
Performance Evaluation: Ball-Tree and KD-Tree in the
context of MST

Hazarath Munaga1,1, Venkata Jarugumalli1

1 Dept. of Information Technology
University College of Engineering

JNTUK, A.P. India
{hazarath.munaga, venkata.jarugumalli}@gmail.com

Abstract. Now a day’s many algorithms are invented / being inventing to find
the solution for Euclidean Minimum Spanning Tree (EMST) problem, as its
applicability is increasing in much wide range of fields containing spatial /
spatio – temporal data viz. astronomy which consists of millions of spatial data.
To solve this problem, we are presenting a technique by adopting the dual tree
algorithm for finding efficient EMST and experimented on a variety of real
time and synthetic datasets. This paper presents the observed experimental
observations and the efficiency of the dual tree framework, in the context of kd-
tree and ball-tree on spatial datasets of different dimensions.

Keywords: Euclidean Minimum Spanning Tree (EMST), dual Tree, kd-tree,
ball-tree

1 Introduction

Minimum Spanning Tree (hereinafter, MST) is the one of the oldest and most
thoroughly studied problem in computational geometry [1]. The Minimum-weight
Spanning Tree or simply MST problem is one of the well-known optimization
problems for finding minimum weighted spanning tree for both undirected and
directed graphs. MST have many applications in computer design, communication,
transportation and some other problems that can apply directly/indirectly are wireless
network connectivity, clustering and classification of different data namely spatial
data. In literature, several authors proposed a variety of greedy algorithms [2, 3, 4].
The general drawback with these greedy algorithms is that these cannot handle large
amount of data and performance bottleneck will happened and later some more
advanced algorithms are developed to solve this problem [5]. In this paper, authors
evaluated the performance of dual tree algorithmic framework [6] using single linkage
clustering [7] and compared the performance of the dual tree framework in the
context of kd-tree and ball-tree. As per the Ref. [8] theoretically single-linkage
clustering provides optimal clusters.

1 Dr MHM Krishna Prasad, Associate Professor & Head

2 Related Work

Many of the MST Algorithms are utilized Tarjan’s Blue rule [10] to find the
minimum weight edge. Using this rule many of the greedy algorithms are developed
viz. Prims with O(m+nlogn) and Krushkal with O(mlogn) time complexity’s
respectively. In Dual-Tree Boruvka’s Algorithm, the efficiency of the Boruvka’s
algorithm mainly depends on the adopted nearest neighbor technique. If we find
nearest neighbors efficiently by using some intelligent data structure like spatial trees,
kd-tree, ball tree or any spatial tree, the performance of the Boruvka’s algorithm can
be enhanced. For example, for the query set Q and reference set R, then for each point
q Q and r R such that d(q, r) must be minimized and call it as nearest neighbor
pair. Native approach will take O(n2) run time for finding nearest neighbor pair for n
number of components[11]. Hence, in this paper, authors adopted the algorithms
proposed by [7] to evaluate the performance of Dual Tree Boruvka and compared
with kd-tree and ball-tree.
KD-tree [12] is one of the space partitioning tree for organizing k-dimensional data
points. For building this kd-tree of n points it takes O(n log n) if we use the linear
median finding algorithm described by [13] and for adding new point to the balanced
tree it takes O(log n) and for removing a point from tree takes O(log n), because of
removing a point from tree the balance of the tree will change then we need to
rebalance the tree so for both adding and removing point from tree will take same
time complexity of O(log n).
Ball Tree [14] is also binary tree data structure for maintaining spatial data
hierarchically like kd-tree and oct-tree [15]. Each node in the ball-tree referred as ball
contains a region of Euclidean points bounded by a hyper-sphere and interior balls are
small containing their children balls. One can specify the ball n+1 float values as co-
ordinates and r radius as its center. Like kd-tree the ball tree also uses top down
approach for building the tree recursively from top to down by choosing the split
dimension and splitting value to find these values, balls are sorted along each
dimension and store the cost in an array. Best dimension and split location can be
found in O(nlog(n)), so, time complexity to construct the ball-tree is O(n(log n)2).

3 Implementation

In this paper, authors adopted Dual-tree Boruvka in the context of kd-tree and ball-
tree for finding the EMST. Experiments are performed on synthetic datasets and real
time datasets [9]. Both algorithms are implemented and incorporated in weka3.6.4
[16] and compiled with the jdk1.6. Following Table and Fig. 1 shows the
observations.

Table-1 Performance of kd-tree and ball-tree for 50 dimensions

Operati
on

Instanc
es

Build Insertion Deletion N-NN Search

kd-tree ball-tree kd-tree ball-tree kd-tree ball-tree kd-tree ball-tree

10000 187 1203 188 1187 218 1172 31 47
25000 547 3469 531 3468 516 3454 96 110
50000 1344 7906 1172 8094 1156 8093 118 219
100000 2578 16547 2750 16437 2812 16485 391 422
200000 5937 36672 5688 36703 5640 36375 875 907

Fig-1: (a) time taken for building kd-tree and ball-tree for 15-dimensions (b) time taken for
building kd-tree and ball-tree for For 25-dimensions (c) time taken for building kd-tree and
ball-tree for 50-dimensions of data; (d) Comparison of dual tree algorithm using both kd-tree
and ball-tree

From the above results, one can easily observe that the computational time for
constructing ball-tree takes more time than the kd-tree, and as the dimensionality
increases the performance of kd-tree is also increases when compared with ball-tree.
Figure-1(d) shows the performance of DualTree Boruvka using kd-tree as well as
ball-tree for varying dimensions on real-time datasets obtained from SDSS. Both
algorithmic performance is nearly equal but overall performance differs with creation
of tree structure, i.e., kd-tree takes O(n log n) and ball-tree takes O(N(log N)2) for n
points in Euclidean space. Finally, from the experimental results, authors conclude
that DualTree Boruvka on kd-tree performs faster than the DualTree Boruvka on ball-
tree for finding Euclidean MST.

4 Conclusion

In this paper, authors compared kd-tree and ball-tree based dual tree Boruvka
algorithm for finding Euclidean Minimum Spanning Tree (EMST). For finding
efficient EMST, authors adopted dual tree algorithm and experimented on a variety of
real time and synthetic datasets of various dimensions. From the experimental
observation, authors conclude that the kd-tree performs faster than the ball-tree for
not only constructing the tree and also for solving the EMST problem. Moreover, the
kd-tree based dual tree Boruvka is giving good results than the ball-tree based dual-
tree Boruvka.

References

1. Preparata, F., Shamos, M.: Computational Geometry. Springer-Verlag, New York (1985).
2. Nesetril.: Otakar Boruvka on minimum spanning tree problem Translation of both the 1926

papers, comments, history. Discrete Math., vol.233, pp.3–36, (2001).
3. Prim, R. C.: Shortest connection networks and some generalizations. J. Bell Sys. Tech.,

1389—1401(1957).
4. Kruskal, J. B.: On the shortest spanning subtree of a graph and the traveling salesman

problem. Proc. Am. Math. Soc., 7:48 -- 50 (1956).
5. Narasimhan, G., M. Zachariasen, M., Zhu, J.: Experiments with computing geometric

minimum spanning trees. In: Proceedings of ALENEX’00, pp.183--196 (2000).
6. Gray, A., Moore, A., W.: N-body problems in statistical learning. In: Advances in Neural

Information Processing Systems, pp.521—527, (2001).
7. William, B. M., Parikshit, R., Alexander G.: Fast Euclidean Minimum Spanning Tree:

algorithm, analysis, and applications. In: 16th ACM SIGKDD International conference on
Knowledge discovery and data mining, pp. 603-612, (2010).

8. Balcan, M., Blum, A., Vempala, S.: A discriminative framework for clustering via similarity
functions. In: 08 Proceedings of the 40th annual ACM symposium on Theory of computing,
pp. 671--680. ACM, New York (2008).

9. Sloan Digital Sky Survey, http://sdss2.lib.uchicago.edu/dr7/en/, accessed on 15th Jan 2011
10.Tarjan, R. E: Data Structures and Network Algorithms. In: Society for industrial Applied

Mathematics, vol. 44 (1983).
11.Graham, R.L., Pavol, H,: On the history of the Minimum Spanning Tree Problem. Annals of

History of Computing. J. IEEE Ann. Hist. Comput. 7, 43—57, (1985).
12.Moore, A.,W.: An intoductory tutorial on kd-trees. Technical Report No. 209, Computer

Laboratory, University of Cambridge (1991).
13.Cormen, T. H., Leiserson, C. E., Rivest, R. L, Clifford S.: Introduction to Algorithms 3rd

edition. MIT Press and McGraw-Hill, (2009).
14.Omohundro, S., M.: Five Balltree Construction Algorithms, ICSI Technical Report TR-89-

063 (December 1989)
15.Warren, M., S., Salmon, J., K.: A parallel hashed Oct-Tree N-body algorithm. In:

Proceedings of the ACM/IEEE conference on Supercomputing, pp. 12--21, (1993).
16.Machine Learning Group at university of Waikato, http://www.cs.waikato.ac.nz/ml/weka/,

accessed on 25th August 2010.

