Skip to main content

Mobile Robot Obstacle Avoidance Based on Quasi-Holonomic Smooth Paths

  • Conference paper
Book cover Advances in Autonomous Robotics (TAROS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7429))

Included in the following conference series:

Abstract

The paper explores the benefits of using continuous curvature 2D paths in obstacle avoidance methods in terms of safety and comfort. To this end the paper proposes a novel contribution by introducing clothoid-based smooth paths for non-holonomic robots defined from Cartesian (x,y) and angular velocities, as if they were intended to be applied to holonomic robots. To remark, these paths, coined as quasi-holonomic continuous curvature paths (QHCC), generate purely non-holonomic motions (combinations of linear and angular velocities) that mimic a holonomic motion. In fact, QHCC paths converge to the same asymptotic direction pointed by the holonomic motion while taking into account kinematic and dynamic constraints. In the paper, we show how these paths can be used and integrated in well-known obstacle avoidance algorithms such as Nearness Diagram (ND) and Dynamic Window Approach (DWA), among others. In addition to this, an ANN has been trained to considerably speed-up the path generation process and to learn the intrinsics of the path. Additionally, the paper shows the advantages of the proposed method over standard obstacle avoidance algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marchionna, A., Perco, P.: A proposal to update the clothoid parameter limiting criteria of the italian standard. In: Int. Società Italiana Infrastrutture Viarie Congress (2007)

    Google Scholar 

  2. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Press (1991)

    Google Scholar 

  3. Ulrich, I., Borenstein, J.: Vfh*: Local obstacle avoidance with look-ahead verification. In: IEEE Int. Conf. Robotics and Automation, pp. 2505–2511 (2001)

    Google Scholar 

  4. Minguez, J., Montano, L.: Nearness diagram (nd) navigation: Collision avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automation 1(20), 45–59 (2004)

    Article  Google Scholar 

  5. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics Automation Magazine 4(1), 23–33 (1997)

    Article  Google Scholar 

  6. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B.P., Konolige, K.: The office marathon: Robust navigation in an indoor office environment. In: International Conference on Robotics and Automation (May 2010)

    Google Scholar 

  7. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. Trans. Rob. 26, 635–646 (2010)

    Article  Google Scholar 

  8. Minguez, J., Montano, L.: Extending collision avoidance methods to consider the vehicle shape, the kinematics, and dynamics of a mobile robot. IEEE Transaction on Robotics 25(2), 367–381 (2009)

    Article  Google Scholar 

  9. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. J. ACM 40, 1048–1066 (1993), http://doi.acm.org/10.1145/174147.174150

    Article  MathSciNet  MATH  Google Scholar 

  10. Scheuer, A., Fraichard, T.: Continuous-curvature path planning for car-like vehicles. In: IEEE Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 997–1003 (1997)

    Google Scholar 

  11. Fraichard, T., Scheuer, A.: From reeds and shepp’s to continuous-curvature paths. IEEE Trans. on Robotics and Automation 20(6), 1025–1035 (2004)

    Google Scholar 

  12. Yang, K., Sukkarieh, S.: Real-time continuous curvature path planning of uavs in cluttered environments. In: Int. Symp. on Mechatronics and its Applications (2008)

    Google Scholar 

  13. Labakhua, L., Nunes, U., Rodrigues, R., Leite, F.S.: Smooth trajectory planning for fully automated passengers vehicles. spline and clothoid based methods and its simulation. In: Informatics in Control Automation and Robotics. Springer (2008)

    Google Scholar 

  14. Wilde, D.K.: Computing clothoid segments for trajectory generation. In: IEEE Int. Conf. on Intelligent Robots and Systems, pp. 2440–2445 (2009)

    Google Scholar 

  15. Manz, M., von Hundelshausen, F., Wuensche, H.-J.: A hybrid estimation approach for autonomous dirt road following using multiple clothoid segments. In: IEEE Int. Conf. on Robotics and Automation, pp. 2410–2415 (2010)

    Google Scholar 

  16. Girbés, V., Armesto, L., Tornero, J.: On generating continuous-curvature paths for line following problem with curvature and sharpness constraints. In: IEEE Int. Conf. on Robotics and Automation, pp. 6156–6161 (May 2011)

    Google Scholar 

  17. Girbés, V., Armesto, L., Tornero, J., Ernesto Solanes, J.: Smooth Kinematic Controller vs. Pure-Pursuit for Non-holonomic Vehicles. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 277–288. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Lau, B., Sprunk, C., Burgard, W.: Kinodynamic motion planning for mobile robots using splines. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 2427–2433 (October 2009)

    Google Scholar 

  19. Parlangeli, G., Ostuni, L., Mancarella, L., Indiveri, G.: A motion planning algorithm for smooth paths of bounded curvature and curvature derivative. In: 17th Mediterranean Conference on Control and Automation, MED 2009, pp. 73–78 (June 2009)

    Google Scholar 

  20. Reeds, J., Shepp, L.: Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics 145, 367–393 (1990)

    MathSciNet  Google Scholar 

  21. LaValle, S.M., James, J., Kuffner, J.: Randomized kinodynamic planning. The International Journal of Robotics Research 20(5), 378–400 (2001)

    Article  Google Scholar 

  22. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics 26, 308–333 (2009), no. CMU-RI-TR

    Google Scholar 

  23. Lamiraux, F., Laumond, J.-P.: Smooth motion planning for car-like vehicles. IEEE Transactions on Robotics and Automation 17, 498–502 (2001)

    Article  Google Scholar 

  24. Sekhavat, S., Svestka, P., Laumond, J.P., Overmars, M.H.: Multi-level path planning for nonholonomic robots using semi-holonomic subsystems. Int. J. Robot. Res. 17, 840–857 (1996)

    Article  Google Scholar 

  25. Nissen, S.: Implementation of a fast artificial neural network library (fann). Department of Computer Science University of Copenhagen (DIKU), Tech. Rep. (2003), http://fann.sf.net

  26. Nissen, S.: Large scale reinforcement learning using q-sarsa(λ) and cascading neural networks, p. 264 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Armesto, L., Girbés, V., Vincze, M., Olufs, S., Muñoz-Benavent, P. (2012). Mobile Robot Obstacle Avoidance Based on Quasi-Holonomic Smooth Paths. In: Herrmann, G., et al. Advances in Autonomous Robotics. TAROS 2012. Lecture Notes in Computer Science(), vol 7429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32527-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32527-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32526-7

  • Online ISBN: 978-3-642-32527-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics