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Abstract. Now a day’s many algorithms are invented / being inventing to find 
the solution for Euclidean Minimum Spanning Tree (EMST) problem, as its 
applicability is increasing in much wide range of fields containing spatial / 
spatio – temporal data viz. astronomy which consists of millions of spatial data. 
To solve this problem, we are presenting a technique by adopting the dual tree 
algorithm for finding efficient EMST and experimented on a variety of real 
time and synthetic datasets. This paper presents the observed experimental 
observations and the efficiency of the dual tree framework, in the context of kd-
tree and ball-tree on spatial datasets of different dimensions. 
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1   Introduction 

Minimum Spanning Tree (hereinafter, MST) is the one of the oldest and most 
thoroughly studied problem in computational geometry [1]. The Minimum-weight 
Spanning Tree or simply MST problem is one of the well-known optimization 
problems for finding minimum weighted spanning tree for both undirected and 
directed graphs. MST have many applications in computer design, communication, 
transportation and some other problems that can apply directly/indirectly are wireless 
network connectivity, clustering and classification of different data namely spatial 
data. In literature, several authors proposed a variety of greedy algorithms [2, 3, 4]. 
The general drawback with these greedy algorithms is that these cannot handle large 
amount of data and performance bottleneck will happened and later some more 
advanced algorithms are developed to solve this problem [5]. In this paper, authors 
evaluated the performance of dual tree algorithmic framework [6] using single linkage 
clustering [7] and compared the performance of the dual tree framework in the 
context of kd-tree and ball-tree. As per the Ref. [8] theoretically single-linkage 
clustering provides optimal clusters. 
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2   Related Work 

Many of the MST Algorithms are utilized Tarjan’s Blue rule [10] to find the 
minimum weight edge. Using this rule many of the greedy algorithms are developed 
viz. Prims with O(m+nlogn) and Krushkal with O(mlogn) time complexity’s 
respectively. In Dual-Tree Boruvka’s Algorithm, the efficiency of the Boruvka’s 
algorithm mainly depends on the adopted nearest neighbor technique. If we find 
nearest neighbors efficiently by using some intelligent data structure like spatial trees, 
kd-tree, ball tree or any spatial tree, the performance of the Boruvka’s algorithm can 
be enhanced. For example, for the query set Q and reference set R, then for each point 
q  Q and r  R such that d(q, r) must be minimized and call it as nearest neighbor 
pair. Native approach will take O(n2) run time for finding nearest neighbor pair for n 
number of  components[11]. Hence, in this paper, authors adopted the algorithms 
proposed by [7] to evaluate the performance of Dual Tree Boruvka and compared 
with kd-tree and ball-tree. 
KD-tree [12] is one of the space partitioning tree for organizing k-dimensional data 
points. For building this kd-tree of n points it takes O(n log n) if we use the linear 
median finding algorithm described by [13] and for adding new point to the balanced 
tree it takes O(log n) and for removing a point from tree takes O(log n), because of 
removing a point from tree the balance of the tree will change then we need to 
rebalance the tree so for both adding and removing point from tree will take same 
time complexity of O(log n).   
Ball Tree [14] is also binary tree data structure for maintaining spatial data 
hierarchically like kd-tree and oct-tree [15]. Each node in the ball-tree referred as ball 
contains a region of Euclidean points bounded by a hyper-sphere and interior balls are 
small containing their children balls. One can specify the ball n+1 float values as co-
ordinates and r radius as its center. Like kd-tree the ball tree also uses top down 
approach for building the tree recursively from top to down by choosing the split 
dimension and splitting value to find these values, balls are sorted along each 
dimension and store the cost in an array. Best dimension and split location can be 
found in O(nlog(n)), so, time complexity to construct the ball-tree is O(n(log n)2). 

3   Implementation   

In this paper, authors adopted Dual-tree Boruvka in the context of kd-tree and ball-
tree for finding the EMST. Experiments are performed on synthetic datasets and real 
time datasets [9]. Both algorithms are implemented and incorporated in weka3.6.4 
[16] and compiled with the jdk1.6. Following Table and Fig. 1 shows the 
observations. 
 
 
 
 
 



Table-1 Performance of kd-tree and ball-tree for 50 dimensions 
 

Operati
on 

Instanc
es 

Build Insertion Deletion N-NN Search 

kd-tree ball-tree kd-tree ball-tree kd-tree ball-tree kd-tree ball-tree 

10000 187 1203 188 1187 218 1172 31 47 
25000 547 3469 531 3468 516 3454 96 110 
50000 1344 7906 1172 8094 1156 8093 118 219 
100000 2578 16547 2750 16437 2812 16485 391 422 
200000 5937 36672 5688 36703 5640 36375 875 907 

 
 
Fig-1: (a) time taken for building kd-tree and ball-tree for 15-dimensions (b) time taken for 
building kd-tree and ball-tree for For 25-dimensions (c) time taken for building kd-tree and 
ball-tree for 50-dimensions of data; (d) Comparison of dual tree algorithm using both kd-tree 
and ball-tree 

From the above results, one can easily observe that the computational time for 
constructing ball-tree takes more time than the kd-tree, and as the dimensionality 
increases the performance of kd-tree is also increases when compared with ball-tree. 
Figure-1(d) shows the performance of DualTree Boruvka using kd-tree as well as 
ball-tree for varying dimensions on real-time datasets obtained from SDSS. Both 
algorithmic performance is nearly equal but overall performance differs with creation 
of tree structure, i.e., kd-tree takes O(n log n) and ball-tree takes O(N(log N)2) for n 
points in Euclidean space. Finally, from the experimental results, authors conclude 
that DualTree Boruvka on kd-tree performs faster than the DualTree Boruvka on ball-
tree for finding Euclidean MST. 



4   Conclusion 

In this paper, authors compared kd-tree and ball-tree based dual tree Boruvka 
algorithm for finding Euclidean Minimum Spanning Tree (EMST). For finding 
efficient EMST, authors adopted dual tree algorithm and experimented on a variety of 
real time and synthetic datasets of various dimensions. From the experimental 
observation, authors conclude that the kd-tree performs faster than the ball-tree for 
not only constructing the tree and also for solving the EMST problem. Moreover, the 
kd-tree based dual tree Boruvka is giving good results than the ball-tree based dual-
tree Boruvka.  
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