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RAINBOW CONNECTION OF SPARSE RANDOM GRAPHS

ALAN FRIEZE AND CHARALAMPOS E. TSOURAKAKIS

Abstract. An edge colored graph G is rainbow edge connected if any two vertices are connected by
a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted
by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected.

In this work we study the rainbow connectivity of binomial random graphs at the connectivity
threshold p = logn+ω

n
where ω = ω(n) → ∞ and ω = o(log n) and of random r-regular graphs where

r ≥ 3 is a fixed integer. Specifically, we prove that the rainbow connectivity rc(G) of G = G(n, p)
satisfies rc(G) ∼ max {Z1, diameter(G)} with high probability (whp). Here Z1 is the number of

vertices in G whose degree equals 1 and the diameter of G is asymptotically equal to logn

log logn
whp.

Finally, we prove that the rainbow connectivity rc(G) of the random r-regular graph G = G(n, r)

whp satisfies rc(G) = O(logθr n) where θr = log(r−1)
log(r−2) when r ≥ 4 and rc(G) = O(log4 n) whp when

r = 3.

1. Introduction

Connectivity is a fundamental graph theoretic property. Recently, the concept of rainbow connec-
tivity was introduced by Chartrand et al. in [7]. An edge colored graph G is rainbow edge connected
if any two vertices are connected by a path whose edges have distinct colors. The rainbow connec-
tivity rc(G) of a connected graph G is the smallest number of colors that are needed in order to
make G rainbow edge connected. Notice, that by definition a rainbow edge connected graph is also
connected and furthermore any connected graph has a trivial edge coloring that makes it rainbow
edge connected, since one may color the edges of a given spanning tree with distinct colors. Other
basic facts established in [7] are that rc(G) = 1 if and only if G is a clique and rc(G) = |V (G)| − 1
if and only if G is a tree. Besides its theoretical interest, rainbow connectivity is also of interest in
applied settings, such as securing sensitive information [13], transfer and networking [5].

The concept of rainbow connectivity has attracted the interest of various researchers. Chartrand
et al. [7] determine the rainbow connectivity of several special classes of graphs, including multi-
partite graphs. Caro et al. [4] prove that for a connected graph G with n vertices and minimum
degree δ, the rainbow connectivity satisfies rc(G) ≤ log δ

δ
n(1 + f(δ)), where f(δ) tends to zero as δ

increases. The following simpler bound was also proved in [4], rc(G) ≤ n4 logn+3
δ

. Krivelevich and
Yuster [12] removed the logarithmic factor from the Caro et al. [4] upper bound. Specifically they
proved that rc(G) ≤ 20n

δ
. Due to a construction of a graph with minimum degree δ and diameter

3n
δ+1

− δ+7
δ+1

by Caro et al. [4], the best upper bound one can hope for is rc(G) ≤ 3n
δ
. Chandran,

Das, Rajendraprasad and Varma [6] have subsequently proved an upper bound of 3n
δ+1

+3, which is
therefore essentially optimal.

As Caro et al. point out, the random graph setting poses several intriguing questions. Specifically,
let G = G(n, p) denote the binomial random graph on n vertices with edge probability p [8]. Caro

et al. [4] proved that p =
√

log n/n is the sharp threshold for the property rc(G(n, p)) ≤ 2. He and
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Liang [9] studied further the rainbow connectivity of random graphs. Specifically, they obtain the
sharp threshold for the property rc(G) ≤ d where d is constant. For further results and references
we refer the interested reader to the recent survey of Li and Sun [13]. In this work we look at
the rainbow connectivity of the binomial graph at the connectivity threshold p = logn+ω

n
where

ω = o(logn). This range of values for p poses problems that cannot be tackled with the techniques
developed in the aforementioned work. Rainbow connectivity has not been studied in random
regular graphs to the best of our knowledge.

Let

L =
log n

log logn
(1)

and let A ∼ B denote A = (1 + o(1))B as n → ∞.
We establish the following theorems:

Theorem 1. Let G = G(n, p), p = logn+ω
n

, ω → ∞, ω = o(log n). Also, let Z1 be the number of
vertices of degree 1 in G. Then, with high probability(whp)1

rc(G) ∼ max {Z1, L} ,

It is known that whp the diameter of G(n, p) is asymptotic to L for p as in the above range, see
for example Theorem 10.17 of Bollobás [2]. Theorem 1 gives asymptotically optimal results. Our
next theorem is not quite as precise.

Theorem 2. Let G = G(n, r) be a random r-regular graph where r ≥ 3 is a fixed integer. Then,
whp

rc(G) =

{
O(log4 n) r = 3

O(log2θr n) r ≥ 4.

where θr =
log(r−1)
log(r−2)

.

All logarithms whose base is omitted are natural. It will be clear from our proofs that the colorings
in the above two theorems can be constructed in a low order polynomial time. The second theorem,
while weaker, contains an unexpected use of a Markov Chain Monte-Carlo (MCMC) algorithm for
randomly coloring a graph.

The paper is organized as follows: After giving a sketch of our approach in Section 2, in Sec-
tions 3, 4 we prove Theorems 1, 2 respectively. Finally, in Section 5 we conclude by suggesting open
problems.

2. Sketch of approach

The general idea in the proofs of both theorems is as follows:

(a) Randomly color the edges of the graph in question. For Theorem 1 we can (in the main) use a
uniformly random coloring. The distribution for Theorem 2 is a little more complicated.

(b) To prove that this works, we have to find, for each pair of vertices x, y, a large collection of
edge disjoint paths joining them. It will then be easy to argue that at least one of these paths
is rainbow colored.

1An event An holds with high probability (whp) if limn→+∞ Pr [An] = 1.
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(c) To find these paths we pick a typical vertex x. We grow a regular tree Tx with root x. The
depth is chosen carefully. We argue that for a typical pair of vertices x, y, many of the leaves
of Tx and Ty can be put into 1-1 correspondence f so that (i) the path Px from x to leaf v of
Tx is rainbow colored, (ii) the path Py from y to the leaf f(v) of Ty is ranbow colored and (iii)
Px, Py do not share color.

(d) We argue that from most of the leaves of Tx, Ty we can grow a tree of depth approximately
equal to half the diameter. These latter trees themselves contain a bit more than n1/2 leaves.
These can be constructed so that they are vertex disjoint. Now we argue that each pair of
trees, one associated with x and one associated with y, are joined by an edge.

(e) We now have, by construction, a large set of edge disjoint paths joining leaves v of Tx to leaves
f(v) of Ty. A simple estimation shows that whp for at least one leaf v of Tx, the path from v
to f(v) is rainbow colored and does not use a color already used in the path from x to v in Tx

or the path from y to f(v) in Ty.

We now fill in the details of both cases.

3. Proof of Theorem 1

Observe first that rc(G) ≥ max {Z1, diameter(G)}. First of all, each edge incident to a vertex of
degree one must have a distinct color. Just consider a path joining two such vertices. Secondly, if
the shortest distance between two vertices is ℓ then we need at least ℓ colors. Next observe that whp
the diameter D is asymptotically equal to L, see for example [2]. We break the proof of Theorem 1
into several lemmas.

Let a vertex be large if deg(x) ≥ log n/100 and small otherwise.

Lemma 1. Whp, there do not exist two small vertices within distance at most 3L/4.

Proof.

Pr

[
∃x, y ∈ [n] : deg(x), deg(y) ≤ logn/100 and dist(x, y) ≤

3L

4

]

≤

(
n

2

) 3L/4∑

k=1

nk−1pk




logn/100∑

i=0

(
n− 1− k

i

)
pi(1− p)n−1−k




2

≤

3L/4∑

k=1

n(2 log n)k
(
2

(
n

logn/100

)
plogn/100(1− p)n−1−logn/100

)2

≤

3L/4∑

k=1

n(2 log n)k
(
2(100e1+o(1))logn/100n−1+o(1)

)2

≤

3L/4∑

k=1

n(2 log n)kn−1.9

≤ 2n(2 logn)3L/4n−1.9

≤ n−.1.

�

We use the notation e[S] for the number of edges induced by a given set of vertices S. Notice that
if a set S satisfies e[S] ≥ s+ t where t ≥ 1, the induced subgraph G[S] has at least t+ 1 cycles.
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Figure 1. Structure of Lemma 3.

Lemma 2. Fix t ∈ Z
+ and 0 < α < 1. Then, whp there does not exist a subset S ⊆ [n], such that

|S| ≤ αtL and e[S] ≥ |S|+ t.

Proof. For convenience, let s = |S| be the cardinality of the set S.Then,

Pr [∃S : s ≤ αtL and e[S] ≥ s+ t] ≤
∑

s≤αtL

(
n

s

)( (s
2

)

s+ t

)
ps+t

≤
∑

s≤αtL

(ne
s

)s( es2p

2(s+ t)

)s+t

≤
∑

s≤αtL

(e2+o(1) log n)s
(
es logn

n

)t

≤ αtL

(
(e2+o(1) log n)αL

(
eαt log2 n

n log logn

))t

<
1

n(1−α−o(1))t
.

�

Remark 1. Let T be a rooted tree of depth at most 4L/7 and let v be a vertex not in T , but with
b neighbors in T . Let S consist of v, the neighbors of v in T plus the ancestors of these neighbors.
Then |S| ≤ 4bL/7 + 1 ≤ 3bL/5 and e(S) = |S|+ b− 2. It follows from the proof of Lemma 2 with
α = 3/5 and t = 8, that we must have b ≤ 10 with probability 1− o(n−3).

Our next lemma shows the existence of the subgraph G′
x,y described next and shown in Figure 1

for a given pair of vertices x, y. We first deal with paths between large vertices.
Now let

ǫ = ǫ(n) = o(1) be such that
ǫ log logn

log 1/ǫ
→ ∞ and let k = ǫL. (2)

Here L is defined in (1) and we could take ǫ = 1/(log logn)1/2.

Lemma 3. Whp, for all pairs of large vertices x, y ∈ [n] there exists a subgraph Gx,y(Vx,y, Ex,y) of G
as shown in figure 1. The subgraph consists of two isomorphic vertex disjoint trees Tx, Ty rooted at
x, y each of depth k. Tx and Ty both have a branching factor of logn/101. I.e. each vertex of Tx, Ty
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Figure 2. Subgraph found in the proof of Lemma 3.

has at least log n/101 neighbors, excluding its parent in the tree. Let the leaves of Tx be x1, x2, . . . , xτ

where τ ≥ n4ǫ/5 and those of Ty be y1, y2, . . . , yτ . Then yi = f(xi) where f is a natural isomporphism
that preserves the parent-child relation. Between each pair of leaves (xi, yi), i = 1, 2, . . . , τ there is
a path Pi of length (1 + 2ǫ)L. The paths Pi, i = 1, 2, . . . , τ are edge disjoint.

Proof. Because we have to do this for all pairs x, y, we note without further comment that likely
(resp. unlikely) events will be shown to occur with probability 1− o(n−2) (resp. o(n−2)).

To find the subgraph shown in Figure 1 we grow tree structures as shown in Figure 2. Specifically,
we first grow a tree from x using BFS until it reaches depth k. Then, we grow a tree starting from y
again using BFS until it reaches depth k. Finally, we grow trees from the leaves of Tx and Ty using
BFS for depth γ = (1

2
+ ǫ)L. Now we analyze these processes. Since the argument is the same we

explain it in detail for Tx and we outline the differences for the other trees. We use the notation

D
(ρ)
i for the number of vertices at depth i of the BFS tree rooted at ρ.
First we grow Tx. As we grow the tree via BFS from a vertex v at depth i to vertices at depth

i+1 certain bad edges from v may point to vertices already in Tx. Remark 1 shows with probability
1− o(n−3) there can be at most 10 bad edges emanating from v.

Furthermore, Lemma 1 implies that there exists at most one vertex of degree less than logn
100

at
each level whp. Hence, we obtain the recursion

D
(x)
i+1 ≥

(
logn

100
− 10

)
(D

(x)
i − 1) ≥

log n

101
D

(x)
i . (3)

Therefore the number of leaves satisfies

D
(x)
k ≥

(
logn

101

)ǫL

≥ n4ǫ/5. (4)
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We can make the branching factor exactly logn
101

by pruning. We do this so that the trees Tx are
isomorphic to each other.

With a similar argument

D
(y)
k ≥ n

4

5
ǫ. (5)

The only difference is that now we also say an edge is bad if the other endpoint is in Tx. This
immediately gives

D
(y)
i+1 ≥

(
logn

100
− 20

)
(D

(y)
i − 1) ≥

log n

101
D

(y)
i

and the required conclusion (5).

Similarly, from each leaf xi ∈ Tx and yi ∈ Ty we grow trees T̂xi
, T̂yi of depth γ =

(
1
2
+ ǫ
)
L using

the same procedure and arguments as above. Remark 1 implies that there are at most 20 edges
from the vertex v being explored to vertices in any of the trees already constructed. At most 10

to Tx plus any trees rooted at an xi and another 10 for y. The numbers of leaves of each T̂xi
now

satisfies

D̂(xi)
γ ≥

log n

100

(
logn

101

)γ

≥ n
1

2
+ 4

5
ǫ.

Similarly for D̂
(yi)
γ .

Observe next that BFS does not condition the edges between the leaves Xi, Yi of the trees T̂xi
and

T̂yi . I.e., we do not need to look at these edges in order to carry out our construction. On the
other hand we have conditioned on the occurence of certain events to imply a certain growth rate.
We handle this technicality as follows. We go through the above construction and halt if ever we
find that we cannot expand by the required amount. Let A be the event that we do not halt the
construction i.e. we fail the conditions of Lemmas 1 or 2. We have Pr [A] = 1− o(1) and so,

Pr [∃i : e(Xi, Yi) = 0 | A] ≤
Pr [∃i : e(Xi, Yi) = 0]

Pr(A)
≤ 2n

4ǫ
5 (1− p)n

1+8ǫ
5 ≤ n−nǫ

.

We conclude that whp there is always an edge between each Xi, Yi and thus a path of length at
most (1 + 2ǫ)L between each xi, yi. �

Let q = (1 + 5ǫ)L be the number of available colors. We color the edges of G randomly. We show
that the probability of having a rainbow path between x, y in the subgraph Gx,y of Figure 1 is at
least 1− 1

n3 .

Lemma 4. Color each edge of G using one color at random from q available. Then, the probability
of having at least one rainbow path between two fixed large vertices x, y ∈ [n] is at least 1− 1

n3 .

Proof. We show that the subgraph Gx,y contains such a path. We break our proof into two steps:
Before we proceed, we provide certain necessary definitions. Think of the process of coloring

Tx, Ty as an evolutionary process that colors edges by starting from the two roots x, f(x) = y until
it reaches the leaves. In the following, we call a vertex u of Tx (Ty) alive/living if the path P (x, u)
(P (y, u)) from x (y) to u is rainbow, i.e., the edges have received distinct colors. We call a pair of
vertices {u, f(u)} alive, u ∈ Tx, f(u) ∈ Ty if u, f(u) are both alive and the paths P (x, u), P (y, f(u))
share no color. Define Aj = |{(u, f(u)) : (u, f(u)) is alive and depth(u) = j}| for j = 1, .., k.

• Step 1: Existence of at least n
4
5
ǫ living pairs of leaves

Assume the pair of vertices {u, f(u)} is alive where u ∈ Tx, f(u) ∈ Ty. It is worth noticing that
u, f(u) have the same depth in their trees. We are interested in the number of pairs of children
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Figure 3. Figure shows logn
101

-ary trees Tx, Ty. The two roots are shown respectively
at the center of the trees. In our thinking of the random coloring as an evolutionary
process, the green edges incident to x survive with probability 1, the red edges incident

to y with probability 1 − 1
q
and all the other edges with probability p0 =

(
1 − 2k

q

)2

where k is the depth of both trees and q the number of available colors. Our analysis
in Lemma 3 using these probabilities gives a lower bound on the number of alive pairs
of leaves after coloring Tx, Ty from the root to the leaves respectively.

{ui, f(ui)}i=1,..,logn/101 that will be alive after coloring the edges from depth(u) to depth(u) + 1.
A living pair {ui, f(ui)} by definition has the following properties: edges (u, ui) ∈ E(Tx) and
(f(u), f(ui)) ∈ E(Ty) receive two distinct colors, which are different from the set of colors used in
paths P (x, u) and P (y, f(u)). Notice the latter set of colors has cardinality 2× depth(u) ≤ 2k.

Let Aj be the number of living pairs at depth j. We first bound the size of A1.

Pr

[
A1 ≤

log n

200

]
≤ 2logn/101

(
1

q

)logn/300

= O(n−Ω(log logn)). (6)

Here 2logn/101 bounds the number of choices for A1. For a fixed set A1 there will be at least
logn
101

− logn
200

≥ logn
300

edges incident with x that have the same color as their corresponding edges

incident with y, under f . The factor q− logn/300 bounds the probability of this event.
For j > 1 we see that the random variable equal to the number of living pairs of children of

(u, f(u)) stochastically dominates the random variable X ∼ Bin
(
logn
101

, p0
)
, where p0 =

(
1− 2k

q

)2
=

(
1+3ǫ
1+5ǫ

)2
. The colorings of the descendants of each live pair are independent and so we have using

the Chernoff bounds for 2 ≤ j ≤ k,

Pr

[
Aj <

(
log n

200

)j

pj−1
0

∣∣∣∣Aj−1 ≥

(
log n

200

)j−1

pj−2
0

]

≤ exp

{
−
1

2
·

(
99

200

)2

·
log n

101
·

(
log n

200

)j−1

pj0

}
= O(n−Ω(log logn)). (7)

(6) and (7) justify assuming that Ak ≥
(
logn
200

)k
pk−1
0 ≥ n

4

5
ǫ.
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(a)

Figure 4. Taking care of small vertices.

• Step 2: Existence of rainbow paths between x, y in Gx,y

Assuming that there are ≥ n4ǫ/5 living pairs of leaves (xi, yi) for vertices x, y,

Pr(x, y are not rainbow connected) ≤

(
1−

2γ−1∏

i=0

(
1−

2k + i

q

))n4ǫ/5

.

But
2γ−1∏

i=0

(
1−

2k + i

q

)
≥

(
1−

2k + 2γ

q

)2γ

=

(
ǫ

1 + 5ǫ

)2γ

.

So

Pr(x, y are not rainbow connected) ≤ exp

{
−n4ǫ/5

(
ǫ

1 + 5ǫ

)2γ
}

= exp
{
−n4ǫ/5−O(log(1/ǫ)/ log logn)

}
. (8)

Using (2) and the union bound taking (8) over all large x, y completes the proof of Lemma 4. �

We now finish the proof of Theorem 1 i.e. take care of small vertices.
We showed in Lemma 4 that whp for any two large vertices, a random coloring results in a

rainbow path joining them. We divide the small vertices into two sets: vertices of degree 1, V1 and
the vertices of degree at least 2, V2. Suppose that our colors are 1, 2, . . . , q and V1 = {v1, v2, . . . , vs}.
We begin by giving the edge incident with vi the color i. Then we slightly modify the argument
in Lemma 4. If x is the neighbor of vi ∈ V1 then color i cannot be used in Steps 1 and 2 of that
procedure. In terms of analysis this replaces q by (q − 1) ((q − 2) if y is also a neighbor of V1) and
the argument is essentially unchanged i.e. whp there will be a rainbow path between each pair of
large vertices. Furthermore, any path starting at vi can only use color i once and so there will be
rainbow paths between V1 and V1 and between V1 and the set of large vertices.

The set V2 is treated by using only two extra colors. Assume that Red and Blue have not been
used in our coloring. Then we use Red and Blue to color two of the edges incident to a vertex
u ∈ V2 (the remaining edges are colored arbitrarily). This is shown in Figure 4a. Suppose that
V2 = {w1, w2, . . . , wt}. Then if we want a rainbow path joining wi, wj where i < j then we use the
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red edge to go to its neighbor w′
i. Then we take the already constructed rainbow path to w′′

j , the
neighbor of wj via a blue edge. Then we can continue to wj. ✷

4. Proof of Theorem 2

We first observe that simply randomly coloring the edges of G = G(n, r) with q = no(1) colors
will not do. This is because there will whp be Ω(nq1−r2) = Ω(n1−o(1)) vertices v where all edges at
distance at most two from v have the same color.

We follow a similar strategy to the proof in Theorem 1. We grow small trees Tx from each vertex
x. Then for a pair of vertices x, y we build disjoint trees on the leaves of Tx, Ty so that whp we
can find edge disjoint paths between any set of leaves Sx of Tx and any set of leaves of Sy of the
same size. A bounded number of leaves of Tx, Ty will be excluded from this statement. The main
difference will come from our procedure for coloring the edges. Because of the similarities, we will
give a little less detail in the common parts of our proofs. We are in effect talking about building
a structure like that shown in Figure 2. There is one difference, we will have to take care of which
leaves of Tx we pair with which leaves of Ty, for a pair of vertices x, y.

Having grown the trees, we have the problem of coloring the edges. Instead of independently and
randomly coloring the edges, we use a greedy algorithm that produces a coloring that is guaranteed
to color edges differently, if they are close. This will guarantee that the edges of Tx are rainbow,
for all vertices x. We then argue that we can find, for each vertex pair x, y, a partial mapping g
from the leaves of Tx to the leaves of Ty such that the path from x to leaf v in Tx and the path
from y to leaf g(v) in Ty do not share a color. This assumes that v has an image under the partial
mapping g. We will have to argue that g is defined on enough vertices in Tx. Given this, we then
consider the colors on a set of edge disjoint paths that we can construct from the leaves of Tx to
their g-counterpart in the leaves of Ty.

We will use the configuration model of Bollobás [3] in our proofs, see [11] or [14] for details. Let
W = [2m = rn] be our set of configuration points and let Wi = [(i − 1)r + 1, ir], i ∈ [n], partition
W . The function φ : W → [n] is defined by w ∈ Wφ(w). Given a pairing F (i.e. a partition of W
into m pairs) we obtain a (multi-)graph GF with vertex set [n] and an edge (φ(u), φ(v)) for each
{u, v} ∈ F . Choosing a pairing F uniformly at random from among all possible pairings ΩW of
the points of W produces a random (multi-)graph GF . Each r-regular simple graph G on vertex
set [n] is equally likely to be generated as GF . Here simple means without loops of multiple edges.
Furthermore, if r = O(1) then GF is simple with a probability bounded below by a positive value
independent of n. Therefore, any event that occurs whp in GF will also occur whp in G(n, r).

4.1. Tree building. We will grow a Breadth First Search tree Tx from each vertex. We will grow
each tree to depth

k = kr =

{⌈
logr−2 logn

⌉
r ≥ 4.

⌈2 log2 logn− 2 log2 log2 logn⌉ r = 3.

Observe that

Tx has at most r(1 + (r − 1) + (r − 1)2 + · · ·+ (r − 1)k−1) = r
(r − 1)k − 1

r − 1
edges. (9)

It is useful to observe that

Lemma 5. Whp, no set of s ≤ ℓ1 =
1
10
logr−1 n vertices contains more than s edges.
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Proof. Indeed,

Pr(∃S ⊆ [n], |S| ≤ ℓ1, e[S] ≥ |S|+ 1) ≤
ℓ1∑

s=3

(
n

s

)( (s
2

)

s+ 1

)(
r2

rn− rs

)s+1

(10)

≤
rℓ1
n

ℓ1∑

s=3

(
n

s

)((s
2

)

s

)(
r2

rn− rs

)s

≤
rℓ1
n

ℓ1∑

s=3

(
ne

s
·
se

2
·
2r

n

)s

≤
rℓ1
n

· ℓ1 · (e
2r)ℓ1 = o(1). (11)

Explanation of (10): The factor
(

r2

rn−rs

)s+1

can be justified as follows. We can estimate

Pr(e1, e2, . . . , es+1 ∈ E(GF )) =

s∏

i=0

Pr(ei+1 ∈ E(GF ) | e1, e2, . . . , ei ∈ E(GF )) ≤

(
r2

rn− rs

)s+1

if we pair up the lowest index endpoint of each ei in some arbitrary order. The fraction r2

rn−rs
is an

upper bound on the probability that this endpoint is paired with the other endpoint, regardless of
previous pairings. �

Denote the leaves of Tx by Lx.

Corollary 3. Whp, (r − 1)k ≤ |Lx| ≤ r(r − 1)k−1 for all x ∈ [n].

Proof. This follows from the fact that whp the vertices spanned by each Tx span at most one cycle.
This in turn follows from Lemma 5. �

Consider two vertices x, y ∈ V (G) where Tx ∩ Ty = ∅. We will show that whp we can find a
subgraph G′(V ′, E ′), V ′ ⊆ V,E ′ ⊆ E with similar structure to that shown in Figure 2. Here k = kr
and γ =

(
1
2
+ ǫ
)
logr−1 n for some small positive constant ǫ.

Remark 2. In our analysis we expose the pairing F , only as necessary. For example the construc-
tion of Tx involves exposing all pairings involving non-leaves of Tx and one pairing for each leaf.
There can be at most one exception to this statement, for the rare case where Tx contains a unique
cycle. In particular, if we expose the point q paired with a currently unpaired point p of a leaf of Tx

then q is chosen randomly from the remaining unpaired points.

Suppose that we have constructed i = O(logn) vertex disjoint trees of depth γ rooted at some

of the leaves of Tx. We grow the (i + 1)st tree T̂z via BFS, without using edges that go into y
or previously constructed trees. Let a leaf z ∈ Lx be bad if we have to omit a single edge as we

construct the first ℓ1/2 levels of T̂z. The previously constructed trees plus y account for O(n1/2+ǫ)
vertices and pairings, so the probability that z is bad, given all the pairings we have exposed so
far, is at most O((r − 1)ℓ1/2n−1/2+ǫ) = O(n−1/3). Here bad edges can only join two leaves. This
probability bound holds regardless of whichever other vertices are bad. This follows from the way
we build the pairing F , see the final statement of Remark 2. So whp there will be at most 3 bad
leaves on any Tx. Indeed, Pr(∃x : x has ≥ 4 bad leaves) ≤ n

(
O(logn)

4

)
n−4/3 = o(1).

If a leaf is not bad then the first ℓ1/2 levels produce Θ(n1/20) leaves. From this, we see that whp
the next γ−ℓ1 levels grow at a rate r−1−o(n−1/25). Indeed, given that a level has L vertices where
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n1/20 ≤ L ≤ n3/4, the number of vertices in the next level dominates Bin
(
(r − 1)L, 1− O

(
n3/4

n

))
,

after accounting for the configuration points used in building previous trees. Indeed, (r−1)L config-
uration points associated with good leaves will be unpaired and for each of them, the probability it
is paired with a point associated with a vertex in any of the trees constructed so far is O(n1/2+2ǫ/n).
This probability bound holds regardless of the pairings of the other leaf configuration points. We
can thus assert that whp we will have that all but at most three of the leaves Lx of Tx are roots of

vertex disjoint trees T̂1, T̂2, . . . , each with Θ(n1/2+ǫ/2) leaves. Let L∗
x denote these good leaves. The

same analysis applies when we build trees T̂ ′
1, T̂

′
2, . . . , with roots at Ly.

Now the probability that there is no edge joining the leaves of T̂i to the leaves of T̂ ′
j is at most

(
1−

(r − 1)Θ(n1/2+ǫ/2)

rn

)(r−1)n1/2+ǫ/2

≤ e−Ω(nǫ).

To summarise,

Remark 3. Whp we will succeed in finding in GF and hence in G = G(n, r), for all x, y ∈ V (GF ),
for all u ∈ L∗

x, v ∈ L∗
y, a path Pu,v from u to v of length O(logn) such that if u 6= u′ and v 6= v′ then

Pu,v and Pu′,v′ are edge disjoint. These paths avoid Tx, Ty except at their start and endpoints.

4.2. Coloring the edges. We now consider the problem of coloring the edges of G. Let H denote
the line graph of G and let Γ = H2k denote the graph with the same vertex set as H and an edge
between vertices e, f of Γ if there there is a path of length at most k between e and f in H . We
will construct a proper coloring of Γ using

q = 10(r − 1)2k ∼ 100 log2θr n where θr =
log(r − 1)

log(r − 2)

colors. We do this as follows: Let e1, e2, . . . , em be an arbitrary ordering of the vertices of Γ. For
i = 1, 2, . . . , m, color ei with a random color, chosen uniformly from the set of colors not currrently
appearing on any neighbor in Γ. At this point only e1, e2, . . . , ei−1 will have been colored.

Suppose then that we color the edges of G using the above method. Fix a pair of vertices x, y of
G. We see immediately, that no color appears twice in Tx and no color appears twice in Ty. This
is because the distance between edges in Tx is at most 2k. This also deals with the case where
V (Tx) ∩ V (Ty) 6= ∅, for the same reason. So assume now that Tx, Ty are vertex disjoint. We can
find lots of paths joining x and y. We know that the first and last k edges of each path will be
individually rainbow colored. We will first show that we have many choices of path where these 2k
edges are rainbow colored when taken together.

4.3. Case 1: r ≥ 4: We argue now that we can find σ0 = (r − 2)k−1 leaves u1, u2, . . . , uτ ∈ Tx and
σ0 leaves v1, v2, . . . , vτ ∈ Ty such for each i the Tx path from x to ui and the Ty path from y to vi
do not share any colors.

Lemma 6. Let T1, T2 be two vertex disjoint copies of an edge colored complete d-ary tree with ℓ
levels, where d ≥ 3. Let T1, T2 be rooted at x, y respectively. Suppose that the colorings of T1, T2 are
both rainbow. Let κ = (d − 1)ℓ. Then there exist leaves u1, u2, . . . , uκ of T1 and leaves v1, v2, . . . vκ
of T2 such that the following is true: If Pi, P

′
i are the paths from x to ui in T1 and from y to vi in

T2 respectively, then Pi ∪ P ′
i is rainbow colored for i = 1, 2, . . . , κ.

Proof. Let Aℓ be the minimum number of rainbow path pairs that we can find in any such pair
of edge colored trees. We prove that Aℓ ≥ (d − 1)ℓ by induction on ℓ. This is true trivially for
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ℓ = 0. Suppose that x is incident with x1, x2, . . . , xd and that the sub-tree rooted at xi is T1,i for
i = 1, 2, . . . , d. Define yi and T2,i, i = 1, 2, . . . , d similarly with respect to y. Suppose that the color
of the edge (x, xi) is ci for i = 1, 2, . . . , d and let Qx = {c1, c2, . . . , cd}. Similarly, suppose that the
color of the edge (y, yi) is c

′
i for i = 1, 2, . . . , d and let Qy = {c′1, c

′
2, . . . , c

′
d}. Next suppose that Qj

is the set of colors in Qx that appear on the edges E(T2,j) ∪ {(y, yj)} . The sets Q1, Q2, . . . , Qd are
pair-wise disjoint. Similarly, suppose that Q′

i is the set of colors in Qy that appear on the edges
E(T1,i) ∪ {(x, xi)}. The sets Q′

1, Q
′
2, . . . , Q

′
d are pair-wise disjoint.

Now define a bipartite graph H with vertex set A + B = [d] + [d] and an edge (i, j) iff ci /∈ Qj

and c′j /∈ Q′
i. We claim that if S ⊆ A then its neighbor set NH(S) satisfies the inequality

d|S| − |NH(S)| − |S| ≤ |S| · |NH(S)|. (12)

Here the LHS of (12) bounds from below, the size of the set S : NH(S) of edges between S and
NH(S). This is because there are at most |S| edges missing from S : NH(S) due to i ∈ S and
j ∈ NH(S) and ci ∈ Qj . At most |NH(S)| edges are missing for similar reasons. On the other hand,
d|S| is the number there would be without these missing edges. The RHS of (12) is a trivial upper
bound.

Re-arranging we get that

|NH(S)| − |S| ≥

⌈
(d− 2− |S|)|S|

|S|+ 1

⌉
≥ −1.

(We get -1 when |S| = d).
Thus H contains a matching M of size d − 1. Suppose without loss of generality that this

matching is (i, i), i = 1, 2, . . . , d − 1. We know by induction that for each i we can find paths

(Pi,j, P̂i,j), j = 1, 2, . . . , (d − 1)ℓ−1 where Pi,j is a root to leaf path in T1,i and P̂i,j is a root to leaf

path in T2,i and that Pi,j ∪ P̂i,j is rainbow for all i, j. Furthermore, (i, i) being an edge of H , means

that the edge sets {(x, xi)} ∪ E(Pi,j) ∪ E(P̂i,j) ∪ {(y, yi} are all rainbow. �

Let

V1 = {x : V (Tx) contains a cycle} .

When x, y /∈ V1 we apply this Lemma to Tx, Ty by deleting one of the r sub-trees attached to each
of x, y and applying the lemma directly to the (r−1)-ary trees that remain. This will yield (r−2)k

pairs of paths. If x ∈ V1, we delete r − 2 sub-trees attached to x leaving at least two (r − 1)-ary
trees of depth k − 1 with roots adjacent to x. We can do the same at y. Let c1, c2 be the colors of
the two edges from x to the roots of these two trees T1, T2. Similarly, let c′1, c

′
2 be the colors of the

two analogous edges from y to the trees T ′
1, T

′
2. If color c1 does not appear in T ′

1 then we apply the
lemma to T1 and T ′

1. Otherwise, we can apply the lemma to T1 and T ′
2. In both cases we obtain

(r − 2)k−1 pairs of paths.
Accounting for bad vertices we put

σ = σ0 − 6 = (r − 2)k−1 − 6 ≥
log n

r − 2
− 6

and we see from Remark 3 that we can whp find σ paths P1, P2, . . . , Pσ of length O(logn) from
x to y. Path Pi goes from x to a leaf ui ∈ L∗

x via Tx and then traverses Qi = P (ui, vi) where
vi = φ(ui) ∈ L∗

y and then goes from vi to a y via Ty. Here φ is some partial map from L∗
x to

L∗
y. It is a random variable that depends on the coloring C of the edges of Tx and Ty. The paths

P1, P2, . . . , Pσ depend on the choice of φ and hence C and so we should write Pi = Pi(C).
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We fix the coloring C and hence P1, P2, . . . , Pσ. Let R be the event that at least one of the paths
P1, P2, . . . , Pσ is rainbow colored. We show that Pr(¬R | C) is small.

We let c(e) denote the color of edge e in a given coloring. We remark next that for a particular
coloring c1, c2, . . . , cm of the edges e1, e2, . . . , em we have

Pr(c(ei) = ci, i = 1, 2, . . . , m) =
m∏

i=1

1

ai

where q−∆ ≤ ai ≤ q is the number of colors available for the color of the edge ei given the coloring
so far i.e. the number of colors unused by the neighbors of ei in Γ when it is about to be colored.

Now fix an edge e = ei and the colors cj , j 6= i. Let C be the set of colors not used by the
neighbors of ei in Γ. The choice by ei of its color under this conditioning is not quite random, but
close. Indeed, we claim that for c, c′ ∈ C

Pr(c(e) = c | c(ej) = cj , j 6= i)

Pr(c(e) = c′ | c(ej) = cj, j 6= i)
≤

(
q −∆

q −∆− 1

)∆

.

This is because, changing the color of ei only affects the number of colors available to neighbors of
ei, and only by at most one.

Thus, for c ∈ C, we have

Pr(c(e) = c | c(ej) = cj , j 6= i) ≤
1

q −∆

(
q −∆

q −∆− 1

)∆

.

Now ∆ ≤ (r − 1)2k = q/10 and we deduce that

Pr(c(e) = c | c(ej) = cj , j 6= i) ≤
2

q
.

It follows that for i ∈ [σ],

Pr(Pi is rainbow colored | C, coloring of
⋃

j 6=i

Qj) ≥

(
1−

4(k + γ)

q

)2γ

.

This is because when we consider the coloring of Qi there will always be at most 2k + 2γ colors
forbidden by non-neighboring edges, if it is to be rainbow colored.

It then follows that

Pr(¬R | C) ≤

(
1−

(
1−

4(k + γ)

q

)2γ
)σ

≤

(
8γ(k + γ)

q

)σ

≤

(
(2 + 10ǫ) log2r−1 n

10 logθr n

)σ

= o(n−2).

This completes the proof of Theorem 2 when r ≥ 4.
Case 2: r = 3:
When r = 3 we can’t use (r−2)k to any effect. Also, we need to increase q to log4 n. This necessary
for a variety of reasons. One reason is that we will reduce σ to 2k/2. We want this to be Ω(log n)
and this will force k to (roughly) double what it would have been if we had followed the recipe for
r ≥ 4. This makes ∆ close to log4 n and we need q ≫ ∆.
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And we need to modify the argument based on Lemma 6. Instead of inducting on the trees at
depth one from the roots x, y, we now induct on the trees at depth two. Assume first that x, y /∈ V1.
After ignoring one branch for Tx and Ty we now consider the sub-trees Tx,i, Ty,i, i = 1, 2, 3, 4 of
Tx, Ty whose roots x1, . . . , x4 and y1, . . . , y4 are at depth two. We cannot necessarily make this

construction when x ∈ V1. Let Pi be the path from x to xi in Tx and let P̂j be the path from y to

yj in Ty. Next suppose that Q̂j is the set of colors in Q that appear on the edges E(Ty,j) ∪ E(P̂j).
Similarly, suppose that Q′

i is the set of colors in Q′ that appear on the edges {E(Tx,i) ∪ E(Pi)}.
Re-define H to be the bipartite graph with vertex set A + B = [4] + [4]. The edges of H are as

before: (i, j) exists iff ci /∈ Qj and c′j /∈ Q̂i. This time we can only say that a color is in at most two

Q̂i’s and similarly for the Q′
j ’s. The effect of this is to replace (12) by

4|S| − 2(|NH(S)|+ |S|) ≤ |S| · |NH(S)|

from which we can deduce that

|S| − |NH(S)| ≤
|S| · |NH(S)|

2
≤ 2|NH(S)|.

It follows that |NH(S)| ≥ ⌈|S|/3⌉ ≥ |S|−2 and so H contains a matching of size two. An inductive
argument then shows that we are able to find 2⌊k/2⌋ rainbow pairs of paths. The proof now continues
as in the case r ≥ 4, arguing about the coloring of paths P1, P2, . . . , Pσ where now σ = 2⌊k/2⌋.

We finally deal with the vertices in V1. We classify them according to the size of the cycle Cx

that is contained in V (Tx). If Tx contains a cycle Cx then necessarily |Cx| ≤ 2k and so there are at
most 2k types in our classification. It follows from Lemma 5 that if x, y ∈ V1 and Tx ∩ Ty 6= ∅ then
Cx = Cy whp. Note next that the distance from x to Cx is at most k − |Cx|/2. If C is a cycle of
length at most 2k, let VC = {x : C = Cx} and let EC be the set of edges contained in VC . We have

|VC | = O(|C|2k−|C|/2) = O(2k) = O(log2 n/ log logn). (13)

We introduce 2k new sets Q̂i, i = 3, 4, . . . , 2k of O(log2 n/ log log n) colors, distinct from Q. Thus

we introduce O(log2 n) new colors overall. We re-color each EC with the colors from Q̂|C|. It is
important to observe that if |C| = |C ′| then the graphs induced by VC and VC′ are isomorphic and
so we can color them isomorphically. By the latter we mean that we choose some isomorphism f
from VC to VC′ and then if e is an edge of VC then we color e and f(e) with the same color. After
this re-coloring, we see that if Tx and Ty are not vertex disjoint, then they are contained in the
same VC . The edges of VC are rainbow colored and so now we only need to concern ourselves with
x, y ∈ V1 such that Tx and Ty are vertex disjoint. Assume now that x, y ∈ V1.

Assume first that x, y are of the same type and that they are at the same distance from Cx, Cy

respectively. Our aim now is to define binary trees T ′
x, T

′
y “contained“ in Tx, Ty that can be used as

in Lemma 6. If we delete an edge e = (u, v) of Cx then the graph that remains on V (Tx) is a tree
with at most two vertices u, v of degree two. Now delete one of the three sub-trees of Tx. If there
are vertices of degree two, make sure one of them is in this sub-tree. If necessary, shrink the path
of length two with the remaining vertex of degree two in the middle to an edge ex. It has leaves at
depth k−1 and leaves at depth k−2. The resulting binary tree will be our T ′

x. The leaves at depth
k − 1 come in pairs. Delete one vertex from each pair and shrink the paths of length two through
the vertex at depth k − 2 to an edge.

The edges that are obtained by shrinking paths of length two will have two colors. Because x, y
are at the same distance from their cycles, we can delete f(e) from Cy and do the construction so
that T ′

x and T ′
y will be isomorphically colored.
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It is now easy to find 2k−2 pairs of paths whose unions are rainbow colored. Each leaf of Tx, Ty

can be labelled by a {0, 1} string of length k − 2. We pair string ξ1ξ2 · · · ξk−1ξk−2 in Tx with
(1 − ξ1)ξ2 · · · ξk−1ξk−2 in Ty. The associated paths will have a rainbow union. The proof now
continues as in the case r ≥ 4, arguing about the coloring of paths P1, P2, . . . , Pσ where now
σ = 2k−2.

If x is further from Cx than y is from Cy then let z be the vertex on the path from x to Cx at
the same distance from Cx as y is from Cy. We have a rainbow path from z to y and adding the Tx

path from x to z gives us a rainbow path from x to y. This relies on the fact that VCx and VCy are
isomorphically colored.

If x, y are of a different type, then Tx and Ty are re-colored with distinct colors and we can proceed
as as in the case r ≥ 4, arguing about the coloring of paths P1, P2, . . . , Pσ where now σ = 2k, using
Corollary 3.

If x ∈ V1 and y /∈ V1 then we can proceed as if both are not in V1. This is because of the
re-coloring of the edges of Tx. We can proceed as as in the case r ≥ 4, arguing about the coloring
of paths P1, P2, . . . , Pσ where now σ = 2k, using Corollary 3.

This completes our proof of Theorem 2. �

5. Conclusion

In this work we have given an aymptotically tight result on the rainbow connectivity of G = G(n, p)
at the connectivity threshold. It is reasonable to conjecture that this could be tightened:

Conjecture: Whp, rc(G) = max {Z1, diameter(G(n, p))}.
Our result on random regular graphs is not so tight. It is still reasonable to believe that the above
conjecture also holds in this case. (Of course Z1 = 0 here).
It is worth mentioning that if the degree r in Theorem 2 is allowed to grow as fast as logn then
one can prove a result closer to that of Theorem 1.
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