ ≥ 0.

coeff[ f ] = γ−
k

∑
j=1

h j = γ
′−

pt

∑
j=1

h′
ĵ

p
= γ
′−

t

∑
j′=1

p
h′j′
p

= γ
′−

t

∑
j′=1

h′j′ ≥ 0.

coeff[x jl] = h j− e jl =
h′

ĵ

p
−

e′
ĵl̂

p
≥ 0.

We notice that, for each primal variable, the constraint for its coefficient expression is equiv-
alent to the constraint of any other primal variable in the same group. For example, for any pair
α j and αl such that ĵ = l̂, we need to add only one constraint to the upper bound factor-revealing
program; therefore, we need only t constraints for this kind of primal variable. We remark that
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the constraint obtained for coeff[x jl] does not depend on p. Conjoining all different constraints,
and fixing variables a′1 and a′t to zero, we obtain program (12).

xA1
t = min γ

s.t. a j−a j−1 +
m
∑

i=1

t
∑

l=1
c jli−

m
∑

i=1
Bi

t
∑

l=1
cl ji +

t
∑

l= j+1
e jl ≥ 1 ∀ 1≤ j ≤ t

m
∑

i=1
Ci

t
∑

l=1
c jli +

m
∑

i=1
Di

t
∑

l=1
cl ji +

j
∑

l=1
el j ≤ γ ∀ 1≤ j ≤ t

t
∑
j=1

h j ≤ γ

e jl ≤ h j ∀ 1≤ j ≤ l ≤ t

a0 = at = 0, a j, h j, e jl, c jli ≥ 0 ∀ 1≤ j, l ≤ t
1≤ i≤ m.

(12)

Now, we want to use Lemma 3 and choose a set of tuples (β ,γ,δ ) so that the squared
metric is minimally relaxed. To accommodate the premises of Lemma 3, we solve the dual of
the upper bound factor-revealing LP, so we may use the same cutting plane strategy used in
Lemma 6. The dual is given in the following.

xA1
t = max ∑

t
j=1 α j

s.t. f +∑
t
j=1 d j ≤ 1

α j ≤ α j+1 ∀ 1≤ j < t
α j ≤ Biαl +Cid j +Didl ∀ 1≤ j, l ≤ t, 1≤ i≤ m
x jl ≥ α j−dl ∀ 1≤ j < l ≤ t
∑

t
l= j x jl ≤ f ∀ 1≤ j ≤ t

α j,d j, f ,x jl ≥ 0 ∀ 1≤ j ≤ l ≤ t.

(13)

Using the cutting plane strategy with CPLEX we obtain xA1
700 ≈ 2.8697 < 2.87.

If we apply this analysis for the metric case, we obtain an upper bound factor-revealing
program similar to program (13). The only difference is that, for the metric case, there are no
coefficients Bl , Cl , and Dl . We use this modified linear program to tighten the approximation
factor for the metric case.

Lemma 8. For the MFLP, the approximation factor of A1 [10] is between 1.814 and 1.816.

Proof. Let ẑA1
k be the optimal value of the lower bound factor-revealing program (5) in [10].

The corresponding upper bound factor-revealing program is:

x̂A1
t = max ∑

t
j=1 α j

s.t. f +∑
t
j=1 d j ≤ 1

α j ≤ α j+1 ∀ 1≤ j < t
α j ≤ αl +d j +dl ∀ 1≤ j, l ≤ t
x jl ≥ α j−dl ∀ 1≤ j < l ≤ t
∑

t
l= j x jl ≤ f ∀ 1≤ j ≤ t

α j,d j, f ,x jl ≥ 0 ∀ 1≤ j ≤ l ≤ t.

(14)

Numerical computations using CPLEX show that ẑA1
1000≈ 1.81412> 1.814, and that x̂A1

1000≈
1.81584 < 1.816.
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We notice that the only difference between the upper and lower bound factor-revealing
programs is that the upper bound factor-revealing program does not contain the restrictions
α j − d j ≤ x j j for all j. We exploit the similarity between these programs to bound the gap
between their optimal values. The following lemma is valid for both the metric and squared
metric cases.

Lemma 9. Let zA1
k be the optimal value of the lower bound factor-revealing program (9) (pro-

gram (5) in [10]) and let (ααα,d,x, f) be an optimal solution for program (13) (respectively
program (14)) with cost value xA1

k . If ε = max j{α j−d j}, then zA1
k ≥

1
1+ε

xA1
k .

Proof. Let f ′= f +ε and x′ be such that x′jl = x jl if j 6= l, and x′j j = max{0,α j−d j}≥ 0 = x j j.
Observe that (ααα,d,x′, f′) has objective value xA1

k and is a feasible solution for the lower bound
factor-revealing program (9), except that it might violate the first restriction of program (9)
(program (5) in [10], respectively). Indeed, it might be the case that 1 < f ′+∑

k
j=1 d j ≤ 1+ ε .

Now, it is enough to multiply each variable by 1
1+ε

, and obtain a feasible solution.

From the last lemma, it is clear that the upper and lower bound factor-revealing programs
yield close values, except for an error factor that depends only on the variable values of an op-
timal solution for the upper bound factor-revealing program. Since the optimal value decreases
as the number of variables k increases, it is reasonable to expect that the value of both factor-
revealing programs become very close as k tends to infinity. Indeed, for the metric case, it is
easy to show that this error vanishes as k goes to infinity and, therefore, the upper bound and
the lower bound factor-revealing programs converge to the same value, as k goes to infinity.

Theorem 1. Let ẑA1
k be as in program (5) in [10] and let x̂A1

k be as in program (14). Then
supk≥1 ẑA1

k = infk≥1 x̂A1
k .

Proof. First notice that, if we double a dual solution of program (14), then the obtained solution
for the corresponding minimization upper bound factor-revealing is still feasible. Therefore, we
may assume that k is arbitrarily large. Consider an optimal solution of program (14). We have
that α j−d j ≤ αl +dl , for every j and l. Let j be such that ε = α j−d j is maximum and add up
these inequalities for all l. We get kε = k(α j−d j) =∑

k
l=1(α j−d j)≤∑

k
l=1(αl +dl)≤ x̂A1

k +1≤
1.816+ 1. From Lemmas 8 and 9, we get that x̂A1

k ≥ ẑA1
k ≥

1
1+ε

x̂A1
k ≥

1
1+2.816/k x̂A1

k . Taking the
limit as k goes to infinity, we get that supk≥1 ẑA1

k = infk≥1 x̂A1
k .

It would be nice to bound the values of the variables of program (13), as this would suffice
to show that the factor-revealing programs also converge for the squared metric case. Since
the coefficients of the squared triangle inequality involved in program (13) are all greater than
one, we cannot use the same approach as in Theorem 1. Although experiments suggest that the
value of variable αk in an optimal solution decreases as k increases, it does not seem trivial to
determine whether αk vanishes when k goes to infinity.

3 Analysis of the second algorithm
In this section, we analyze the second algorithm of Jain et al. [10] for the squared metric
case. The algorithm is essentially the same as Algorithm A1, but each connected city keeps
contributing to unopened facilities. The contribution of a connected city j to an unopened
facility i is the budget that the city would save if facility i were opened. The algorithm, that is
denoted by A2, is described in the following.
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Algorithm A2 (C,F,c, f ) [10]

1. Set U := C, meaning that every facility starts unopened, and every city unconnected.
Each city j has some budget α j, initially 0. At every moment, for each unopened facil-
ity i, if city j is unconnected, then j offers max(α j−ci j,0) to i, and, if city j is connected
to facility i′, then j offers max(ci′ j− ci j,0) to i.

2. While U 6= /0, the budget of each unconnected city is increased continuously until one of
the following events occur:

(a) For some unconnected city j and some open facility i, α j = ci j. In this case, connect
city j to facility i and remove j from U .

(b) For some unopened facility i, the total offer i receives from the cities equals the
cost fi of opening i. In this case, open facility i, connect to i each city j with a
positive offer to i, and remove each connected city from U .

For the metric case, the approximation factor is 1.61. With a completely analogous reason-
ing, we obtain the corresponding factor-revealing program (15). The variables are the same as
in program (2). The new variable r jl corresponds to the budget α j if city j is connected at the
same time as city l, or corresponds to the distance from j to the facility to which j is connected
just before l is connected.

zA2
k = max

∑
k
j=1 α j

f+∑
k
j=1 d j

s.t. α j ≤ α j+1 ∀ 1≤ j < k
r jl ≥ r j,l+1 ∀ 1≤ j < l < k√

αl ≤
√r jl +

√
dl +

√
d j ∀ 1≤ j < l ≤ k

l−1
∑
j=1

max(r jl−d j,0)+
k
∑
j=l

max(αl−d j,0)≤ f ∀ 1≤ l ≤ k

α j, d j, f , r j,l ≥ 0 ∀ 1≤ j ≤ l ≤ k.

(15)

We repeat the previous analysis to give lower and upper bounds on the approximation factor
of the second algorithm for the SMFLP.

Lemma 10. 2.415≤ supk≥1 zA2
k ≤ 2.425.

Proof. First, we obtain an upper bound factor-revealing program. See details in Appendix B.
This program is exactly the same as program (15), except that the fourth constraint is replaced
with

l−1

∑
j=1

max(r jl−d j,0)+
k

∑
j=l+1

max(αl−d j,0)≤ f .

Let xA2
k be the optimal value of such a program. With CPLEX we get that zA2

500 ≈ 2.41565 >
2.415, and that xA2

500 ≈ 2.42473 < 2.425.

Solving the upper bound factor-revealing LP obtained for the MFLP for k = 500, we may
show that the approximation factor of A2 [10] is 1.602. The lower bound factor-revealing
program and the maximization upper bound factor-revealing program are essentially the same,
except for the extra terms of the kind max(αl − dl). Therefore, Lemma 9 also holds for such
programs. For the metric case, using a similar analysis to that of Theorem 1, one can show that
the lower and the upper bound factor-revealing programs converge.
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Theorem 2. Let ẑA2
k be as in program (25) in [10] and let x̂A2

k be the optimal value of the
corresponding upper bound factor-revealing program obtained by removing the terms of the
kind max(αl−dl) from the fourth restriction. Then supk≥1 zA2

k = infk≥1 xA2
k .

4 Scaling and greedy augmentation
Algorithm A2 can be analyzed as a bi-factor approximation algorithm. The analysis uses a
factor-revealing linear program, and is similar to the previous analysis. Mahdian, Ye, and
Zhang [15] observed that, due to the asymmetry between the approximation guarantee for the
opened facilities cost and the connections cost, Algorithm A2 may be used to open facilities that
are very economical. This gives rise to a two-phase algorithm, denoted here by A3(δ ), based
on scaling the cost of facilities by a constant δ ≥ 1, and on the greedy augmentation technique
introduced by Guha and Khuller [7]. The first phase opens the most economical facilities, and
the second phase greedily includes facilities that reduce the cost of the solution.

Algorithm A3(δ ) (C,F,c, f ) [15]

1. Scaling:

(a) Scale the facility costs by a factor δ .

(b) Run Algorithm A2 on the scaled instance.

2. Greedy augmentation:
While there are facilities that, if open, reduce the total cost:

(a) Compute the gain gi of opening each unopened facility i.

(b) Open a facility i that maximizes the ratio gi
fi

.

In [15], a factor-revealing linear program is used to analyze Algorithm A3(δ ) with a some-
what different, but equivalent, greedy augmentation procedure. This was used to balance a
bi-factor from Algorithm A2 for the MFLP. As noticed by Byrka and Aardal [2], this analy-
sis is not restricted to Algorithm A2, and applies to any bi-factor approximation for the FLP.
Therefore, since it does not depend on the cost function being a metric, we can use it to balance
a bi-factor approximation for the squared metric case. This result is precisely stated as follows.

Lemma 11 ([15]). Consider a (γ f ,γc)-approximation for the FLP. Then, for every δ ≥ 1,
Algorithm A3(δ ) is a (γ f + lnδ + ε,1+ γc−1

δ
)-approximation for the FLP.

For the metric case, it has been shown that Algorithm A2 is a (1.11,1.78)-approximation.
This and Lemma 11 give a 1.52-approximation for the MFLP. For the SMFLP, we present an
analysis based on an upper bound factor-revealing program. Using straightforward calculations,
we may obtain the following:

14



Lemma 12. Let γ f ≥ 1 be a fixed value and let γc = xA2c
k , where

xA2c
k = max

∑
k
j=1 α j−γ f f

∑
k
j=1 d j

s.t. αl ≤ αl+1 ∀ 1≤ l < k
r jl ≥ r j,l+1 ∀ 1≤ j < l < k√

αl ≤
√r jl +

√
dl +

√
d j ∀ 1≤ j < l ≤ k

l−1
∑
j=1

max(r jl−d j,0)+
k
∑

j=l+1
max(αl−d j,0)≤ f ∀ 1≤ l ≤ k

α j,d j, f ,r jl ≥ 0 ∀ 1≤ j ≤ l ≤ k.

(16)

Then, if γc < ∞, Algorithm A2 is a (γ f ,γc)-approximation for the SMFLP.

The only difference between program (16) and the corresponding lower bound factor-
revealing program is the extra term max(αl − dl,0) in the lower bound program, which is
not in the fourth constraint of program (16). Again, having a bound for this term is sufficient
to show convergence of the upper and lower bound factor-revealing programs. For the metric
case, this can be done easily. Notice that we may assume r jl ≤ α j, so, using a similar analysis
to that of Theorem 2, one can show that, if zk and xk are solutions for the lower and upper bound
programs respectively, then xk− γ f ε ≤ zk ≤ xk, for some ε = O(1

k ).
We observe that program (16) is unbounded for values of γ f close to one. This happens also

for the corresponding lower bound factor-revealing program. This is in contrast to the factor-
revealing programs obtained for the metric case, for which we know that Algorithm A2 is a
(1,2)-approximation. In this case, the lower bound program is always bounded, but the upper
bound program is unbounded for γ f = 1, or for values close to one. It would be interesting
to strengthen this upper bound factor-revealing program, so that it could also be used in the
analysis also for γ f = 1.

Theorem 3. Algorithm A3 is a 2.17-approximation for the SMFLP.

Proof. Consider program (16) for γ f = 1.45. Numerical computations using CPLEX show that
xA2c

300 ≈ 3.40339 < 3.4034. From Lemma 12, we get that Algorithm A2 is a (1.45,3.4034)-
approximation for the SMFLP. Now, for δ = 2.0543, Lemma 11 states that Algorithm A3 is a
(2.169 . . . ,2.169 . . .)-approximation for the SMFLP.

In Appendix C, we summarize the results obtained with CPLEX for the analysis of algo-
rithms A1, A2, and A3.

5 An optimal approximation algorithm
Byrka and Aardal [2] (see also [3]) gave a 1.5-approximation for the MFLP, combining a
(1.11,1.78)-approximation from Jain, Mahdian, and Saberi [11] and a new analysis of the
LP-rounding algorithm CS(γ) of Chudak and Shmoys [6], that leads to a (1.6774,1.3737)-
approximation. Byrka showed that CS(γ) has the optimal bi-factor approximation (γ,1+2e−γ)
for γ ≥ γ0 ≈ 1.6774. By randomly selecting γ according to a given probability distribution,
Li [13] improved this result to 1.488, that is currently the best known approximation for the
MFLP.

We show that CS(γ), when applied to the SMFLP, touches its optimal bi-factor approxima-
tion curve (γ,1+8e−γ) for γ ≥ γ0 ≈ 2.00492. Therefore, we have an (α,α)-approximation for
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the SMFLP, where α ≈ 2.04011 is the solution of equation γ = 1+8e−γ . Since α is the approx-
imation lower bound, this result implies that CS(α), solely used, is an optimal approximation
for the SMFLP.

The natural linear program relaxation is given in the following:

min ∑i∈F yi fi +∑ j∈C ∑i∈F xi jci j
s.t. ∑i∈F xi j = 1 ∀ j ∈C

xi j ≤ yi ∀i ∈ F, j ∈C
xi j,yi ≥ 0 ∀i ∈ F, j ∈C.

(17)

The corresponding integer variables yi indicate whether facility i is open, and the corre-
sponding integer variables xi j indicate whether facility i serves city j in the solution. Algorithm
CS(γ) may be summarized as follows. First, a solution (x∗,y∗) of program (17) is obtained.
Then, the fractional opening variables y∗i are scaled by a factor γ ≥ 1, yi = γ y∗i , and variables
xi j are defined so that city j is served entirely by its closest facilities, obtaining a new solu-
tion (x,y). We may assume that this solution is complete, i.e. for every city j and facility i,
if xi j > 0, then xi j = yi, and that for every i, yi ≤ 1, since, in either case, we can split facility
i, and obtain an equivalent instance with these properties. Finally, a clustering of some of the
facilities is obtained according to a given criterion, and a probabilistic rounding procedure is
used to obtain the final solution. For a detailed description of the algorithm, see [2] (also [3]).

A facility i with xi j > 0 is called a close facility of city j, and the set of such facilities is
denoted by C j. Similarly, a facility i with xi j = 0 but x∗i j > 0 is called a distant facility of j,
and the set of such facilities is denoted by D j. Let Fj = C j ∪D j. The analysis of CS(γ) uses
the notion of average distance between a city j ∈ C and a subset of facilities F ′ ⊆ F such
that ∑i∈F ′ yi > 0, defined as d( j,F ′) = ∑i∈F ′ ci j·yi

∑i∈F ′ yi
. For a city j, we also use some definitions

from [3]: the average connection cost, d j = d( j,Fj); the average distance from close facilities,
d(c)

j = d( j,C j); the average distance from distant facilities, d(d)
j = d( j,D j); the maximum

distance from close facilities, d(max)
j = maxi∈C j ci j; and the irregularity parameter ρ j, defined

as ρ j = (d j−d(c)
j )/d j if d j > 0, and ρ j = 0 otherwise.

With these definitions, we can describe the clustering of the facilities. In each iteration,
greedily select a city j, called the cluster center, such that the sum d(c)

j +d(max)
j is minimum,

and build a cluster formed by j and its close facilities C j. Remove j and every other city j′

such that C j ∩C j′ is not empty, and repeat this process until every city is removed. The set of
facilities opened by CS(γ) is given by the following rounding procedure: for each cluster center
j, open one facility i from C j with probability xi j = yi, and, for each unclustered facility i, open
it independently with probability yi. Each city is connected to its closest opened facility.

The following lemma of Byrka and Aardal [2] is used to bound the expected connection
cost between a city and the closest facility from a set of facilities.

Lemma 13 ([2]). Consider a random vector y ∈ {0,1}|F | produced by Algorithm CS(γ), a
subset A⊆ F of facilities such that ∑i∈A ȳi > 0, and a city j ∈C. Then, the following holds:

E

[
min

i∈A,yi=1
ci j | ∑

i∈A
yi ≥ 1

]
≤ d( j,A).

For a given city j, if one facility in C j or D j is opened, then Lemma 13 states that the
expected connection cost is bounded by d(c)

j and d(d)
j , respectively. If no facility in C j∪D j = Fj
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is opened, then city j can always be connected to one of the close facilities C j′ of the associated
cluster center j′, with expected connection cost d( j,C j′ \Fj). Byrka and Aardal [2] showed

that, for the MFLP, when γ < 2, this cost is at most d(d)
j +d(max)

j′ +d(c)
j′ . Since for the SMFLP

we need γ > 2, we will use an improved version of this lemma by Li [13]. The adapted lemma
for the squared metric is given in the following. The proof is the same, except that we use the
squared metric property, instead of the triangle inequality.

Lemma 14. Let j be a city and j′ be the associated cluster center such that C j∩C j′ 6= /0. Then,

d( j,C j′ \Fj)≤ 3 ·
(
(2− γ)d(max)

j +(γ−1)d(d)
j +d(max)

j′ +d(c)
j′

)
.

Proof. Let d j j′ = min
l∈F

(cl j + cl j′), that is, the minimum connection cost of a path of length two

from j to j′.∗ Fix a facility l such that cl j +cl j′ = d j j′ . For each facility i in C j′ \Fj, we say that
a path ( j, l, j′, i) is the center-path to i. The cost of such center-path to i is defined as d j j′+ci j′ .
Notice that, using the squared metric property, ci j ≤ 3(d j j′+ ci j′), and therefore

d( j,C j′ \Fj) =
∑i∈C j′\Fj ci j · yi

∑i∈C j′\Fj yi

≤
∑i∈C j′\Fj 3(d j j′+ ci j′) · yi

∑i∈C j′\Fj yi

= 3 · (d j j′+d( j′,C j′ \Fj)).

That is, d( j,C j′ \Fj) is at most three times the average center-path cost. Following the lines of

Li [13, Lemma 1], we know that d j j′+d( j′,C j′ \Fj) ≤ (2− γ)d(max)
j +(γ−1)d(d)

j +d(max)
j′ +

d(c)
j′ . Therefore, the lemma holds.

The next lemma follows from Lemma 14, and is straightforward.

Lemma 15. d( j,C j′ \Fj)≤ 3
(

γd j +(3− γ)d(d)
j

)
.

Now, we can bound the expected facility and connection cost of a solution generated
by CS(γ). The next theorem is an adapted version of Theorem 2.5 from [3].

Theorem 4. For γ ≥ 1, Algorithm CS(γ) produces a solution (x,y) for the integer program
corresponding to (17) with expected facility and connection costs

E[yi fi] = γ ·F∗i , and E
[

min
i∈F,yi=1

ci j

]
≤max

{
1+8e−γ ,

5e−γ + e−1

1− 1
γ

}
·C∗j ,

where F∗i = y∗i fi and C∗j = ∑i∈F x∗i jci j.

Proof. The expected cost of facility i is E[yi fi] = yi fi = γ · y∗i fi = γ ·F∗i .
If j is a cluster center, one of its close facilities is open, then the expected connection cost is

d(c)
j ≤ d j =C∗j . We may assume that j is not a cluster center. Let pc be the probability that the

closest facility to j is in C j, and pd the probability that it is in D j. If neither case occurs, then,

∗In [13], the connection cost c is extended to a distance between j and j′, and the triangle inequality is then
used to bound this distance with the connection cost of any path of length two. Here, we make a more explicit
definition to avoid confusion, since the squared metric property is not sufficient for this purpose.
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with probability ps = 1− pc− pd , the closest facility is in C j′ \Fj, where j′ is the cluster center

associated with j. From the definitions, we have that d(c)
j = (1−ρ j)d j, d(d)

j = (1+ ρ j
γ−1)d j,

and ρ j ≤ 1. Also, from [2], we know that ps ≤ e−γ and pc ≥ 1− e−1. Combining these facts
with Lemmas 13 and 15, we obtain

E
[

min
i∈F,yi=1

ci j

]
≤ pc ·d(c)

j + pd ·d
(d)
j + ps ·3

(
γd j +(3− γ)d(d)

j

)
=

(
(pc + pd +9ps)+

(pc + pd +9ps)− (pc +3ps)

γ−1
ρ j

)
d j

=

(
(1+8ps)+

(1+8ps)− (pc +3ps)γ

γ−1
ρ j

)
d j

=

(
(1+8ps)(1−ρ j)+

5ps +1− pc

1− 1
γ

ρ j

)
d j

≤

(
(1+8e−γ)(1−ρ j)+

5e−γ + e−1

1− 1
γ

ρ j

)
d j

≤max

{
1+8e−γ ,

5e−γ + e−1

1− 1
γ

}
·C∗j .

Let γ0 be the solution of equation(
5e−γ + e−1

1− 1
γ

)
=
(
1+8e−γ

)
.

For γ ≥ γ0 ≈ 2.00492, the maximum connection cost factor is 1+8e−γ , so CS(γ) touches the
curve (γ,1+8e−γ), that is, its approximation factor is the best possible for the SMFLP, unless
P = NP. The next theorem follows immediately.

Theorem 5. Let α ≈ 2.04011 be the solution of the equation γ = 1+ 8e−γ . Then CS(α) is
an α-approximation for the SMFLP and the approximation factor is the best possible unless
P = NP.

Relaxed triangle inequality. We notice that the analysis of Lemma 5 and of Theorem 4
apply to a more general case of the FLP when the connection cost function satisfies ci j ≤
3(ci j′ + ci′ j′ + ci′ j) for all facilities i and i′, and cities j and j′. Charikar et al. [4] considered
a similar relaxed triangle inequality to extend their constant approximation for the k-medians
problem with center costs to the case in which the objective is to minimize the sum of the
squares of the distances of clients to their nearest centers.

We say that a connection cost function c for the FLP satisfies a τ-relaxed triangle inequality
if ci j ≤ τ · (ci j′ + ci′ j′ + ci′ j), for all i, i′ ∈ F , and j, j′ ∈C. Also, we say that the subset of the
FLP that contains only instances that satisfy the τ-relaxed triangle inequality is the τ-RELAXED

FLP. The following theorems extend Theorems 8 and 4.

Theorem 6. Let γ f and γc be positive constants with γc < 1+(3τ−1)e−γ f . If there is a (γ f ,γc)-
approximation for the τ-relaxed FLP, then P = NP.
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Theorem 7. For γ ≥ 1, CS(γ) is a (γ,max{1+(3τ−1)e−γ , (2τ−1)e−γ+e−1

1−γ−1 })-approximation for
the τ-relaxed FLP.

Let α(τ) be the solution of equation γ = 1+(3τ−1)e−γ . It is straightforward to verify that

for τ ≥ 2.620 . . . we have 1+(3τ−1)e−α(τ) ≥ (2τ−1)e−α(τ)+e−1

1−α(τ)−1 . Therefore, for τ ≥ 2.620 . . . ,
Algorithm CS(α(τ)) has the best approximation factor for the τ-relaxed FLP.

We say that the METRICα FLP, denoted MαFLP, is the variant of FLP that considers in-
stances such that the connection cost function is the α th power of a given metric. We may
use the following known fact to derive approximations for MαFLP using approximations for
τ-relaxed FLPs.

Lemma 16. Let A, B, C, and D be non-negative numbers such that A ≤ B+C +D, and let
α ≥ 1, then Aα ≤ 3α−1(Bα +Cα +Dα).

This implies that the connection cost function that is the α th power of a metric satisfies
the (3α−1)-relaxed triangle inequality, and therefore MαFLP is a particular case of the (3α−1)-
relaxed FLP.

6 The inapproximability threshold for SMFLP

For the MFLP, Jain et al. [10] adapted the 1.463 hardness result by Guha and Khuller [8],
and showed that no algorithm is a (γ f ,γc)-approximation, with γc < 1+ 2e−γ f , unless NP ⊆
DTIME[nO(log logn)]. Following the lines of Sviridenko (see Vygen [17, Section 4.4]), the con-
dition is strengthened to unless P = NP. We extend these results for the SMFLP as follows.

Theorem 8. Let γ f and γc be positive constants with γc < 1+ 8e−γ f . If there is a (γ f ,γc)-
approximation for the SMFLP, then P = NP. In particular, let α ≈ 2.04011 be the solution
of the equation γ = 1+ 8e−γ , then there is no α ′-approximation with α ′ < α for the SMFLP
unless P = NP.

Adapted from [8]. For simplicity, here we show that the lower bound holds unless NP ⊆
DTIME[nO(log logn)]. If we follow the lines of Sviridenko (see Vygen [17, Section 4.4]), the
condition is changed to unless P = NP.

Assume A is a (γ f ,γc)-approximation for the SMFLP with γc < 1+8e−γ f . Let J =(U ,S )
be an instance of the Set Cover, with U being a set of elements, S a collection of subsets of
U and n = |U |. We will derive a (d′ lnn)-approximation algorithm for the Set Cover problem,
for some d′ < 1.

Let k be the optimal value of J for the Set Cover. If k is not known, one can run this
algorithm for k = 1, . . . ,n and output the best solution found.

The algorithm will find a solution for J by iteratively solving a sequence of instances of
the SMFLP of the form I ( j) = (C( j),F,c, f ( j)), where F =S and the initial set C(1) =U . For
each element x j ∈ Si, set ci j = 1, and for each x j 6∈ Si, set ci j = 9. Note that such c is a squared
metric. Let n j = |C( j)|. In the jth instance, every facility cost is f ( j) = γ

n j
k , for some positive

γ to be fixed later. For each j, let S( j) denote the solution for I ( j) produced by Algorithm A
and let C( j+1) be the elements of C( j) not covered by any set in S( j). This process stops when
C( j+1) = /0 and yields the solution S(1)∪·· ·∪S( j) for J .

Observe that an optimal solution for J is a solution for each I ( j) with total facility cost
k f ( j) and connection cost one for each of the n j cities. Therefore, S( j) has cost at most γ f k f ( j)+
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γcn j = (γ f γ+γc)n j, because f ( j) = γ
n j
k . Let β j = |S( j)|/k and d j be such that d jn j is the number

of elements covered in iteration j, that is, the number of elements of C( j) in the union of the
sets in S( j). Then the total facility cost of S( j) is β jk f ( j) = β jγ n j. Moreover, d jn j cities are
connected with cost one and the other n j−d jn j = (1−d j)n j cities are connected with cost nine.
Hence the total cost of S( j) is β jγn j + d jn j + 9(1− d j)n j = (β jγ + 9− 8d j)n j. We conclude
that γ f γ + γc ≥ β jγ +9−8d j. So we have that γc ≥ (β j− γ f )γ +9−8d j.

Let d < 1 be such that 1+ 8e−γ f /d > γc. Suppose, for the sake of contradiction, that d j ≤
1− e−β j/d for some j. Then

γc ≥ (β j− γ f )γ +9−8(1− e−β j/d).

Considering γ f , γ and d fixed, the minimum value of the right hand side is achieved when
β j = d ln 8

d γ
. Substituting β j above, we get

γc ≥ (d ln
8

d γ
− γ f )γ +1+d γ.

Considering d and γ f fixed, we choose the value of γ that maximizes the right hand side, that

is, γ = 8
d e−

γ f
d . Replacing in the inequality, we obtain γc ≥ 1+8e−

γ f
d > γc, a contradiction. So

d j > 1− e−β j/d for every j, for this d < 1.
Following the lines of Guha and Khuller [8], one can prove that the algorithm described

above for the Set Cover is a (d′ lnn)-approximation for some d′ < 1. This implies that NP ⊆
DTIME[nO(log logn)].

7 Concluding remarks
We presented a new technique for deriving upper bound factor-revealing programs, that can
be solved by computer, as an alternative way to obtain an upper bound on the approximation
factors of the corresponding algorithm. This technique allowed us to tighten the obtained ap-
proximation factors, and to simplify the analysis of the three primal-dual algorithms, when
used for both SMFLP and MFLP instances. We hope that this technique can be employed for
other problems and algorithms analyzed through factor-revealing LPs. We also showed that the
algorithm of Chudak and Shmoys[6] is a 2.04-approximation and that it has the best approx-
imation factor for the SMFLP. This is in contrast to the MFLP, for which this algorithm is a
1.575-approximation and the lower bound by Guha and Kuller [8] is 1.463. Also, we note that,
although there is an approximation scheme for Euclidean FLP by Arora et al. [1], the analysis
of this algorithm is not valid for non-metric FLP, such as the E2FLP. We do not know whether
E2FLP has an approximation strictly better than 2.04.
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A Square root constraints
The proof of Lemma 3 is a straightforward consequence of Lemma 1 and the following result.

Lemma 17. Let A, B, C, and D be non-negative numbers. Then
√

A≤
√

B+
√

C+
√

D if and
only if A≤ (1+β + 1

γ
)B+(1+γ + 1

δ
)C+(1+δ + 1

β
)D for every positive numbers β , γ , and δ .

In particular, if
√

A≤
√

B+
√

C+
√

D, then A≤ 3B+3C+3D.

Proof. Suppose
√

A ≤
√

B+
√

C +
√

D. As (
√

βB−
√

D/β )2 ≥ 0, we have that 2
√

BD ≤
βB+D/β . Similarly, 2

√
CB≤ γC+B/γ and 2

√
DC ≤ δD+C/δ . Therefore, if

√
A≤
√

B+√
C+
√

D, then

A ≤ (
√

B+
√

C+
√

D)2

= B+C+D+2
√

BD+2
√

CB+2
√

DC
≤ B+C+D+βB+D/β + γC+B/γ +δD+C/δ

= (1+β +
1
γ
)B+(1+ γ +

1
δ
)C+(1+δ +

1
β
)D.

Choosing β = γ = δ = 1, we obtain A≤ 3B+3C+3D.
Now suppose

√
A >
√

B+
√

C+
√

D. Let d > 0 be such that A = B+C+D+ 2
√

BD+
2
√

CB+ 2
√

DC+ d. Then, A > (1+β + 1
γ
)B+(1+ γ + 1

δ
)C+(1+ δ + 1

β
)D is equivalent to

(β + 1
γ
)B+(γ + 1

δ
)C+(δ + 1

β
)D < 2

√
BD+ 2

√
CB+ 2

√
DC+ d. We will analyze the cases

in which none, one, two or all numbers B, C and D are zero. Let ξ and ξ ′ be positive numbers
such that ξ +ξ ′ < 1.

Case 1: B,C,D > 0. Let β =
√

D
B , γ =

√
B
C and δ =

√
C
D . Then (β + 1

γ
)B+(γ + 1

δ
)C+(δ +

1
β
)D = 2

√
BD+2

√
CB+2

√
DC < 2

√
BD+2

√
CB+2

√
DC+d.

Case 2: B = 0 and C,D > 0. Let β = D
ξ d , γ = ξ ′d

C and δ =
√

C
D . Then (β + 1

γ
)B+(γ + 1

δ
)C+

(δ + 1
β
)D = 2

√
DC+(ξ +ξ ′)d < 2

√
BD+2

√
CB+2

√
DC+d.

Case 3: B,C = 0 and D > 0. Let β = D
ξ d , γ = 1 and δ = ξ ′d

D . Then (β + 1
γ
)B+(γ + 1

δ
)C+

(δ + 1
β
)D = (ξ +ξ ′)d < 2

√
BD+2

√
CB+2

√
DC+d.

Case 4: B,C,D = 0. Let β = 1, γ = 1 and δ = 1. Then (β + 1
γ
)B+(γ + 1

δ
)C+(δ + 1

β
)D =

0 < 2
√

BD+2
√

CB+2
√

DC+d.

Observe that the lemma above is constructive in the sense that, if the given inequality with
square roots is not satisfied, then shows how to determine a linear inequality that is not satisfied.
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B Upper Bound Factor-Revealing Program for A2
Consider tuples (βi,γi,δi) ∈ R∗+3 and Bi = 1+ βi +

1
γi

, Ci = 1+ γi +
1
δi

, Di = 1+ δi +
1
βi

for
1≤ i≤m. Using Lemma 17, we insert inequalities corresponding to these tuples, replacing the
nonlinear constraint, and obtain zA2

k ≤ wA2
k , where wA2

k is given by

wA2
k = max ∑

k
j=1 α j

s.t. f +∑
k
j=1 d j ≤ 1

α j ≤ α j+1 ∀ 1≤ j < k
r jl ≥ r j,l+1 ∀ 1≤ j < l < k
αl ≤ Bir jl +Cidl +Did j ∀ 1≤ j < l ≤ k,1≤ i≤ m
r jl−d j ≤ x jl ∀ 1≤ j < l ≤ k
αl−d j ≤ x jl ∀ 1≤ l ≤ j ≤ k
∑

k
j=1 x jl ≤ f ∀ 1≤ l ≤ k

α j,d j, f ,r jl ≥ 0 ∀ 1≤ j ≤ l ≤ k
x jl ≥ 0 ∀ 1≤ j, l ≤ k.

(18)

Now, we calculate the dual of program (18) to derive the upper bound factor-revealing linear
program. After that, we calculate its dual program (22), in order to use Lemma 17, and solve
the upper bound factor-revealing program inserting cutting planes. We proceed the same way
as done in Lemma 7. With similar arguments, we may see that zA2

k ≤ zA2
kt , for any t, and we

assume that k has the form k = pt, for some integer t. The dual of linear program (18) is given
in the following.

wA2
k = min γ

s.t. al−al−1 +
m
∑

i=1

l−1
∑
j=1

c jli +
k
∑
j=l

e jl ≥ 1 ∀1≤ l ≤ k

γ−
m
∑

i=1
Ci

l−1
∑
j=1

c jli−
m
∑

i=1
Di

k
∑

j=l+1
cl ji−

k
∑
j=1

el j ≥ 0 ∀1≤ l ≤ k

γ−
k
∑

l=1
hl ≥ 0

b j,l−1−b jl + e jl−
m
∑

i=1
Bic jli ≥ 0 ∀1≤ j < l ≤ k

hl− e jl ≥ 0 ∀1≤ j, l ≤ k
a0 = ak = bll = blk = 0 ∀1≤ l ≤ k
al,hl,e jl ≥ 0 ∀1≤ l, j ≤ k

b jl,c jli ≥ 0 ∀ 1≤ j < l ≤ k
1≤ i≤ m.

(19)

Now, we may derive the upper bound factor-revealing linear program. Let n̂ = d n
pe and

consider prime variables γ ′,a′l,b
′
jl,c
′
jli,e

′
jl,h
′
l . We obtain a candidate solution for program (19)

by defining:

γ = γ ′, al = pa′
l̂
− (p l̂− l)(a′

l̂
−a′

l̂−1
), b jl = b′

ĵ,l̂
− p l̂−l

p (b′
ĵl̂
−b′

ĵ,l̂−1
),

c jll =
c′

ĵl̂l
p , e jl =

e′
ĵl̂
p and hl =

h′
l̂

p .
(20)

In the following, we apply definition (20) and calculate each coefficient expression for
program (19). Again, notice that al−al−1 = a′

l̂
−a′

l̂−1
, and that b j,l−1−b jl = (b′

ĵ,l̂−1
−b′

ĵl̂
)/p.

Also, fix variables c′lli at zero.
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coeff[αl] = al−al−1 +
m

∑
i=1

l−1

∑
j=1

c jli +
k

∑
j=l

e jl

= a′l̂−a′l̂−1 +
m

∑
i=1

l−1

∑
j=1

c′
ĵl̂i

p
+

pt

∑
j=l

e′
ĵl̂

p

≥ a′l̂−a′l̂−1 +
m

∑
i=1

l̂−1

∑
j′=1

p
c′

j′ l̂i

p
+

t

∑
j′=l̂+1

p
e′

j′ l̂

p

= a′l̂−a′l̂−1 +
m

∑
i=1

l̂−1

∑
j′=1

c′j′ l̂i +
t

∑
j′=l̂+1

e′j′ l̂ ≥ 1.

coeff[dl] = γ−
m

∑
i=1

l−1

∑
j=1

Cic jli−
m

∑
i=1

k

∑
j=l+1

Dicl ji−
k

∑
j=1

el j

= γ
′−

m

∑
i=1

Ci

l−1

∑
j=1

c′
ĵl̂i

p
−

m

∑
i=1

Di

k

∑
j=l+1

c′
l̂ ĵi

p
−

k

∑
j=1

e′
l̂ ĵ

p

≥ γ
′−

m

∑
i=1

Ci

l̂

∑
j′=1

p
c′

j′ l̂i

p
−

m

∑
i=1

Di

t

∑
j′=l̂

p
c′

l̂ j′,i

p
−

t

∑
j′=1

p
e′

l̂ j′

p

= γ
′−

m

∑
i=1

Ci

l̂−1

∑
j′=1

c′j′ l̂i−
m

∑
i=1

Di

t

∑
j′=l̂+1

c′l̂ j′i−
t

∑
j′=1

e′l̂ j′ ≥ 0.

coeff[ f ] = γ−
k

∑
l=1

hl = γ
′−

k

∑
l=1

h′
l̂

p
= γ
′−

t

∑
l′=1

p ·
h′l′
p

= γ
′−

t

∑
l′=1

h′l′ ≥ 0.

coeff[r j,l] = b j,l−1−b jl + e jl−
r

∑
i=1

Bi c jli =
b′

ĵ,l̂−1
−b′

ĵl̂

p
+

e′
ĵl̂

p
−

r

∑
i=1

Bi

c′
ĵl̂i

p
≥ 0.

coeff[x jl] = hl− e j,l =
h′

l̂
p
−

e′
ĵl̂

p
≥ 0.

Conjoining all constraints, the obtained upper bound factor-revealing linear program is:
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xA2
t = min γ

s.t. al−al−1 +
m
∑

i=1

l−1
∑
j=1

c jli +
t
∑

j=l+1
e jl ≥ 1 ∀1≤ l ≤ t

γ−
m
∑

i=1
Ci

l−1
∑
j=1

c jli−
m
∑

i=1
Di

t
∑

j=l+1
cl ji−

t
∑
j=1

el j ≥ 0 ∀1≤ l ≤ t

γ−
t
∑

l=1
hl ≥ 0

b j,l−1−b jl + e jl−
m
∑

i=1
Bic jli ≥ 0 ∀1≤ j < l ≤ t

hl− e jl ≥ 0 ∀1≤ j, l ≤ t
a0 = at = bll = blt = 0 ∀1≤ l ≤ t
al,hl,e jl ≥ 0 ∀1≤ l, j ≤ t

b jl,c jli ≥ 0 ∀ 1≤ j < l ≤ k
1≤ i≤ m.

(21)

Finally, calculating the dual of program (21), we obtain program (22).

xA2
t = max ∑

t
j=1 α j

s.t. f +∑
t
j=1 d j ≤ 1

α j ≤ α j+1 ∀ 1≤ j < t
r jl ≥ r j,l+1 ∀ 1≤ j < l < t
αl ≤ Bir jl +Cidl +Did j ∀ 1≤ j < l ≤ t,1≤ i≤ m
r jl−d j ≤ x jl ∀ 1≤ j < l ≤ t
αl−d j ≤ x jl ∀ 1≤ l < j ≤ t
∑

t
j=1 x jl ≤ f ∀ 1≤ l ≤ t

α j,d j, f ,r jl ≥ 0 ∀ 1≤ j ≤ l ≤ t
x jl ≥ 0 ∀ 1≤ j, l ≤ t.

(22)
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C Experimental results
In Table 1, we present computational results using CPLEX for the lower bound (column zA1

k )
and upper bound (column xA1

k ) for the approximation factor of Algorithm A1. In Table 2, we
present lower and upper bounds on the approximation factor of Algorithm A2 (columns zA2

k
and xA2

k , respectively). In Table 3, we present computational results for program (15) when
γ f = 1.45, and the approximation factor obtained from Lemma 11. The chosen δ is given by

the solution of equation γ f + lnδ = 1+ γc−1
δ

, that is, δ = eW0((γc−1)eγ f−1
)−(γ f−1). Figure 1 shows

the trade-off between connection and facility costs approximation guarantees for the Algorithm
A2, and Figure 2 shows the trend of obtained factor for Algorithm A3 as we vary the value of
γ f , when k = 50.

Table 1: Solutions of the factor-
revealing programs for A1.

k zA1
k xA1

k
10 2.57261 3.18162
20 2.71704 3.01717
50 2.80540 2.92579

100 2.83534 2.89553
200 2.85034 2.88046
300 2.85532 2.87543
400 2.85782 2.87292
500 2.85930 2.87142
600 2.86029 2.87041
700 2.86099 2.86970

Table 2: Solutions of the factor-
revealing programs for A2.

k zA2
k xA2

k
10 2.20702 2.65131
20 2.30987 2.53301
50 2.37551 2.46544

100 2.39773 2.44278
200 2.40894 2.43150
300 2.41267 2.42775
400 2.41453 2.42586
500 2.41565 2.42473

Table 3: Solutions of connection factor-revealing
programs for A2, and obtained factor for A3.

k xA2c
k best δ factor

10 4.02931 2.33433 2.29772
20 3.64790 2.16561 2.22270
50 3.48465 2.09159 2.18792

100 3.43524 2.06895 2.17704
200 3.41127 2.05793 2.17170
300 3.40339 2.05430 2.16993
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Figure 1: Trade-off between connec-
tion and facility approximation fac-
tors.
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Figure 2: Trend of the obtained bal-
anced approximation factors.
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