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Abstract. Pattern avoidance is an important topic in combinatorics
on words which dates back to the beginning of the twentieth century
when Thue constructed an infinite word over a ternary alphabet that
avoids squares, i.e., a word with no two adjacent identical factors. This
result finds applications in various algebraic contexts where more gen-
eral patterns than squares are considered. On the other hand, Erdős
raised the question as to whether there exists an infinite word that
avoids abelian squares, i.e., a word with no two adjacent factors being
permutations of one another. Although this question was answered af-
firmately years later, knowledge of abelian pattern avoidance is rather
limited. Recently, (abelian) pattern avoidance was initiated in the more
general framework of partial words, which allow for undefined positions
called holes. In this paper, we show that any pattern p with n > 3 dis-
tinct variables of length at least 2n is abelian avoidable by a partial word
with infinitely many holes, the bound on the length of p being tight.
We complete the classification of all the binary and ternary patterns
with respect to non-trivial abelian avoidability, in which no variable
can be substituted by only one hole. We also investigate the abelian
avoidability indices of the binary and ternary patterns.
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1. Introduction

Combinatorics on words, or sequences of letters over a finite alphabet, goes back
to the work of the mathematician, Thue, at the beginning of the twentieth cen-
tury [18]. The interest in this topic has been increasing since it finds applications
in various research areas of mathematics, computer science, biology, and physics
where the data can be easily represented as words over some alphabet. Motivated
by molecular biology of nucleic acids, partial words, or sequences that may have
some “do not know symbols”, also called “holes”, were introduced by Berstel and
Boasson in [1], and have been extensively studied since (see [2] for instance). For
example, cca�ctcg�ccctc is a partial word with two holes, represented by the two
�’s, over the DNA alphabet {a, c, g, t} (the �’s are compatible with, or match, ev-
ery letter of the alphabet). Partial words are interesting from a theoretical point
of view as they approximate full words (those without holes), but also from a
practical point of view. Such practical uses occur for instance in bio-inspired com-
puting where they have been considered for identifying good encodings for DNA
computations [15]. More specifically, a basic issue in DNA computing is to find
strands, which are used as codewords, that should not form so-called secondary
structures (a sequence has such a structure if there is some kind of repetition in it).
The combinatorial concept of repetition-freeness, or repetition avoidance, has been
proposed to exclude such formation. Requiring a big Hamming distance between
the strands has also been proposed. So partial words can be used as codewords,
the latter requirement being provided through the compatibility relation. They
offer a more powerful and realistic model than full words due to the errors caused
by the evolutionary processes of deletion, insertion, and mutation in biological se-
quences. A deeper understanding of avoidance of patterns such as repetitions in
the framework of partial words can thus be exploited.

In the context of full words, Thue showed that arbitrarily long non-repetitive
words, or those that avoid repetitions, can be constructed with only three letters.
The importance of this result has been seen through several rediscoveries that
come from applications in ergodic theory, formal language theory, group theory,
universal algebra, etc. In a recent paper, Currie [8] reviews results on pattern
avoidance, and discusses a number of open problems on words avoiding squares
and more general patterns which are words over an alphabet of variables, denoted
by α, β, γ, . . . Squares, for instance, are represented by the unary pattern α2 = αα,
which is a power of a single variable α.

Erdős in 1961 initiated abelian pattern avoidance by raising the question
whether abelian squares can be avoided [13]. A word contains an abelian square
if it has a factor uv, where u is a permutation of v or u is a rearrangement of the
letters of v. For example, w = babcacb contains the abelian square abcacb even
though w is square-free. More generally, if p = α0 . . . αn−1, where the αi’s are
variables, a word w meets p in the abelian sense if w contains a factor u0 . . . un−1

where ui is a permutation of uj, whenever αi = αj ; otherwise, w avoids p in the
abelian sense. In 1979, Dekking showed that abelian cubes can be avoided over
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three letters, and two letters are enough to avoid abelian 4th powers [12]. Thirteen
years later, Keränen proved that abelian squares are avoidable over four letters,
settling the problem of classifying all the unary patterns in the abelian sense [14]:
α is abelian unavoidable, αα is abelian 4-avoidable but not abelian 3-avoidable,
ααα is abelian 3-avoidable but not abelian 2-avoidable, and αn, n ≥ 4, is abelian
2-avoidable (where a pattern p is k-avoidable if there is an infinite abelian p-free
word, i.e., not containing any occurrence of p, over a k-letter alphabet). For more
results on abelian pattern avoidance, see [9–11].

In [4], the investigation of abelian avoidability in partial words was initiated.
A partial word is abelian square-free if it does not contain any factor that results
in an abelian square after filling in the holes. For example, abc�cb is an abelian
square because we can replace the � by letter a and get abcacb. Blanchet−Sadri
et al. constructed a partial word with infinitely many holes over five letters that
is abelian square-free (except for trivial squares of the form a� or �a, where a
is a letter), and proved that none exists over four letters. In [7], Blanchet−Sadri
et al. looked at the abelian avoidance of the patterns αn in infinite partial words,
where n > 2. They investigated, for a given n, the smallest alphabet size needed to
construct an infinite partial word with finitely or infinitely many holes that avoids
αn in the abelian sense. They constructed in particular a binary partial word with
infinitely many holes that avoids αn, n ≥ 6 in the abelian sense. Then, they proved
that one cannot avoid αn in the abelian sense under arbitrary insertion of holes in
an infinite full word.

In this paper, we provide a more general study of abelian pattern avoidance in
the context of partial words. We construct, given k-abelian avoidable patterns p in
full words satisfying some conditions, abelian avoiding partial words with infinitely
many holes over alphabet sizes that depend on k, as well as abelian avoiding infinite
partial words with h holes over alphabet sizes that depend on k and h, for every
integer h > 0. We construct, given infinite full words avoiding pattern p in the
abelian sense, infinite abelian avoiding full words with the property that any of
their positions can be changed to a hole while still avoiding p in the abelian sense.
We also show that a pattern p with n > 3 distinct variables such that |p| ≥ 2n

is abelian avoidable by a partial word with infinitely many holes. The bound on
|p| turns out to be tight. We end up completing the classification of the binary
and ternary patterns with respect to non-trivial abelian avoidability, in which no
variable can be substituted by only one hole. Finally, we investigate the minimal
size alphabet for avoiding binary and ternary patterns in the abelian sense.

2. Preliminaries on partial words and patterns

First, we recall some basic concepts of combinatorics on partial words; for more
information, see [2]. A partial word over a finite alphabet A is a sequence of symbols
from A� = A ∪ {�}, the alphabet A being augmented with the hole symbol �; a
full word is a partial word without holes. The special symbol � is interpreted as an
undefined position, or hole, and matches or is compatible with every letter of A.
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If u, v are partial words of equal length, then u is compatible with v, denoted u � v,
if u[i] = v[i] for all i such that u[i], v[i] ∈ A. We use u v to denote u is abelian
compatible with v, that is, some permutation of u is compatible with v.

We denote by u[i] the symbol at position i of a partial word u (labelling starts
at 0). We denote by |u|a the number of occurrences of letter a in u. The length
of u, denoted by |u|, represents the number of symbols in u. The empty word is
the sequence of length zero and is denoted by ε. The set of all full words over A,
the free monoid generated by A, is denoted by A∗. Also, An denotes the set of
all words over A of length n. A partial word u is a factor of a partial word v if
there exist x, y such that v = xuy; the set of factors of v is denoted by fac(v). We
denote by v[i . . . j] (resp., v[i . . . j)) the factor v[i] . . . v[j] (resp., v[i] . . . v[j − 1]).
The powers of u are defined by u0 = ε and for n ≥ 1, un = uun−1.

Now, let us take a look at some concepts regarding patterns. Let E be a pattern
alphabet and let p = α0 . . . αn−1, where αi ∈ E. Define an abelian occurrence of p
in a partial word w as a factor u0 . . . un−1 of w such that there exists a full word
v0 . . . vn−1, where for all i, ui �= ε and ui ↑ vi, and where for all i, j, if αi = αj

then vi is a permutation of vj .
The partial word w meets the pattern p in the abelian sense, or p occurs in

w in the abelian sense, if for some factorization w = xuy, we have that u is an
abelian occurrence of p in w; otherwise, w avoids p in the abelian sense (or w
is abelian p-free). For instance, ab�ba�baa meets αββα in the abelian sense (take
ab�b a � baa). An abelian occurrence of p is trivial if ui = � for some i; otherwise,
it is non-trivial. We call w non-trivially abelian p-free if it contains no non-trivial
abelian occurrences of p. These definitions also apply to full words over A as well
as infinite partial words over A which are functions from N to A�.

We also make use of the concept of isomorphic patterns, introduced in [11].
Let E and F be pattern alphabets, and let φ : E → F be a bijection. We can
extend φ to an isomorphism from E∗ to F ∗. Then pattern p ∈ E∗ is isomorphic
to φ(p) ∈ F ∗. Further, a partial word meets p in the abelian sense if and only if it
meets φ(p) in the abelian sense.

Remark 2.1. Let p be a pattern over alphabet E = {α0, α1, . . . , α‖E‖−1}. Then
there exists some pattern, p′, over E isomorphic to p and p′[0] = α0.

Based on this, we make the following simplifying assumptions for the rest
of the paper (unless otherwise stated): Any pattern p over alphabet E =
{α0, α1, . . . , α‖E‖−1} begins with α0. Similarly, all binary (resp., ternary) patterns
are over the alphabet {α, β} (resp., {α, β, γ}) and begin with α.

A pattern p is k-abelian avoidable (resp., non-trivially k-abelian avoidable) in
partial words if there is a word with infinitely many holes over an alphabet of size
k that avoids p in the abelian sense (resp., avoids non-trivial abelian occurrences
of p); otherwise, p is k-abelian unavoidable. A pattern which is k-abelian avoidable
(resp., k-abelian unavoidable) for some k (resp., every k) is called abelian avoidable
(resp., abelian unavoidable). The abelian avoidability index of p is the smallest
integer k such that p is k-abelian avoidable, or is ∞ if p is abelian unavoidable.
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Note that k-abelian avoidability implies (k+1)-abelian avoidability. For clarity or
emphasis, we may say a pattern is completely abelian avoidable (resp., unavoidable)
in partial words if it can (resp., cannot) be avoided both trivially and non-trivially
in the abelian sense.

Proposition 2.2. Let p be an abelian unavoidable pattern in full words. Then
every partial word non-trivially meets p in the abelian sense.

Proof. For the sake of a contradiction, suppose a partial word w over an alphabet
A exists that non-trivially avoids p in the abelian sense. Consider the alphabet
B = {ab | a, b ∈ A�}. Define a full word v over B so that v[i] = w[2i]w[2i + 1].
Then there is an abelian occurrence of p in v, call it u. However, if ϕ : B∗ → A∗�
maps ab treated as a letter in B to ab treated as a partial word in A∗

�, then ϕ(u)
is a non-trivial abelian occurrence of p in w. �

3. Avoiding partial words with infinitely many holes

We first address the problem of avoiding patterns in the abelian sense by partial
words with infinitely many holes. Before we start trying to avoid patterns, we
investigate how far apart holes in abelian pattern avoiding partial words must
be and how the hole spacing restricts abelian occurrences of a pattern within an
infinite partial word.

We generalize some results from [7] about hole spacing in infinite abelian pattern
avoiding partial words. The first proposition essentially states that in an abelian
pattern avoiding partial word, the holes cannot be spaced at a constant distance,
i.e., they have to be far apart.

Proposition 3.1. Let w be an infinite partial word with infinitely many holes,
let p be a pattern, and let μ be an integer. Assume there are fewer than μ letters
between each pair of consecutive holes in w. Then w meets p.

Proof. By ([7], Cor. 4) w contains arbitrarily high abelian powers. Thus, w
meets p. �

The next two lemmas are useful in many proofs later in this paper. They are
two different ways to generalize ([7], Lem. 1).

Lemma 3.2. Let u = u0 . . . un−1 be a factor of an infinite partial word w, and
write uj = w[ij . . . ij+1) for all j. Suppose 0 < k0 < k1 < . . . is a sequence
of integers such that kj+1 > nkj for all j. Let M be the smallest integer such
that |uM | = max{|ui| | i ∈ [0 . . . n − 1]}. Then there is at most one j such that
iM+1 ≤ kj < in.

Proof. Assume, towards a contradiction, that there is some j such that iM+1 ≤
kj < kj+1 < in. Note that |uj | ≤ iM+1 − i0 for all j. Hence

|u| ≤ n(iM+1 − i0) ≤ n(kj − i0) < kj+1 − ni0 < in − i0 = |u|,
which yields a contradiction. �
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This lemma has the following immediate consequence: If u = u0 . . . un−1 is an
abelian occurrence of a pattern p = α0 . . . αn−1 in an infinite partial word w, kj

and uj are as above, and M is an integer such that all variables in p occur in
α0 . . . αM , then there is at most one j such that iM+1 ≤ kj < in.

Lemma 3.3. Let u = u0u1 . . . un−1 be a factor of an infinite partial word w,
and write uj = w[ij . . . ij+1) for all j. Suppose 0 < k0 < k1 < . . . is a sequence
of integers such that kj+1 > 2kj for all j, and let l < l′ be integers such that
|ul| = |ul′ |. Then there is at most one j such that il′ ≤ kj < il′+1.

Proof. Assume, towards a contradiction, that there exists some j such that il′ ≤
kj < kj+1 < il′+1. Note il+1 ≤ il′ , so

|ul| = il+1 − il ≤ il+1 ≤ il′ ≤ kj < kj+1 − kj < il′+1 − il′ = |ul′ | = |ul|,

which is a contradiction. �

Both of these lemmas allow us to limit the number of holes in an abelian occur-
rence of a pattern within an infinite partial word if we space the holes exponentially
far apart.

3.1. Binary patterns

Next we consider binary patterns. The following lemma is very simple, but
useful in several upcoming proofs.

Lemma 3.4. If p is a pattern which contains an abelian cube, then p is 4-abelian
avoidable in partial words.

Proof. There exists an infinite partial word, w, with infinitely many holes over
four letters that avoids abelian cubes [7]. Hence w avoids p. �

Using this lemma, we can classify all binary patterns with respect to abelian
avoidability in partial words (both trivial and non-trivial), and give upper limits
on the abelian avoidability index.

Theorem 3.5. Let p be a binary pattern. Then the following enumerate all pos-
sibilities for p:

1. If p is not isomorphic to a subpattern of ααβαα, then p is completely 5-abelian
avoidable in partial words.

2. If p ∈ S0 = {αα, ααβ, αββ, ααβα, αβαα, ααβαα}, then p is trivially abelian
unavoidable, but has non-trivial abelian avoidability index 5.

3. if p ∈ S1 = {α, αβ, αβα}, then p is completely abelian unavoidable in partial
words.

Furthermore, any trivially or non-trivially abelian avoidable binary pattern in par-
tial words can be avoided with only five letters.
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Proof. We first prove Statement 1. If |p| ≥ 10, then p contains an abelian cube
and the result follows from Lemma 3.4. Hence we may assume |p| < 10, and by
hypothesis p is not isomorphic to a subpattern of ααβαα. Suppose p contains
either an abelian cube or an abelian square, u0u1, where |u0| = |u1| ≥ 2. In the
former case, Lemma 3.4 again proves the result. In the latter case, consider the
infinite partial word over five letters, w, from [4] which has infinitely many holes
and avoids non-trivial abelian squares. If w meets p, it must contain a non-trivial
abelian square. Hence w avoids p. We can check that the only pattern not handled
above is p = ααββ; however, we can show w avoids this pattern as well. Assume,
by way of contradiction, that v = v0v1v2v3 is an abelian occurrence of p in w.
Since there are no non-trivial occurrences of abelian squares in w, it must be that
either v0 = � or v1 = �. Similarly, either v2 = � or v3 = �. However, this implies
v0v1 v2v3, so v is a non-trivial abelian square, which contradicts our choice of w.
Thus w avoids p.

Next we prove Statement 2. Let w be a partial word with infinitely many holes
over A. Then there exists some a ∈ A� so that a� occurs infinitely often in w.
Thus there is a non-empty partial word u so that a�ua� is a factor of w. However,
a�ua� is an occurrence of ααβαα, so there is no partial word with infinitely many
holes that avoids ααβαα in the abelian sense. Notice that all the patterns in S0

contain a square, so the 5-letter partial word from above non-trivially avoids these,
showing the non-trivial abelian avoidability index is less than or equal to 5. Now
let w′ be a partial word on four letters with infinitely many holes. In [4] it is stated
that any partial word of the form u�v where |u| = |v| = 12 contains a non-trivial
abelian square. Note there is some factor, x, of w′ of this form that occurs infinitely
often. By considering two occurrences of x, we can find a factor of w′ which we
can write as u0u1vu0u1, where u0u1 is a non-trivial abelian square in x and v is
a non-empty factor of w′. Hence w′ meets the pattern ααβαα. Since all patterns
in S0 are subpatterns of this pattern (up to isomorphism), w′ meets every pattern
in S0. Thus every pattern in S0 is non-trivially abelian 4-unavoidable in partial
words.

Finally we prove Statement 3. The pattern αβα is isomorphic to the second
Zimin pattern, Z2, which is unavoidable in full words (see Chapter 3 of [16]),
hence completely abelian unavoidable in partial words. �

However, five is only an upper bound on the abelian avoidability index of any
trivially or non-trivially abelian avoidable binary pattern in partial words, and we
wish to classify which patterns have lower indices. Since it is shown in [7] that
there exists a partial word over a ternary alphabet with infinitely many holes that
is abelian α4-free, all binary patterns meeting abelian 4th powers are abelian 3-
avoidable. Meanwhile, Currie et al. in [10] give the first example of a binary pattern
which is abelian 2-avoidable, but which contains no abelian 4th-powers. We can
show that this pattern is also 3-abelian avoidable in the context of partial words.

Proposition 3.6. There exists a partial word with infinitely many holes over a
ternary alphabet that avoids αααβαααβββααα in the abelian sense.
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Proof. Let p = αααβαααβββααα. Currie et al. define in [10] a family of mor-
phisms fn : {a, b}∗ → {a, b}∗ generated by fn(a) = an+1b, fn(b) = abn. Then
word wn is defined by wn = limm→∞ fm

n (a). They have shown that p can be
avoided in the abelian sense by w2. Note that Dekking [12] found (essentially) w2.

Let c be any letter not in A = {a, b} and write B = {a, b, c}. Define a sequence
1 < k0 < k1 < . . . such that ki+1 > 13ki = |p|ki. Then we can define an infinite
partial word w′ over B as follows:

w′[j] =

⎧⎨
⎩

�, if j = ki for some i;
c, if j = ki + 1 or j = ki − 1 for some i;
w2[j], otherwise.

We show that w′ avoids p in the abelian sense by contradiction. Assume there
exists an abelian occurrence of p in w′, denoted as

u = u0u1u2v0u3u4u5v1v2v3u6u7u8,

where each ui is abelian compatible with each uj and each vi is abelian compatible
with each vj .

By Lemma 3.2, u3u4u5v1v2v3u6u7u8 contains at most one hole. This implies
some ui for i ∈ [3 . . . 8] does not contain a c or a �. Consequently no ui can contain
a c, and since all �’s come in factors of the form c�c, no ui contains a �. If |v0| ≥ 2,
then since all vi have the same length, some vi for i ∈ [1 . . . 3] does not contain
a c or a �. By the same argument as above, no vi contains a c or a �, so u is an
abelian occurrence of p in w, which is a contradiction. So |v0| = 1, which implies
v0 does not have a c or a � (else some ui would have a c), again this implies that
no vi has a c or a �, which is a contradiction. �

We also give the following bounds.

Proposition 3.7. Let p be a binary pattern. If |p| ≥ 363 (resp., |p| ≥ 119), then
a partial word over a binary (resp., ternary) alphabet with infinitely many holes
exists that is abelian p-free.

Proof. Let p = α0 . . . αn−1 be a pattern over E = {α, β} such that |p| ≥ 363.
Without loss of generality we can assume that α0 = α. Note that αi = β for some
i < 6, since otherwise p contains α6 as a subpattern, which can be abelian avoided
by a binary partial word with infinitely many holes [7]. Then write p = qq0q1q2
where |qi| = 119 for each i, and |q| ≥ 6. We can do this since |p| ≥ 363 = 3×119+6.
From [11], Lemma 3.2, there exist infinite binary words w2 and w3 so that every
binary pattern of length at least 119 is avoided in the abelian sense by either w2

or w3. By the pigeonhole principle there exist l < l′, where ql and ql′ are either
both avoided in the abelian sense by w2 or both avoided in the abelian sense by
w3. Let w be the infinite binary word that avoids ql and ql′ in the abelian sense.
Define a sequence 0 < k0 < k1 < k2 < . . . so that ki+1 > |p|ki for all i. We can
then define the partial word w′ by w′[j] = � if j = ki for some i, and w′[j] = w[j]
otherwise.
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For the sake of a contradiction, suppose that uu0u1u2 is an abelian occurrence
of p in w′, where u is an abelian occurrence of q, u0 is an abelian occurrence of q0,
etc. By Lemma 3.2, there is at most one hole in u0u1u2. Thus, at least one of ul

and ul′ is full, and is an occurrence of ql or ql′ in w, which contradicts our choice
of w.

Now, let p = α0 . . . αn−1 be a pattern over E = {α, β} such that |p| ≥ 119. As
above, we can assume that α0 = α. Note that αi = β for some i < 6, since otherwise
p contains α6 as a subpattern, which can be avoided by a binary partial word with
infinitely many holes in the abelian sense. From [11], Lemma 3.2, there exists an
infinite word w over A = {a, b} that avoids abelian occurrences of p. Moreover, bab
occurs infinitely often as a factor of w (this can be seen by considering the words
w2 and w3 in [11]). Define a sequence 3 < k0 < k1 < k2 < . . . so that |p|ki < ki+1

and w[ki − 1 . . . ki + 1] = bab, for all i. Consider c /∈ A. We can then define a
partial word w′ as follows: w′[j] = � if j = ki for some i, w′[j] = c if j = ki − 1 or
j = ki + 1 for some i, and w′[j] = w[j] otherwise.

For the sake of a contradiction, suppose that u0 . . . un−1 is an abelian occurrence
of p in w′. Since w avoids abelian occurrences of p, some uj must contain a hole.
However, since each � in w′ occurs in a factor of the form c�c, some ui must contain
c. Assume that αi = β, the other case being similar. By Lemma 3.2, there is at
most one j so that j ≥ 6 and so that uj contains a hole. Then one variable in
α7 . . . α13 must be β. Let αl be this variable. Then ul contains either a c or a �.
Since each c occurs next to a �, ul−1ulul+1 contains a hole, where l − 1 ≥ 6 and
l+1 ≤ 14. Similarly, there exists an l′ so that 23 ≥ l′ ≥ 17, and where ul′−1ul′ul′+1

contains a hole. However, this contradicts the fact that there exists at most one j,
j ≥ 6, such that uj contains a hole. Thus w′ avoids p in the abelian sense. �

3.2. General patterns

Now we move on to general patterns.
Our next goal is to find a bound so that if a pattern has length at least this

bound, then it is abelian avoidable in partial words. The following proposition
helps us in this.

Proposition 3.8. Let p be a pattern over an alphabet E such that p �= αα, for
any α ∈ E. If each variable in p occurs at least twice, then p can be avoided in
the abelian sense by a partial word with infinitely many holes. In particular, if p
is abelian k-avoidable, then there exists a partial word with infinitely many holes
over an alphabet of size k + 4 that is abelian p-free.

Proof. Since each variable in p = α0 . . . αm−1 occurs at least twice, by [9],
Lemma 7, p can be avoided in the abelian sense by an infinite full word w over
some alphabet A of size k. Let B = A∪ {a, b, c, d} where a, b, c, d �∈ A. Since there
is some factor v, |v| = 5, that occurs infinitely often in w, consider a sequence
5 < k0 < k1 < k2 < . . . so that w[ki − 2 . . . ki + 2] = v and 2ki < ki+1, for all i.
Then define w′ by
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w′[j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, if j = ki − 2 for some i, i ≡ 0 mod 4|p|;
b, if j = ki − 1 for some i, i ≡ 0 mod 4|p|;
�, if j = ki for some i, i ≡ 0 mod 4|p|;
c, if j = ki + 1 for some i, i ≡ 0 mod 4|p|;
a, if j = ki + 2 for some i, i ≡ 0 mod 4|p|;
d, if j = ki for some i, i �≡ 0 mod 4|p|;
w[j], otherwise.

For the sake of contradiction, suppose w′ contains u = u0u1 . . . um−1 as an
abelian occurrence of p and write uj = w′[ij . . . ij+1). Note that u0u1 . . . um−1

contains a hole since otherwise we can replace the b’s in u with v[1]’s etc., to get
a word that is still an abelian occurrence of p, but that is also a factor of w,
which is impossible. Moreover, u contains at least 4|p| − 1 d’s. To see this, assume
that uj contains a hole. Then there are two cases to consider. If uj �= �, then uj

contains b or c, since every � in w′ occurs in a factor of the form ab�ca. Without
loss of generality, assume uj has b� as a factor. Since every variable in p occurs
at least twice, there is some j′, distinct from j, so that uj′ is compatible with a
permutation of uj. Thus uj′ contains either b or �. Suppose j′ > j, the case j′ < j
being similar. Then there exists some s such that ij ≤ ks < ij+1, and some t such
that ij′ < kt ≤ ij′+1 or ij′ ≤ kt < ij′+1, where s < t, s ≡ t ≡ 0 mod 4|p|. Thus
i0 ≤ ks < ks+4|p| ≤ kt ≤ im. So there are 4|p| − 1 l’s so that ks < kl < ks+4|p|.
Since for each l �≡ 0 mod 4|p|, w′(kl) = d, there are 4|p| − 1 d’s in u. If uj = �,
then a similar reasoning works.

Since u contains at least 4|p| − 1 = 4m − 1 d’s, it follows from the pigeonhole
principle that some uj contains at least two d’s. So there is an s such that ij ≤ ks <
ks+1 < ij+1. Since there is a j′ such that uj′ is compatible with a permutation of
uj , let j′ > j (the other case is similar). Here, uj′ contains either a d or a � for
each d in uj . This implies there is some t such that ij′ ≤ kt < kt+1 < ij′+1, where
t > s, which contradicts Lemma 3.3. �

Now we consider one bound that implies abelian avoidability in partial words.
We will later improve upon it, but we need it in order to prove our tight bound,
so we include it here.

Theorem 3.9. Let p be a pattern with n distinct variables. If |p| ≥ 3×2n−1, then
there exists a partial word with infinitely many holes that is abelian p-free.

Proof. We proceed by induction on n. If n = 1, then p = αm for some α ∈ E and
m ≥ 3, whence p is abelian avoidable in partial words [7]. Assume the claim holds
up to n− 1 distinct variables. If each variable in p occurs at least twice, then the
result follows from Proposition 3.8. So we may assume there is some variable that
occurs in p exactly once. Then p has a factor q with at most n−1 distinct variables
with |q| ≥ 3 × 2n−2, so by the inductive hypothesis a word with infinitely many
holes exists that avoids q, and thus p, in the abelian sense. �



ABELIAN PATTERN AVOIDANCE IN PARTIAL WORDS 325

By considering the pattern p = αα, we can see that the bound in Theorem 3.9
is tight over a unary alphabet of variables. Moreover, Theorem 3.5 shows that
it is tight over a binary alphabet of variables. Our next step is to strengthen
Theorem 3.9 for pattern alphabets of at least three variables.

Theorem 3.10. Let p be a pattern over an alphabet E. Then there exists a partial
word with infinitely many holes that is abelian p-free if one of the following holds:
(1) ‖E‖ = 3 and |p| ≥ 9; (2) ‖E‖ > 3 and |p| ≥ 2‖E‖.

Proof. For Statement 1, let p = α0 . . . αm−1 ∈ Em be a pattern over the alphabet
E = {α, β, γ}. It is sufficient to consider the case where |p| = 9. For the sake of
a contradiction, suppose that there is no partial word with infinitely many holes
that avoids p in the abelian sense. At least one variable in p occurs exactly once
(the case when each variable in p occurs at least twice follows from Prop. 3.8).
Without loss of generality, we can assume that this variable is γ. Therefore we can
write q0γq1 = p, where q0 and q1 are patterns over {α, β}. There exists no partial
word with infinitely many holes that avoids q0 or q1 in the abelian sense, because
that word should also avoid p in the abelian sense. By Theorem 3.9, |qi| < 6 for
both i. Since |q0| + |q1| = 9 − 1 = 8, (|q0|, |q1|) ∈ {(5, 3), (3, 5), (4, 4)}.

There exists an infinite word w over an alphabet A that avoids abelian squares.
Assume that a0a1a2 ∈ A3 occurs infinitely often in w, then consider any sequence
4 < k0 < k1 < . . . where ki+1 > 9ki and w[ki − 1 . . . ki + 1] = a0a1a2, for
all i. Moreover, consider a, b, c /∈ A, where a, b and c are distinct letters. Let
B = A ∪ {a, b, c}. We can then define a partial word w′ over B as follows:

w′(j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a, if j = ki − 1 for some i, i ≡ 0 mod 3;
�, if j = ki for some i, i ≡ 0 mod 3;
b, if j = ki + 1 for some i, i ≡ 0 mod 3;
c, if j = ki for some i, i �≡ 0 mod 3;
w(j), otherwise.

The partial word w′ avoids non-trivial abelian squares, following the same ar-
gument as in the proof of ([4], Thm. 4.4). We want to show that w′ avoids p in the
abelian sense. For the sake of a contradiction, suppose that u0 . . . u8 is an abelian
occurrence of p. Set uj = w′[ij . . . ij+1) for each j.

First, consider the case |q0| = 3, |q1| = 5. Since |q1| > 4 we know that q1 is
avoidable in full words. By Theorem 3.5, q1 = ααβαα or q1 = ββαββ. Without
loss of generality we assume that q1 = ααβαα. Then u4u5u6u7u8 is an abelian
occurrence of q1. Since u4u5 and u7u8 are both abelian squares and w′ avoids
non-trivial abelian squares, we get that u4u5 and u7u8 both contain a hole. Thus
there is some s such that i4 ≤ ks < ks+1 < i9. Moreover, β occurs in q0, since
otherwise q0 = ααα, so this contradicts Lemma 3.2.

Next, consider the case where |q0| ≥ 4. This implies that q0 is a subpattern of
ααβαα. Suppose that q0 = ααβα, the other cases being similar. Since w′ avoids
non-trivial abelian squares, we know |u0| = |u1| = |u3| = 1. Also, u0 and u1 must
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be elements of {a, b, �}, which implies u3 must also be an element of that set. So
there are some integers, s and t, such that i0 ≤ ks < i3 ≤ ks+3t ≤ i4 + 1. Since
i2 = i0 + 2 and i4 = i3 + 1, it must be that i2 ≤ ks+1 < ks+2 < i3. This implies u2

contains at least two c’s. Since |q1| ≥ 3, there is at least one β in q1. Thus, there
is some j ≥ 5 such that uj contains two letters in {c, �}, whence there is some s′

such that ij ≤ ks′ < ks′+1 < ij+1. This contradicts Lemma 3.3.
For Statement 2, let p be a pattern over the alphabet E = {α, β, γ, δ}. It

suffices to consider the case |p| = 16. For the sake of a contradiction, suppose that
no partial word with infinitely many holes avoids p in the abelian sense. We know
that p can be avoided in the abelian sense by an infinite full word. Then there is
some variable in p that occurs exactly once, assume it is δ. We can write p = q1δq0,
where each qi is a pattern over {α, β, γ} that cannot be avoided by a partial word
with infinitely many holes in the abelian sense. Furthermore, note that this implies
|qi| < 9. Since |q0| + |q1| = 16 − 1 = 15, either |q0| = 7 and |q1| = 8 or vice versa.
This means that each of α, β and γ actually appear in each qi at least once, since
otherwise qi would be a pattern over a binary alphabet of length greater than 6,
and by Theorem 3.9 there would exist a partial word with infinitely many holes
that avoids it in the abelian sense.

There exists an infinite word w over an alphabet A that avoids abelian squares.
Assume that a0a1a2 ∈ A3 occurs infinitely often in w. Letting a, b, c /∈ A, construct
a sequence 3 < k0 < k1 < . . . so that ki+1 > 2ki and w[ki − 1 . . . ki + 1] = a0a1a2,
for all i, and define w′ as in Statement 1. We already know that w′ avoids non-
trivial abelian squares. For the sake of a contradiction, suppose w′ does not avoid
p in the abelian sense, and let u0 . . . u15 be an abelian occurrence of p. Consider
the case where |q1| = 8 and |q0| = 7 (the argument is similar when we consider the
case where |q1| = 7 and |q0| = 8). Some variable must occur in q1 exactly once,
since otherwise q1 could be avoided by a partial word with infinitely many holes
by Proposition 3.8. Let us assume this variable is γ. Then we can write q1 = q′0γq

′
1.

Since |q1| = 8 we have that 4 ≤ |q′i| for some i, and q′i must be a subpattern of
ααβαα by Theorem 3.5. Since there is a β in q1, this leads to a contradiction,
similar to above.

Now, let p be a pattern over an alphabet E. Let n = ‖E‖ > 4 and |p| ≥ 2n.
We will show that p is abelian avoidable in partial words by induction on n, using
n = 4 as the base case. By Proposition 3.8 we may assume some variable, α,
occurs only once in p. Then we can write p = q0αq1, where q0 and q1 have at
most n − 1 distinct variables and some qi has length at least 2n−1. Then qi is
abelian avoidable in partial words by our inductive hypothesis, so p is also abelian
avoidable in partial words. �

The bounds in Theorem 3.10 are tight. For (1), ααβααγαα cannot be avoided
by any partial word with infinitely many holes (since there must be some a ∈ A�
such that a� occurs infinitely often). For (2), the nth Zimin pattern, Zn, is abelian
unavoidable and is of length 2n − 1 (see Chapt. 3 of [16]). More specifically, if
E = {α0, . . . , αn−1}, then Z1 = α0, and Zm = Zm−1αm−1Zm−1 if 1 < m ≤ n.
Meanwhile, we can consider the case of non-trivial avoidance.
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Theorem 3.11. Let p be a pattern with each of its variables occurring at least
twice that is abelian k-avoidable in full words. Then a partial word with infinitely
many holes over an alphabet of size k+2 exists that is non-trivially abelian p-free.

Proof. Suppose w is a word over an alphabetA of size k that avoids p in the abelian
sense. Then we define a sequence of ki’s, where ki+1 > 5ki such that w[ki] = a for
some a ∈ A. Let B = A ∪ {c, d}, where c, d �∈ A. Then define a partial word, w′,
as follows:

w′[i] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�, if i = kj for some j, j ≡ 0 mod 6|p|;
c, if i = kj − 1 or i = kj + 1 for some j, j ≡ 0 mod 6|p|;
d, if i = kj for some j, j �≡ 0 mod 6|p|;
w[i], otherwise.

Then w′ contains infinitely many holes. Set p = α0 . . . αn−1 ∈ En, and
assume that u = u0 . . . un−1 = w′[i0 . . . i1) . . . w′[in−1 . . . in), where u0 =
w′[i0 . . . i1), . . . , un−1 = w′[in−1 . . . in), is a non-trivial abelian occurrence of p
in w′, i.e., if αi = αj then ui is compatible with a permutation of uj , and ui �= �,
for 0 ≤ i < n.

Let αl and αl′ be two occurrences of any variable α in p, where l < l′. Let
J1 = {j | il ≤ kj < il+1} and J2 = {j | il′ ≤ kj < il′+1}. Then ‖J2‖ < 2 by
Lemma 3.3. If ‖J1‖ ≥ 3 then there are at least 2 d’s in ul, which means that ul′

has to contain at least 2 d’s or �’s. Then J2 contains at least 2 j’s, which is a
contradiction. Therefore ‖J1‖ < 3. Since for each α in p, ‖J1 ∪ J2‖ ≤ 3, there are
at most 3|p| integer j’s such that i0 ≤ kj ≤ in.

Now we show that no ul contains a hole. Suppose some ul contains one. Then
c must also occur in ul since |ul| > 1. Then either �c or c� occurs in ul′ , which
is compatible with a permutation of ul. Suppose �c occurs in ul′ , the other case
is similar. Then between the occurrence of � in ul and � in ul′ there are at least
6|p|−2 kj ’s. This contradicts the fact that there are at most 3|p| kj ’s from position
i0 to position in. Therefore u contains no holes, and similarly u contains no c’s.
Then we can replace all the occurrences of d by a, and we get an abelian occurrence
of p in w. However, this contradicts the fact that p can be avoided in the abelian
sense by infinite full words over k letters. Therefore w′ non-trivially avoids p in
the abelian sense. �

Corollary 3.12. Let p be a pattern with n distinct variables. If |p| ≥ 2n, then
there exists a finite alphabet A and a partial word with infinitely many holes over
A that is non-trivially abelian p-free.

Proof. We proceed by induction on n. If n = 1, then p can be written as p = α|p|

for some α ∈ E. However, since |p| ≥ 2n = 2, p can be non-trivially avoided by
a partial word with infinitely many holes in the abelian sense. Assume the claim
holds up to n− 1 distinct variables. Let p be a pattern with n distinct variables,
|p| ≥ 2n. By ([9], Lem. 7), p can be avoided in the abelian sense by an infinite
full word. If every variable in p occurs at least twice, then the result follows by
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Theorem 3.11. On the other hand, assume that there is a variable α ∈ E that
occurs in p, but occurs only once. This implies that p contains a factor q that does
not contain α, |q| ≥ 2n−1. Since q does not contain α, q has at most n− 1 distinct
variables, so by the inductive hypothesis there is a partial word with infinitely
many holes that avoids q non-trivially in the abelian sense, and thus avoids p
non-trivially in the abelian sense. �

We can strengthen Theorem 3.11 and Proposition 3.8, by adding another hy-
pothesis.

Theorem 3.13. Let p = α0 . . . αn−1 be an abelian k-avoidable pattern in full
words such that for some m, all of the variables in p are present in both α0 . . . αm−1

and αm . . . αn−1. If αm−1 �= αm or there exists some j /∈ {m − 1,m} such that
αj = αm, then p is abelian (k + 2)-avoidable in partial words.

Proof. By assumption, there exists some infinite word, w, over a k-letter alphabet,
A, which avoids p in the abelian sense. Let a ∈ A be a letter that occurs infinitely
often in w. Define a sequence, 1 < k0 < k1 < . . ., such that ki > (n+1)ki−1 for all
i and w[ki] = a. Let b, c /∈ A be letters, let μ = 4m+ 4, and define w′ as follows:

• If i ≡ 0 mod μ, then w′[ki − 1 . . . ki + 1] = b � c,
• If i ≡ 1, 2, . . . , 2m+ 1 mod μ, then w′[ki] = b,
• If i ≡ 2m+ 2 mod μ, then w′[ki − 1 . . . ki + 1] = c � b,
• If i ≡ 2m+ 3, 2m+ 4, . . . 4m+ 3 mod μ, then w′[ki] = c,
• unless specified above, w′[j] = w[j].

Note that we are creating w′ from w by replacing letters.
Assume, by way of contradiction, that u = u0 . . . un−1 is an abelian occurrence

of p in w′. Let v0 = u0 . . . um−1 and v1 = um . . . un−1 and write v0 = w′[i0 . . . i1)
and v1 = w′[i1 . . . i2). Notice that for each uj in v0, there is some uj′ in v1 such
that uj uj′ . We claim that there exists some ki such that i0 ≤ ki−1 < i1 ≤ ki <
i2 < ki+1.

Assume there is at most one ki such that i0 ≤ ki < i2. There must be at least
one b or c in u, otherwise u ∈ fac(w), which contradicts our choice of w. Hence
there is some ki, such that ki−1 ≤ i0 − 1 ≤ ki ≤ i2 ≤ ki+1 and i ≡ 0 mod μ

2 ,
or ki−1 < i0 ≤ ki < i2 ≤ ki+1 and i �≡ 0 mod μ

2 . In the latter case, u is full
and exactly one uj contains a b or a c. However, there is some uj′ that is abelian
compatible with uj , but uj′ contains only letters in A, a contradiction. In the
former case, if ki + 1 < i1 or ki − 1 ≥ i1, then we arrive at a similar contradiction.
So ki must be either i1 − 1 or i1. Suppose ki = i1 − 1 and i ≡ 0 mod μ (the other
cases being similar). Then some uj in v0 contains a b, but there is no uj′ in v1 that
contains either a b or a �, whence there is no uj′ in v1 abelian compatible with uj,
a contradiction.

Thus, we may assume there is some ki such that i0 ≤ ki−1 < ki < i2. Suppose
there is no kj such that i1 ≤ kj < i2 and i is the largest integer satisfying ki < i1.
Then i0 ≤ ki−1 < ki < i1. Suppose i ≡ 0, 1, . . . , or 2m + 1 mod μ (the other case
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being similar). Then, some uj in v0 contains a b, but there are no b’s or �’s in v1.
Hence there is no uj′ in v1 abelian compatible with uj, a contradiction. The claim
follows from Lemma 3.2.

Let ki be such that i0 ≤ ki−1 < i1 ≤ ki < i2. Suppose i ≡ 0 mod μ and ki = i1.
Then um−1 contains a b, and the only factor in v1 that contains a � or a b is um,
so it must be that αm−1 = αm. By hypothesis, there must be some αj1 = αm for
j1 /∈ {m− 1,m}. Then uj1 um−1, so uj1 contains either a � or a b. This implies
uj1 is not in v1, and if uj1 is in v0, then i0 − 1 ≤ ki−(2m+2) < . . . < ki−1 < ki = i1.
Hence there are 2m + 1 c’s in v0 and by the pigeonhole principle, at least one
factor, uj2 , in v0 contains three c’s. However, there is only one � and one c in v1,
so there is no factor in v1 abelian compatible with uj2 . If ki > i1, then there is a b
in v1, forcing there to be a � or a b in v0 and we arrive at the same contradiction.
The case when i ≡ 2m+ 2 mod μ proceeds similarly.

Now, suppose i ≡ 1, 2, . . . , or 2m+1 mod μ, and let i′ < i be the largest integer
satisfying i′ ≡ 0 mod μ. If i0 − 1 ≥ ki′ , then there is a c in v0, so some factor of v0
does not have an abelian compatible factor in v1, because v1 contains no �’s and
no c’s. So if i0 ≤ kj < i2, then j ≡ 1, 2, . . . , or 2m + 1 mod μ, and moreover, the
only letters in u not in A must be at position kj for some j. Thus we can replace
each of these with an a to find an instance of p in w, a contradiction. The case
where i ≡ 2m+ 3, 2m+ 4, . . . , or 4m+ 3 mod μ is almost identical. Therefore, in
all cases, we reach a contradiction. �

Our next goal is to give an avoidability criterion. We are also able to come up
with an alternative definition of an abelian occurrence of p.

Proposition 3.14. Let E be an alphabet, p = α0 . . . αn−1 be a pattern with αi ∈
E. Moreover, let A = {a0, . . . , ak−1} be an alphabet, u0 . . . un−1 be a partial word
over A such that |ui| = |uj| whenever αi = αj. For α ∈ E, let mα,i = max

αj=α
|uj|ai .

Then u0 . . . un−1 is an abelian occurrence of p if and only if |ui| ≥ mαi,0 + . . . +
mαi,k−1 for all i.

Proof. First, assume that u0 . . . un−1 is an abelian occurrence of p. Thus there
exists a corresponding full word v0 . . . vn−1 that is an abelian occurrence of p,
where vi is compatible with ui for each i. This implies that if αi = αj and a ∈ A
then |vi|a = |vj |a ≥ |uj|a. Thus we get that |vi|aj ≥ mαi,j for all j, so that

|ui| = |vi| = |vi|a0 + . . .+ |v|ak−1 ≥ mαi,0 + . . .+mαi,k−1

just as we wanted.
On the other hand, we can begin by assuming that |ui| ≥ mαi,0 + . . .+mαi,k−1

for all i. Consider any α ∈ E that occurs in p. Let {i0, . . . , im−1} = {i | αi = α},
then for any j define vij in the way that we replace mα,l − |ui|al

of the
holes in uij with al for l > 0, and replace the rest of the holes with a0.
We can do this since |uij | ≥ mα,0 + . . . + mα,k−1 for all j’s. Moreover, note
that vij is compatible with uij , while |vij |al

= mα,l = |vi0 |al
for l �= 0, and

|vij |a0 = |vij | − (mα,1 + . . .+mα,k−1) = |vi0 | − (mα,1 + . . .+mα,k−1) = |vi0 |a0 .
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Thus each vij is a rearrangement of vi0 . Then it follows that v0 . . . vn−1 is an
abelian occurrence of p. �

Our next result is very general.
Theorem 3.15. Let p = α0 . . . αn−1 be an abelian avoidable pattern in full words.
Then there exists a partial word with infinitely many holes so that, if u0 . . . un−1

is an abelian occurrence of p then |ui| < |p| + 2 for some i.

Proof. Let p be as above, and note that |p| = n. Since p is abelian avoidable there
exist alphabets A0, . . . , An+1, each disjoint from one another, so that there exists
an infinite word wi over Ai that avoids p in the abelian sense. We can define

w = w0[0] . . . wn+1[0]w0[1] . . . wn+1[1]w0[2] . . . wn+1[2] . . .

which is an infinite word over A = A0 ∪ A1 ∪ . . . ∪ An+1. Consider b /∈ A. Then
consider a sequence n+ 2 = |p| + 2 < k0 < k1 < k2 < . . . so that w[ki] ∈ A0, and
so that ki+1 > |p|ki. We can define a partial word v as follows:

v[j] =

⎧⎨
⎩

�, if j = ki for some i, i ≡ 0 mod 3;
b, if j = ki for some i, i �≡ 0 mod 3;
w[j], otherwise.

Assume that u0 . . . un−1 is an abelian occurrence of p in v. Let uj = v[ij . . . ij+1).
Assume that αj = αl for j < l. Then we get that ul contains at most one � by
Lemma 3.3. Similarly, uj can contain at most one �. This is because between each
pair of �’s lie two b’s. However, for each b contained in uj we have that ul contains
either a b or a �, so if uj contains two �’s then ul contains two symbols from the
set {b, �}. So there is a t so that il ≤ kt < kt+1 < il+1, a contradiction with
Lemma 3.3.

Since u0 . . . un−1 is an abelian occurrence of p, there is a full word v0 . . . vn−1

so that vi � ui for all i, and v0 . . . vn−1 is an abelian occurrence of p. If αi occurs
exactly once in p, we can replace vi with any non-empty string and the result is
still an abelian occurrence of p; therefore we assume that vi is constructed from
ui by replacing each hole in ui with a letter from A0. Otherwise, αi occurs more
than once in p, in which case ui contains at most one �, and in order to form vi

from ui, we need to fill in at most one � with a letter from A. Therefore there
are at most |p| �’s that are filled in with letters not from the alphabet A0. By the
pigeonhole principle, there exists an alphabet Aj so that none of the �’s are filled
with letters from Aj . Then define a morphism φ : (A ∪ {b})∗ → A∗

j so that, given
a ∈ A ∪ {b} we have φ(a) = a, if a ∈ Aj , and φ(a) = ε, otherwise.

Then note that, by construction, φ(v0 . . . vn−1) is a factor of wj . This implies
that φ(v0 . . . vn−1) is not an abelian occurrence of p, since wj avoids p in the abelian
sense. However, the only way that φ(v0 . . . vn−1) cannot be an abelian occurrence
of p is if φ(vi) = ε for some i. This implies that vi does not contain any letters
from Aj , so ui does not contain any letters from Aj . However, ui is a factor of
v, and every factor of v of length at least |p| + 2 contains a letter from Aj . Thus
|ui| < |p| + 2. �
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3.3. Ternary patterns

Next, we consider ternary patterns in partial words. By Corollary 3.12, all
ternary patterns of length ≥ 8 are non-trivially abelian avoidable by partial
words with infinitely many holes. Moreover, a word with infinitely many holes
over five letters exists that avoids non-trivial abelian squares [4]. Therefore, pat-
terns containing abelian squares are non-trivially abelian avoidable as well, and
we only need to examine patterns of length at most 7 without any abelian squares.
Currie et al. in [9] characterize these remaining six patterns: αβαγαβα, αβγαβα
and αβγαγ are abelian unavoidable, while αβαγβαβ, αβαγβγ and αβγβαβγ are
abelian avoidable. By Proposition 2.2, there is no word with arbitrarily many holes
that non-trivially avoids αβαγαβα, αβγαβα or αβγαγ in the abelian sense. By
Proposition 3.8, since each variable occurs at least twice in αβαγβγ and αβγβαβγ,
partial words with infinitely many holes exist that avoid them in the abelian sense.
The last pattern, αβαγβαβ, can be shown to be abelian avoidable by a word with
infinitely many holes with a proof similar to that of [9], Lemma 8. Therefore, the
non-trivial abelian avoidability of the ternary patterns in the context of partial
words is complete.

We now consider the case of complete abelian avoidability.

Proposition 3.16. There exists a partial word with infinitely many holes that
avoids αβαγβαβ in the abelian sense.

Proof. We know that αβαγβαβ can be avoided in the abelian sense by some
infinite word w over some alphabet A. Assume a, b, c, d, e /∈ A, and let u, |u| = 5,
be a factor of w that occurs infinitely often. Then define 3 < k0 < k1 < . . . so that
2ki < ki+1 and w[ki − 2 . . . ki + 2] = u for all i. We can then define w′ as follows:

w′[j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, if j = ki − 2 for some i, i ≡ 0 mod 3;
b, if j = ki − 1 for some i, i ≡ 0 mod 3;
�, if j = ki for some i, i ≡ 0 mod 3;
d, if j = ki + 1 for some i, i ≡ 0 mod 3;
e, if j = ki + 2 for some i, i ≡ 0 mod 3;
c, if j = ki for some i, i �≡ 0 mod 3;
w[j], otherwise.

Then using similar methods to those we have used throughout the paper, we
can show that w′ avoids αβαγβαβ in the abelian sense. �

Proposition 3.16 implies the following corollary.

Corollary 3.17. If a ternary pattern, p, does not contain ωω as a subpattern for
any ω ∈ E = {α, β, γ}, then p is avoided by a partial word with infinitely many
holes in the abelian sense if and only if p is abelian avoidable in full words.
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Proof. Assume that p is abelian avoidable, but not abelian avoidable by any partial
word with infinitely many holes. Since p �∈ {αα, ββ, γγ}, this implies by Propo-
sition 3.8 that there is some variable in p that occurs exactly once. Without loss
of generality, we can assume it is γ, so p = p0γp1 where each pi is a pattern over
{α, β}. Note neither p0 nor p1 can be avoided by a partial word with infinitely
many holes, so by Theorem 3.5, since p does not contain ωω as a subpattern
for any ω ∈ E, the possibilities for p0, p1 are (up to isomorphism) ε, α, αβ, αβα.
However, the only such pattern that is abelian avoidable is αβαγβαβ. By Propo-
sition 3.16, this can be avoided by a partial word with infinitely many holes in the
abelian sense, a contradiction. �

Proposition 3.18. Let p be an avoidable ternary pattern in full words. Then p
can be avoided in the abelian sense by a partial word with infinitely many holes if
and only if it is not a subpattern of any pattern in

S = {ααβααγαα, ααβαγαα, ααβαγγ, ααβγααβ,
ααβγαββ, ααβγββ, αββγααβ, αββγαββ}.

Proof. Let w be an infinite partial word with infinitely many holes. Then some
factor of w of the form a�b occurs infinitely often. By considering this, we see that
the patterns in S cannot be avoided by a partial word with infinitely many holes
in the abelian sense, so that direction of the above statement follows.

Therefore assume that p cannot be avoided in the abelian sense by any partial
word with infinitely many holes, and that p is not a subpattern of any pattern in
S. Since p is avoidable, p contains ωω as a factor for some ω ∈ E. We can assume
that p �= ωω, since in that case p cannot be avoided in the abelian sense by a
partial word with infinitely many holes, and p is up to isomorphism a subpattern
of a pattern in S. We can assume without loss of generality that ω = α. More,
assume that there is a δ ∈ E, δ �= α, so that δδ is a subpattern of p. We can
assume without loss of generality that δ = β. From Proposition 3.8, there must
be some variable in p that occurs exactly once. Since α and β each occurs more
than once, this variable must be γ. Thus we can write p = q0γq1, where q0 and
q1 are both patterns over {α, β} that cannot be avoided by a partial word with
infinitely many holes. For each i either qi is a factor of ααβαα or ββαββ. Note
that q0 contains either αα or ββ as a subpattern, since otherwise q1 would have
to contain both as subpatterns, which is impossible.

Assume q0 contains αα, the other case being similar. Then q1 contains ββ. This
implies that q0 is a factor of ααβαα and q1 is a factor of ββαββ. First, consider
the case that |q0| < 4, |q1| < 4. Then since p is not a subpattern of any pattern in
S the only possibilities are ααβγββα and βααγαββ.

Consider ααβγββα, the other case being similar. Then let w be an infinite word
that avoids abelian squares over A. There exists u so that u occurs infinitely often
in w, |u| = 3. Consider 2 < k0 < k1 < k2 < . . . so that w[ki − 1 . . . ki + 1] = u for
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all i and 2ki < ki+1. Then consider a, b, c /∈ A, and define w′ by

w′[j] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a, if j = ki − 1 for some i, i ≡ 0 mod 3;
�, if j = ki for some i, i ≡ 0 mod 3;
b, if j = ki + 1 for some i, i ≡ 0 mod 3;
c, if j = ki for some i, i �≡ 0 mod 3;
w[j], otherwise.

We know from earlier that w′ avoids non-trivial abelian squares. Moreover,
we claim w′ avoids ααβγββα in the abelian sense. To see this, assume that
v0v1v2v3v4v5v6 is an abelian occurrence. Then v0v1 is an abelian square and must
be trivial. Thus v0v1 contains a hole and |v0| = |v1| = 1, so v0v1 is a factor of a�b.
Similarly, v4v5 is a factor of a�b, and since v2 corresponds to the same letters as
v4 and v5 it follows that either v2 = a, v2 = b, or v2 = �. Thus v0v1v2 is a factor
of length 3 over {a, b, �}. However, the only such word is a�b. This implies v0 = a.
By a similar logic v4v5v6 = a�b, so v6 = b. However, v0 and v6 correspond to the
same variable in p, which implies that v0 = a is a rearrangement of v6 = b, which
is not the case.

The other possibility is that αα appears as an abelian square in p but ββ and
γγ do not. This case is similar to the previous one. �

We finally wish to put upper bounds on the abelian avoidability indices of
ternary patterns.

Proposition 3.19. Let p be any pattern. If p contains an abelian square, then it
is non-trivially 5-abelian avoidable in partial words.

Proof. As in the proof of Theorem 3.5, let w be an infinite partial word over 5
letters with infinitely many holes that avoids non-trivial abelian squares. Then w
avoids p, so p is non-trivially abelian 5-avoidable. �

This proposition encompasses all of the non-trivially avoidable ternary patterns,
except αβαγβγ, αβγβαβγ, and αβαγβαβ, so only these three remain to classify.
In fact, the patterns ααβγαβα and αβαγααβ demonstrate that the bound in
Proposition 3.19 is tight with respect to ternary patterns. Both of these patterns
have ordinary (non-abelian) avoidability index 5 in partial words [5, 6], and since
any ordinary occurrence of a pattern is also an abelian occurrence, this implies
the abelian avoidability indices of these patterns in partial words are at least 5.

Now we address the pattern αβγβαβγ. We first deal with avoiding the pattern
αβγβαβγ in full words using a morphism given in [17]. Let A = {a, b, c, d, e} be
an alphabet and define two morphisms, ψ and φ, on A∗ as follows: ψ is the cyclic
morphism ψ(a) = b, ψ(b) = c, etc., and φ(a) = bacaeacadaeadab, φ(b) = ψ(φ(a)),
φ(c) = ψ2(φ(a)), etc. The morphism φ has several nice properties, specifically that
the image of any letter has length 15, and contains 7 instances of that letter and
2 instances of every other letter. It is also an abelian square-free morphism, that
is, if w ∈ A∗ is abelian square-free, then φ(w) is also abelian square-free [17].
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Proposition 3.20. Let w ∈ A∗, and assume φ(w) meets αβγβαβγ in the abelian
sense. Then w meets αβγβαβγ in the abelian sense, or w contains an abelian
square. Furthermore, the word φω(a) avoids αβγβαβγ in the abelian sense.

Proof. Let p = αβγβαβγ. We will use a method of proof similar to the one used
in [17] to prove that φ is abelian square-free. By assumption, there exists some
factor, u = u0u1 . . . u6, of φ(w) such that u0 u4, u1 u3 u5, and u2 u6. Let wi

be the largest factor of w such that φ(wi) ∈ fac(ui). If wi is non-empty, then we
can write ui = xiφ(wi)yi, where xi is a suffix of φ(�i) for some �i ∈ A, yi is a prefix
of φ

(
�̂i

)
for some �̂i ∈ A, and |xi|, |yi| ≤ 14. It is obvious in this case that

15|wi| ≤ |ui| = 15|wi| + |xi| + |yi| ≤ 15|wi| + 28. (1)

Moreover, in the case that wi is empty, ui can be at most 28 letters long, otherwise
ui will contain φ(�) for some �. So in either case, Inequality (1) holds.

Now let w′
0 and w′

4 be the respective results (up to permutation) of canceling
as many shared letters from w0 and w4 as possible. For example, if w0 = bac and
w4 = adab, then w′

0 = c and w′
4 = ad. Define w′

2 and w′
6 similarly. Finally, we

compute w′
1, w

′
3, and w′

5 (up to permutation) by canceling letters common to all
three factors, w1, w3, and w5. Then we construct u′i by replacing φ(wi) in ui with
φ(w′

i). Since we have removed the same letters from both u0 and u4, we have that
u′0 u′4, and in the same way u′1 u′3 u′5 and u′2 u′6. So u′ = u′0u′1 . . . u′6 is an
abelian instance of p.

We claim that |w′
0|, |w′

4| ≤ 2. Without loss of generality, assume that |w′
0| ≤ |w′

4|.
Further assume, by way of contradiction, that |w′

4| = 3. Since w′
4 is non-empty,

we can write u′4 = x4φ(w′
4)y4, where x4 and y4 are as defined above. Recall from

Inequality (1) that

15|w0| ≤ |u0| ≤ 15|w0| + 28, and
15|w4| ≤ |u4| ≤ 15|w4| + 28.

Since |u0| = |u4|, these inequalities imply that the difference between |w0| and
|w4|, which is the same as the difference between |w′

0| and |w′
4|, can be at most 1.

Then w′
0 is non-empty, so w0 is as well. Hence, we can write u′0 = x0φ(w′

0)y0,
where x0 and y0 are as defined above, and consider the three following cases.

Case 1. Suppose w′
4 ��� for some � ∈ A. Then |u′4|� ≥ |φ(w′

4)|� = 21, but
|φ(w′

0)|� ≤ 6 (since |w′
0| ≤ 3 and w′

0 cannot have an �). Since |u′0|� = |u′4|�, it
must be that |x0y0|� ≥ 15. However, |x0|� and |y0|� are at most 7, so this is a
contradiction.

Case 2. Suppose w′
4 �1�1�2 for some distinct �1, �2 ∈ A. Then |u′4|�1 ≥ |φ(w′

4)|�1 =
16, and |φ(w′

0)|�1 ≤ 6. Since |u′0|�1 = |u′4|�1 , it must be that |x0y0|�1 ≥ 10. The only
way this is possible is if x0 and y0 are both affixes of φ(�1). Moreover, |u′4|�2 ≥
|φ(w′

4)|�2 = 11, but |φ(w′
0)|�2 ≤ 6. This implies |x0y0|�2 ≥ 5. However, this is

only possible if either x0 or y0 is an affix of φ(�2), which contradicts our above
conclusion.
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Case 3. Suppose w′
4 �1�2�3 for some distinct �1, �2, �3 ∈ A. For each i ∈ [1 . . . 3],

we have that |u′4|�i ≥ |φ(w′
4)|�i = 11, but |φ(w′

0)|�i ≤ 6. Since |u′0|�i = |u′4|�i , this
implies |x0y0|�i ≥ 5, which is only possible if either x0 or y0 is an affix of φ(�i).
Without loss of generality, we may assume that x0 is a suffix of φ(�1). Then it must
be that y0 is a prefix of φ(�2), because x0 cannot be a suffix of φ(�2). However,
this is a contradiction, because neither x0 nor y0 can be an affix of φ(�3).

Since w′
4 must fit into one of these cases and each case leads to a contradiction,

we know that |w′
4| �= 3. Moreover, if |w′

4| > 3, we can find these same contra-
dictions by considering a length 3 factor of w′

4 and augmenting all of the counts,
|φ(w′

0)|�, |φ(w′
4)|�, etc., by 2(|w′

4| − 3). This proves the claim.
Note that we can apply this same argument to show that |w′

2|, |w′
6| ≤ 2. More-

over, we can apply this pairwise to w′
1, w

′
3, w

′
5 to conclude that there are at most

2 letters in w1 not in w3, at most 2 letters in w1 not in w5, at most 2 letters in w3

not in w5, and vice versa. This shows that |w′
1|, |w′

3|, |w′
5| ≤ 4.

Observe that u′ must be a factor of φ(w′) for some w′ ∈ A∗. Let w′ be the
smallest such word. Suppose we can write u′i = xiφ(w′

i)yi and let mi be the
position of φ(w′) which is the first position of φ(w′

i), or the first position of yi if
w′

i = ε. If both w′
i and yi are empty, then let mi be the first position after u′i. Now

let ji = mi

15 , and note that w′
i = w′[ji . . . ji + |w′

i|).
Now suppose w′

i �= ε for all i, and suppose v′ = v′0v′1 . . . v′6 is an abelian instance
of p in w′ and write v′i = w′[ki . . . ki+1). Further suppose

ki ≤ ji ≤ ji + |w′
i| ≤ ki+1. (2)

Note that ji is defined because w′
i �= ε. Then w′

i ∈ fac(v′i). Construct vi by re-
placing w′

i in v′i with wi. Since we removed the same letters from w0 and w4, it
follows from this construction that v0 v4 if and only if v′0 v′4, and an analogous
statement holds for v1, v3, v5 and v2, v6, so v = v0v1 . . . v6 is an abelian instance
of p. Moreover, v ∈ fac(w), so w meets p in the abelian sense.

Now suppose w′
1 = w′

3 = w′
5 = ε, and suppose v′0v′2v′4v′6 is an abelian instance

of αγαγ in w′, where v′i = w′[ki . . . ki+1), and such that ki satisfies Inequality (2)
for each i ∈ {0, 2, 4, 6}. Construct v = v0v2v4v6 as above, and note that v is an
abelian instance of αγαγ in w. Furthermore, v is an abelian square, so w contains
an abelian square. We can consider when w′

0 = w′
4 = ε or w′

2 = w′
6 = ε and find

similar results.
We conclude that if there exists some v′ = v′0v

′
1 . . . v

′
6 which is an abelian in-

stance of p in w′, where v′i = w′[ki . . . ki+1), such that ki satisfies Inequality (2)
whenever ji is defined and we allow v′i to be empty (so long as v′ �= ε), then
w either meets p in the abelian sense, or w contains an abelian square. Thus, it
remains to show that for any u′, w′ must contain such an abelian instance of p.
Note that there are only finitely many u′i where w′

i = ε. Moreover, if w′
i �= ε and u′i

can be written as xiφ(w′
i)yi, then there are only finitely many xi and yi. Finally,

because |w′
i| is bounded, there are only finitely many w′

i. Thus there are finitely
many u′ which we need to consider. Using a computer, we can check that for all
possible u′, w′ must contain an abelian instance of p as described above.



336 F. BLANCHET-SADRI ET AL.

Therefore, because the word a is abelian p-free and square-free, φ is known to
be an abelian square-free morphism, and any instance of p in φω(a) must occur in
some φn(a) where n ∈ N, it follows by induction that φω(a) avoids p in the abelian
sense. �

Corollary 3.21. The pattern αβγβαβγ is 5-abelian avoidable in full words.

The next corollary follows trivially from the above and Theorem 3.13.

Corollary 3.22. The pattern αβγβαβγ is 7-abelian avoidable in partial words.

4. Avoiding partial words with finitely many holes

Now, we give constructions for avoiding words with finitely many holes.

Theorem 4.1. If p is an abelian k-avoidable pattern, then for every integer h ≥ 0
there exists an infinite word with h holes over an alphabet of size k + 2h that is
non-trivially abelian p-free.

Proof. Since p is abelian avoidable, |p| ≥ 2 and we write p = αβq, where q is a word
and α, β are variables. If α = β, p contains a square, and from [4], a word with
infinitely many holes over a five-letter alphabet can be constructed that avoids
non-trivial abelian squares. If we only keep h holes and fill in the other holes with
any letter of the alphabet in that construction, we obtain an infinite word with h
holes that avoids non-trivial abelian squares and thus non-trivially avoids p in the
abelian sense. Therefore we only need to consider when α �= β.

First consider the case where α and β are both contained in q. Since p is abelian
k-avoidable, there exists an infinite word w over a k-letter alphabet A such that
w avoids p in the abelian sense. Let C = {a0, . . . , ah−1} ∪ {b0, . . . , bh−1}, where
A∩C = ∅. Define A′ = A∪C, so ‖A′‖ = k+ 2h. Then an infinite partial word w′

over A′ is defined as follows:

w′[i] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aj , if i = 4j for some j, 0 ≤ j < h;
aj , if i = 4j + 1 for some j, 0 ≤ j < h;
�, if i = 4j + 2 for some j, 0 ≤ j < h;
bj , if i = 4j + 3 for some j, 0 ≤ j < h;
w[i], otherwise.

Then w′ is of the form a0a0�b0a1a1�b1 . . . ah−1ah−1�bh−1w(4h)w(4h+ 1) . . .
Let p = α0 . . . αm−1, αi ∈ E. Note that w′ has h holes and each aj only appears

twice and each bj only appears once. Suppose there exists u = u0u1 . . . um−1 that
is a non-trivial abelian occurrence of p in w′. Notice that u0 must contain at
least one ai or bi, else u occurs in w. Since α is in q, there is some l > 1 such
that ul u0. It is easy to see that this forces ul to contain a hole. Hence u0 is a
factor of w′[0 . . . 4h − 1]. The only possibilities for u0, that is the only factors of
w′[0 . . . 4h − 1] that have an abelian compatible factor at a later position in w′
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starting at least one position after u0, are of the forms ai, ai�, or �bi for some i.
If u0 = ai, then ul = �, so u is a trivial occurrence. Hence u0 is of the form ai� or
�bi for some i. Since β appears again in q, using the same logic as above, u1 must
also be of the form aj� or �bj for some j. However, such u0u1 cannot be a factor
of w′.

We prove the rest of the claim by induction on the length of p. The case of
|p| = 1 is trivial. When α is not contained in q, if αβq is abelian k-avoidable, so
is βq. Since |βq| < |αβq|, there exists an infinite partial word with h holes over
a (k + 2h)-letter alphabet that non-trivially avoids βq in the abelian sense, thus
non-trivially avoiding αβq in the abelian sense. Similarly, if β does not occur in
q, then q is non-trivially abelian avoidable over an alphabet of size k+ 2h, and so
are βq and αβq, which is p. �

Proposition 4.2. Let p �= αα be an abelian k-avoidable pattern in full words with
each of its variables occurring at least twice. Then for every integer h ≥ 0 there
exists an infinite partial word with h holes over an alphabet of size k + 2h that is
abelian p-free.

Proof.
The infinite partial word with h holes is exactly the same as the one we provided in
Theorem 4.1, i.e. w′. We have already shown that it is non-trivially abelian p-free.
Moreover, we prove that it avoids p in the abelian sense even trivially by induction
on the number of holes, if each variable of p occurs at least twice. Trivial abelian
squares are not avoidable, so we do not consider them. In other cases, suppose
w′ contains a trivial occurrence of p, denoted by u. Then u contains at least one
hole. When u contains only one hole, it is a factor of bi−1ai−1ai�biaiai+1, which
obviously does not meet p in the abelian sense. Assume any factor u′ containing
j − 1 holes, denoted by u′ = bi−1ai−1ai�biai . . . �bi+j−2ai+j−2ai+j−1, where 1 ≤
j − 1 < h, is abelian p-free. Then consider u′′ = u′�bi+j−1ai+j−1ai+j or u′′ =
bi−2ai−2ai−1�u′. Let u′′ be the former one (the latter one is handled similarly).
If a trivial abelian occurrence of p is in u′′, the hole before bi+j−1 can only be
replaced by either the letter ai−1 or bi−1, since otherwise the sequence contains
j−1 holes and is trivially abelian p-free. Suppose it is replaced by ai−1. Then from
the first occurrence of � in u′′ to that occurrence of ai−1 there are only j− 1 holes
and at least 2(j − 1) distinct letters. It is impossible that each of those letters be
paired with one of the holes. The claim follows by induction. �

The following result is concerned with an arbitrary insertion of a hole in an
infinite word that avoids a pattern in the abelian sense.

Theorem 4.3. If p is an abelian avoidable pattern, then there exists an infinite
abelian avoiding full word so that we can insert a hole into any position and get a
partial word that is non-trivially abelian p-free.

Proof. Assume p = α0 . . . αn−1 is abelian avoided by an infinite word w over
alphabet A. Let A′ = A2 × {0, 1}, and define an infinite word v as follows. Let
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j ∈ {0, 1}. For integer i ≥ 0, if i ≡ j mod 2, let v[i] = (w[i − j]w[i − j + 1], j) ∈
A′. Suppose towards a contradiction that v is not abelian p-free. Thus, there
exist i1 and i2 such that αi1 = αi2 , w[i1 . . . i1 + l] and w[i2 . . . i2 + l] are not
permutations of each other, while v[i1 . . . i1 + l] and v[i2 . . . i2 + l] are. This means
w[i1 − j]w[i1 − j + 1] . . . w[i1 + l − j]w[i1 + l − j + 1] is a permutation of w[i2 −
j]w[i2 − j + 1] . . . w[i2 + l − j]w[i2 + l − j + 1]. Since j = 0 or 1, this contradicts
the fact that w avoids p in the abelian sense.

Assume we replace one letter in v with a � to get v′, and u = u0u1 . . . un−1

is a non-trivial abelian occurrence of p in v′. Note that u must contain the hole.
Suppose us contains the hole and us is compatible with a permutation of ut, for
some s, t. Then since |us| > 1, either (w[i1 − j1]w[i1 − j1 + 1], j1)� or �(w[i1 −
j1]w[i1 − j1 + 1], j1) is a factor of us, for some integers i1, j1. This means ut

contains a letter (w[i2 − j2]w[i2 − j2 +1], j2) where j2 = j1, w[i2 − j2] = w[i1 − j1],
and w[i2 − j2 + 1] = w[i1 − j1 + 1]. Since j1, j2 is either 0 or 1, w[i1] = w[i2] for
either case. This contradicts w avoiding p in the abelian sense. �

5. Conclusion

In this paper, we have generalized results from abelian powers in partial words
given by Blanchet−Sadri et al. [4, 7] and abelian patterns in full words given by
Currie et al. [9–11]. Theorem 3.10 gives tight bounds on the lengths of patterns,
over any pattern alphabet of at least three variables, for abelian pattern avoidance
by partial words with infinitely many holes. Our bound in Theorem 3.9 is tight
for unary and binary pattern alphabets.

Our current bound, given in Proposition 3.7, for abelian 2-avoidable (resp.,
3-avoidable) binary patterns p is |p| ≥ 363 (resp., |p| ≥ 119). A topic for future
research would be to improve on those two bounds.

We have also given upper limits for the abelian avoidability indices of all binary
and ternary patterns in partial words, which we have done for all binary patterns
and, non-trivially, for all but two ternary patterns. Referring to Section 3, an upper
bound for the abelian avoidability indices of αβαγβαβ and αβαγβγ remains open.
The avoidability of patterns over four variables has been studied by Currie et al. [9],
but has not been completed.
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Intézete Közl. 6 (1961) 221–254.

[14] V. Keränen, Abelian squares are avoidable on 4 letters, in ICALP 1992, 19th International
Colloquium on Automata, Languages and Programming. Edited by W. Kuich, vol. 623 of
Lect. Notes Comput. Sci. Springer-Verlag, Berlin (1992) 41–52.

[15] P. Leupold, Partial words for DNA coding, in 10th International Workshop on DNA Com-
puting. Edited by G. Rozenberg, P. Yin, E. Winfree, J.H. Reif, B.-T. Zhang, M.H. Garzon,
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