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Finite state transducers for

modular Möbius number systems
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F-13453 Marseille Cedex, France.
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Abstract. Modular Möbius number systems consist of Möbius trans-
formations with integer coefficients and unit determinant. We show that
in any modular Möbius number system, the computation of a Möbius
transformation with integer coefficients can be performed by a finite state
transducer and has linear time complexity. As a byproduct we show that
every modular Möbius number system has the expansion subshift of finite
type.
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1 Introduction

In an unpublished but influential manuscript, Gosper [1] shows that continued
fractions can be used for arithmetical algorithms, provided they are redundant.
Based on these ideas, exact real arithmetical algorithms have been devel-
oped in Vuillemin [15], Kornerup and Matula [4] or Potts [13]. These algorithms
perform a sequence of input absorptions and output emissions and update
their inner state, which may be a (2 × 2)-matrix in the case of a Möbius trans-
formation or a (2 × 4)-matrix in the case of binary operations like addition or
multiplication.

Using the concepts and methods of symbolic dynamics, exact real arithmetic
has been generalized in the theory of Möbius number systems (MNS) intro-
duced in Kůrka [6] and developed in Kůrka and Kazda [10]. Möbius number sys-
tems represent real numbers by infinite words from a one-sided expansion sub-
shift. The letters of the alphabet stand for real orientation-preserving Möbius
transformations and the concatenation of letters corresponds to the composition
of transformations. In Kůrka [7] we have investigated MNS in which rational
numbers have periodic or preperiodic expansions and in Kůrka [9] we have char-
acterized MNS whose expansion subshifts are of finite type or sofic.

The time complexity of the unary exact real algorithm which computes a
Möbius transformation depends on the growth of its inner state matrices during
the computation. Heckmann [2] analyzes this process in positional number sys-
tems and proves the Law of big numbers (not to be confused with the Law of
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large numbers), saying that the norm of the state matrix after n absorptions or
emissions is at least of the order rn/2 for r-ary positional systems. This implies
that the bit size of the state matrices grows at least linearly, and arithmetical
operations have quadratic time complexity. In Kůrka [8] we have shown that in a
general MNS the growth of the state matrices can be slower and we conjectured
that the state matrices can even remain bounded. In the present paper we show
that this is the case for modular MNS, i.e., MNS whose transformations have
integer coefficients and unit determinant. It follows that the unary algorithm
can be realized by a finite state transducer and has linear time complexity. This
generalizes the results of Raney [14] and complements the results of Konečný [3],
who proves (in a slightly different context), that the only differentiable functions
computable by finite state transducers are Möbius transformations.

2 Möbius transformations

The extended real line R = R ∪ {∞} can be regarded as a projective space,
i.e., the space of one-dimensional subspaces of the two-dimensional vector space.
On R we have homogeneous coordinates x = (x0, x1) ∈ R2 \ {(0, 0)} with
equality x = y iff det(x, y) = x0y1 − x1y0 = 0. We regard x ∈ R as a column
vector, and write it usually as x = x0

x1
= x0/x1, for example ∞ = 1/0. The

stereographic projection h(z) = (iz + 1)/(z + i) maps R to the unit circle
∂D = {z ∈ C : |z| = 1} in the complex plane, and the upper half-plane
U = {z ∈ C : ℑ(z) > 0} conformally to the unit disc D = {z ∈ C : |z| < 1}.

A real orientation-preserving Möbius transformation (MT) is a self-
map of R of the form

M(a,b,c,d)(x) =
ax+ b

cx+ d
=

ax0 + bx1

cx0 + dx1
,

where a, b, c, d ∈ R and det(M(a,b,c,d)) = ad − bc > 0. Möbius transformations
form a group and act also on the upper half-plane U: If z ∈ U then M(z) ∈ U

as well. On D := D ∪ ∂D we get disc Möbius transformations defined by
M̂(a,b,c,d)(z) = h ◦M(a,b,c,d) ◦ h−1(z) = (αz + β)/(βz + α), where α = (a+ d) +

(b−c)i, β = (b+c)+(a−d)i. The circle derivation of M = M(a,b,c,d) at x ∈ R

is defined by

M•(x) = |M̂ ′(h(x))| = (ad− bc) · (x2
0 + x2

1)

(ax0 + bx1)2 + (cx0 + dx1)2
=

det(M) · ||x||2
||M(x)||2 .

The expansion interval of an MT is V(M) = {x ∈ R : (M−1)•(x) > 1}. If
M = Rα = M(cos α

2 ,sin α
2 ,− sin α

2 ,cos α
2 ) is a rotation, then M•(x) = 1 and V(M) is

empty. Otherwise V(M) is a proper set interval.

3 Intervals

A set interval is an open connected subset of R. A proper set interval is a
nonempty set interval properly included in R. We represent proper set intervals
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by (2× 2)-matrices whose columns are their left and right endpoints. The stere-
ographic projection applied to x = r sinα

r cosα ∈ R gives h(x) = sin 2α − i cos 2α =

ei(2α−
π
2 ), so it doubles the angles. Matrices with columns x = r sinα

r cosα , y = s sin β
s cosβ

where 0 ≤ α < 2π, α < β < α+ π therefore represent all proper intervals. Since
det(x, y) = rs sin(α−β) < 0, we define matrix intervals as (2× 2)-matrices with
negative determinant and write them as pairs I = (x0

x1
, y0

y1
) of their left and right

endpoints l(I) = x0

x1
, r(I) = y0

y1
. The set of matrix intervals is therefore

I(R) = {(x0

x1
, y0

y1
) ∈ GL(R, 2) : x0y1 − x1y0 < 0}.

We define the size and the length of an interval (x, y) by

sz(x, y) =
x0y0 + x1y1
x0y1 − x1y0

=
x · y

det(x, y)
,

|(x, y)| = 1

2
+

1

π
arctan sz(x, y).

For x = r sinα
r cosα , y = s sin β

s cosβ we get sz(x, y) = − cot(β − α) = tan(β − α − π
2 ),

so |(x, y)| = (β − α)/π, provided 0 < β − α < π. The length |I| ∈ (0, 1) of I
is an increasing function of the size sz(I) ∈ (−∞,+∞) of I. A matrix interval
I = (x, y) defines an open set interval by z ∈ I ⇔ det(x, z) ·det(z, y) > 0, and a
closed set interval z ∈ I ⇔ det(x, z) · det(z, y) ≥ 0. If I = ( r sinα

r cosα ,
s sin β
s cosβ ), then

z = t sin γ
t cos γ ∈ I iff either α < γ < β or α + π < γ < β + π. If I, J are intervals,

then I ⊆ J iff l(I) ∈ J and r(I) ∈ J . In this case sz(I) ≤ sz(J). When we
transform intervals, we work with the matrix representations of MT rather than
with the transformations themselves. Möbius transformations are represented by
matrices

M(R) = {M(a,b,c,d) ∈ GL(R, 2) : ad− bc > 0}
which act on vectors x ∈ R2 by x 7→ Mx. Two matrices represent the same MT if
one is a nonzero multiple of the other and the matrix multiplication corresponds
to the composition of MT. If M ∈ M(R) and I ∈ I(R), then MI is the interval
which represents the M -image of the set interval of I.

4 Rational intervals

Denote by Z the set of integers and by Q = {x ∈ Z2 \ { 0
0} : gcd(x) = 1} the

set of (homogeneous coordinates of) rational numbers which we understand as a
subset of R. Here gcd(x) is the greatest common divisor of x0 and x1. The norm
of a vector x ∈ Q is ||x|| =

√
x2
0 + x2

1. Denote by

M(Z) = {M ∈ GL(Z, 2) : gcd(M) = 1, det(M) > 0},
I(Z) = {I ∈ GL(Z, 2) : gcd(I) = 1, det(I) < 0}.

The norm of a matrix M(a,b,c,d) ∈ GL(Z, 2) is ||M || =
√
a2 + b2 + c2 + d2. We

have ||MN || ≤ ||M || · ||N || for M,N ∈ M(Z).
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Lemma 1 If I ∈ I(Z) is an interval, then

√
2 · | det(I) · sz(I)| ≤ ||I|| ≤ 2 · | det(I)| ·max{|sz(I)|, 1}.

Proof. Let I = (ac ,
b
d ). Then 2 · | det(I) · sz(I)| = 2|ab + cd| ≤ ||I||2, and we

get the first inequality. To prove the second inequality, we show that in all
cases max{|a|, |b|, |c|, |d|} ≤ | det(I)| · max{|sz(I)|, 1}. If a = 0 or d = 0 then
0 6= |bc| = | det(I)| and | det(I) · sz(I)| is either |cd| or |ab| and the claim is
satisfied. If b = 0 or c = 0 then 0 6= |ad| = | det(I)| and | det(I) · sz(I)| is either
|cd| or |ab| and the claim is satisfied. If sgn(ab) · sgn(cd) > 0 then

|a| · |b|+ |c| · |d| = |ab + cd| = |sz(I) · det(I)|,

and the claim is satisfied. If sgn(ab) · sgn(cd) < 0 then sgn(ad) · sgn(bc) =
sgn(abcd) = sgn(ab) · sgn(cd) < 0 and |a| · |d|+ |b| · |c| = |ad− bc| = | det(I)|, so
the claim is satisfied. ⊓⊔

Lemma 2 If I ∈ I(Z), sz(I) < 0 and x ∈ I ∩Q, then ||I|| ≤
√
5 · ||x|| · | det(I)|

and |sz(I)| ≤ 5
2 ||x||2 · | det(I)|.

Proof. Let x = p
q ∈ I = (ac ,

b
d), and set α = − det(ac ,

p
q ) = pc − aq, β =

− det(pq ,
b
d ) = qb− pd, so sgn(α · β) > 0. Replacing x by −p

−q if necessary, we can

assume that α > 0 and β > 0. Since sz(I) < 0 and sz(01 ,
1
0 ) = 0, either 0 6∈ I

or ∞ 6∈ I. Assume first ∞ 6∈ I, so cd = − det(ac ,
1
0 ) · det(10 , b

d ) ≥ 0. Since q 6= 0,
a = (pc−α)/q, b = (pd+β)/q, and − det(I) = (αd+βc)/q = (α|d|+β|c|)/|q|, so
α, β, |d|, |c| are bounded by |q| · | det(I)|. It follows that |a| and |b| are bounded
by (|p|+1) · | det(I)|, so ||I||2 ≤ 2(q2 + p2 +2|p|+1) · det(I)2. Similarly if 0 6∈ I,
then ab = − det(ac ,

0
1 ) ·det(01 , b

d ) ≥ 0. Since p 6= 0, c = (aq+α)/p, d = (qb−β)/p,
and − det(I) = (αb + βa)/p = (α|b| + β|a|)/|p|, so α, β, |a|, |b| are bounded by
|p| · | det(I)|. It follows that |c| and |d| are bounded by (|q| + 1) · | det(I)|, so
||I||2 ≤ 2(p2 + q2 + 2|q| + 1) · det(I)2. In both cases ||I||2 ≤ 5 · ||x||2 · det(I)2.
Similarly we show that |sz(I)| ≤ 5

2 ||x||2 · | det(I)|. ⊓⊔

5 Subshifts

For a finite alphabet A denote by A∗ :=
⋃

m≥0 A
m the set of finite words. Denote

λ the empty word : A0 = {λ}. The length of a word u = u0 . . . um−1 ∈ Am is
|u| = m. We denote by AN the Cantor space of infinite words with the metric
d(u, v) = 2−k, where k = min{i ≥ 0 : ui 6= vi}. We say that v ∈ A∗ is a
subword of u ∈ A∗ ∪ AN and write v ⊑ u, if v = u[i,j) = ui . . . uj−1 for some

0 ≤ i ≤ j ≤ |u|. The cylinder of u ∈ An is the set [u] = {v ∈ AN : v[0,n) = u}.
The shift map σ : AN → AN is defined by σ(u)i = ui+1. A subshift is a
nonempty set Σ ⊆ AN which is closed and σ-invariant, i.e., σ(Σ) ⊆ Σ. If D ⊆ A∗

then ΣD = {x ∈ AN : ∀u ⊑ x, u 6∈ D} is the subshift (provided it is nonempty)
with forbidden words D. Any subshift can be obtained in this way. A subshift
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is uniquely determined by its language L(Σ) = {u ∈ A∗ : ∃x ∈ Σ, u ⊑ x}.
Denote by Ln(Σ) = L(Σ) ∩ An.

A labelled graph over an alphabet A is a structure G = (V,E, s, t, ℓ), where
V = |G| is the set of vertices, E is the set of edges, s, t : E → V are the source
and target maps, and ℓ : E → A is a labeling function. The subshift of G consists
of all labels of all paths of G. A subshift is sofic, if it is the subshift of a finite
labelled graph. A subshift Σ is of finite type (SFT) of order p, if its forbidden
words have length at most p, i.e., if Σ = ΣD for some set D ⊂ Ap. In this case
u ∈ AN belongs to Σ iff all subwords of u of length p belong to L(Σ) (see Lind
and Marcus [11] or Kůrka [5]).

A finite state transducer is a finite state automaton with a read only
input tape in an alphabet A and a write only output tape in an alphabet B. It

is given by a finite labelled graph G with edges q
a/b−→ r, where a ∈ A∪ {λ} is an

input letter and b ∈ B ∪ {λ} is an output letter. We say that the transducer is
deterministic on a subshift Σ ⊆ AN if for each q ∈ V and u ∈ Σ there exists a
unique v = FG(u) ∈ BN such that u/v is the label of an infinite path with source
q. Such a transducer determines a continuous mapping FG : Σ → BN. For any
finite state transducer, the computation of FG has linear time complexity.

6 Möbius number systems

A Möbius iterative system over an alphabet A is a map F : A∗ × R → R

or a family of orientation-preserving Möbius transformations (Fu : R → R)u∈A∗

satisfying Fuv = Fu ◦ Fv and Fλ = Id. An open almost-cover is a system
of open intervals W = {Wa : a ∈ A} indexed by the alphabet A, such that⋃

a∈A
Wa = R. If Wa ∩ Wb = ∅ for a 6= b, then we say that W is an open

partition. We denote by E(W) = {l(Wa), r(Wa) : a ∈ A} the set of endpoints
of W .

Definition 1 A Möbius number system over an alphabet A is a pair (F,W)
where F : A∗×R → R is a Möbius iterative system and W = {Wa : a ∈ A} is an

almost-cover, such that Wa ⊆ V(Fa) for each a ∈ A. The interval cylinder of

u ∈ An+1 is Wu = Wu0∩Fu0Wu1∩· · ·∩Fu[0,n)
Wun

. The expansion subshift SW

is defined by SW = {u ∈ AN : ∀k > 0,Wu[0,k)
6= ∅}. We denote by LW = L(SW )

the language of SW and by Ln
W = Ln(SW).

For uv ∈ LW we have Wuv = Wu∩FuWv. Given a MNS (F,W), we construct
nondeterministically the expansion u ∈ SW of x = x0 ∈ R as follows: Choose
u0 with x ∈ Wu0 , choose u1 with x1 = F−1

u0
(x0) ∈ Wu1 , choose u2 with x2 =

F−1
u1

(x1) ∈ Wu2 , etc. Then x ∈ Wu[0,n)
for each n, so Wu is the set of points

which have expansion u.

Theorem 2 (Kůrka and Kazda [10]) If (F,W) is a MNS over A, then there

exists a continuous map Φ : SW → R such that for each u ∈ SW and v ∈ LW ,

lim
n→∞

Fu[0,n)
(i) = Φ(u), {Φ(u)} =

⋂

n≥0

Wu[0,n)
, Φ([v] ∩ SW ) = Wv.
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Here i is the imaginary unit. In fact we have Φ(u) = limn→∞ Fu[0,n)
(z) for each

z ∈ U, and h(Φ(u)) = limn→∞ F̂u[0,n)
(z) for each z ∈ D. If (F,W) is an MNS

then limn→∞ max{|Wu| : u ∈ Ln
W} = 0. This is an immediate consequence of

the uniform continuity of Φ : SW → R.

Definition 3 We say that a MNS (F,W) over A is an integer MNS if its

transformations have integer entries and its intervals have rational endpoints,

i.e., if Fa ∈ M(Z) and Wa ∈ I(Z) for each a ∈ A. We say that an integer MNS

is modular, if all its transformations have unit determinant det(Fa) = 1.

7 Sofic Möbius number systems

Definition 4 Let (F,W) be an MNS over an alphabet A. An open partition

V = {Vp : p ∈ B} is an SFT refinement of W, if the following two conditions

are satisfied for each a ∈ A, p, q ∈ B:

1. If Vp ∩Wa 6= ∅ then Vp ⊆ Wa,

2. If Vp ⊆ Wa and Vq ∩ F−1
a Vp 6= ∅ then Vq ⊆ F−1

a Vp.

In this case we say that (F,W ,V) is a sofic Möbius number system. The

base graph G(W,V) of (F,W ,V) is an A-labelled graph whose set of vertices are

letters of B and whose labelled edges are p a
→ q if FaVq ⊆ Vp ⊆ Wa. Denote by

C = {(p, a) ∈ B × A : Vp ⊆ Wa} and S(W,V) ⊆ CN the SFT of order two with

transitions (p, a) → (q, b) iff p a
→ q.

Theorem 5 (Kůrka [9]) If (F,W) is an MNS, then SW is a sofic subshift iff

there exists an SFT refinement V of W. In this case SW is the subshift of the base

graph G(W,V) and we have a factor map π : S(W,V) → SW given by π(p, a) = a.

Theorem 6 (Kůrka [9], Theorem 16) Each modular MNS has a sofic ex-

pansion subshift.

An example of a modular MNS has been studied by Raney [14], Niqui [12]
and Kůrka [9]. Its alphabet is A = {0, 1, 2, 3}, the transformations are

F0(x) =
x

1 + x
, F1(x) = x+ 1, F2(x) = x− 1, F3(x) =

x

1− x
.

and the intervals are W0 = (0, 1), W1 = (1,∞), W2 = (∞,−1), W3 = (−1, 0).
Since Fa(0,∞) = Wa for a = 0, 1 and Fa(∞, 0) = Wa for a = 2, 3, the expansion
subshift is a union of two full subshifts which code respectively nonnegative and
nonpositive real numbers: SW = {0, 1}N ∪ {2, 3}N. The system is closely related
to continued fractions. Each u ∈ {0, 1}N can be written as u = 1a00a11a2 . . .,
where a0 ≥ 0 and an > 0 for n > 0. Then u is the expansion of the continued
fraction [a0, a1, a2, . . .], i.e.,

Φ(u) = [a0, a1, a2, . . .] = a0 + 1/(a1 + 1/(a2 + · · · .

If an = ∞ for some n > 0, then Φ(u) = [a0, . . . , an−1] is a finite continued
fraction.
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a Fa Wa F−1
a Wa

0 [1, 0, 1, 1] ( 0
1
, 2
1
) ( 0

1
, 2
−1

)

1 [1, 1, 0, 1] ( 1
2
, 1
0
) (−1

2
, 1
0
)

2 [1,−1, 0, 1] (−1
0
, −1

2
) (−1

0
, 1
2
)

3 [1, 0,−1, 1] (−2
1
, 0
1
) ( 2

1
, 0
−1

)

W0

W1

W2

W3

0
/
1

2
/
1

1
/
2

-
1
/
2

-
2
/
1

0
/
1

1
/
0

-
1
/
0

1 
00

1
0
 
 

00
1
0
1

 
 
 

00
1
0
1
1

 
 
 
 

00

1 
11

1
1
 
 

11
1
1
0

 
 
 

11
1
1
0
1

 
 
 
 

11

1 
22

1
1
 
-

22
1
1
0

 
-
 

22
1
1
0
1

 
-
 
 

22

1 
33

1
0
 
 

33
1
0
1

 
 
-

33
1
0
1
1

 
 
-
 

33

1

2

0
/
1

2/3

1/3

1/1

2/
1

3/
1

3/2

1
/
0

1/2

-1/1

-1/2

-3/
2

-3
/1

-2
/1

-1/3

-2/3

0

12

3

00

0
1

02

1
0

11

1320

22

2
3

31

3
2

33

000 0
0
1

0
0
2

010

0
1
1

013

0
2
2

023

1
0
0

101

1
1
0

111

2
0
0

201

2
2
0

222

2
2
3

231

232

2
3
3

3
2
2

323

3
3
2

333

Fig. 1. A modular MNS.

In Figure 1 we show a variant of this system with larger cylinder intervals
Wa = V(Fa). Figure 1 bottom left shows the graphs of the circle derivations
(F−1

a )•(x) together with the cylinder intervals Wa. In Figure 1 right we can

see the values F̂u(0) of the disc MT F̂u at zero. The curves between F̂u(0) are
constructed as follows. For each MT M there exists a family (M r)r∈R of MT

such that M0 = Id, M1 = M , and M r+s = M rM s. Each value F̂u(0) is joined

to F̂ua(0) by the curve (F̂uF̂
r
a (0))0≤r≤1. The labels u ∈ A∗ at F̂u(0) are written

in the direction of the tangent vectors F̂ ′
u(0). The SFT partition of the system

has 8 intervals shown in Figure 2 left. The base graph can be seen in Figure 2
right. The expansion subshift SW is a SFT of order 4. with 20 forbidden words
03, 12, 21, 30, 020, 131, 202, 313, 0220, 0232, 0233, 1322, 1323, 1331, 2002, 2010,
2011, 3100, 3101, 3113.

Theorem 7 If (F,W ,V) is a modular system, then π : S(W,V) → SW is an

isomorphism, so SW is an SFT.

Proof. We show that if (p, u) ∈ S(W,V), then p ∈ BN is determined by u ∈ AN.
For 0 ≤ n < m we have Vpn

⊆ Wun
and Fun

Vpn+1 ⊆ Vpn
, so

Fu[n,m)
Vpm

⊆ Fu[n,m−1)
Vpm−1 ⊆ · · · ⊆ Fun

Vpn+1 ⊆ Vpn
,

Fu[n,m)
Vpm

⊆ Fu[n,m−1)
Wum−1 ∩ · · · ∩ Fun

Wun+1 ∩Wun
⊆ Wu[n,m)

.

It follows that ∅ 6= Fu[n,m)
Vpm

⊆ Vpn
∩ Wu[n,m)

is nonempty. Denote by xn =

Φ(σn(u)), so {xn} =
⋂

m>nWu[n,m)
. If xn is irrational, then there exists m > n

such that Wu[n,m)
∩ E(V) = ∅, so there exists exactly one pn ∈ B with Vpn

∩
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0

1
2

34

5
6

7
0

0

0

0

1

1

1

0

1

12

2 3

2

2
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3
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3
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pa Vp Fa F−1
a Vp followers

00 ( 0
1
, 1
2
) [1, 0, 1, 1] ( 0

1
, 1
1
) 0, 1

10 ( 1
2
, 1
1
) [1, 0, 1, 1] ( 1

1
, 1
0
) 2, 3

11 ( 1
2
, 1
1
) [1, 1, 0, 1] (−1

2
, 0
1
) 7

20 ( 1
1
, 2
1
) [1, 0, 1, 1] ( 1

0
, 2
−1

) 4

21 ( 1
1
, 2
1
) [1, 1, 0, 1] ( 0

1
, 1
1
) 0, 1

31 ( 2
1
, 1
0
) [1, 1, 0, 1] ( 1

1
, 1
0
) 2, 3

42 (−1
0
, −2

1
) [1,−1, 0, 1] (−1

0
, −1

1
) 4, 5

52 (−2
1
, −1

1
) [1,−1, 0, 1] (−1

1
, 0
1
) 6, 7

53 (−2
1
, −1

1
) [1, 0,−1, 1] (−2

−1
, −1

0
) 3

62 (−1
1
, −1

2
) [1,−1, 0, 1] ( 0

1
, 1
2
) 0

63 (−1
1
, −1

2
) [1, 0,−1, 1] (−1

0
, −1

1
) 4, 5

73 (−1
2
, 0
1
) [1, 0,−1, 1] (−1

1
, 0
1
) 6, 7

Fig. 2. The SFT partition and the base graph of a modular system from Figure 1.

Wu[n,m)
6= ∅. Assume that xn is rational. For each m > n we have

xm = Φ(σm(u)) = F−1
u[n,m)

(xn) ∈ Wum
⊆ V(Fum

),

and ||xm||2/||xm+1||2 = ||xm||2/||F−1
um

(xm)||2 = (F−1
um

)•(xm) ≥ 1, so ||xm+1|| ≤
||xm||. Moreover, if xm ∈ Wum

, then ||xm+1|| < ||xm||. Since ||xm||2 ∈ N, the
set {m ≥ n : xm ∈ Wum

} is finite and there exists m > n such that either xk =
l(Wuk

) for all k ≥ m, or xk = r(Wuk
) for all k ≥ m. Since xn = Fu[n,k)

(xk) ∈
Wu[n,k)

⊆ Fu[n,k)
Wuk

, we get xn = l(Wu[n,k)
) for all k ≥ m in the former case and

xn = r(Wu[n,k)
) for all k ≥ m in the latter case. It follows that there exists k > m

such that Wu[n,k)
∩E(V) = ∅, so there exists a unique pn with Vpn

∩Wu[n,k)
6= ∅.

This means that pn is uniquely determined by u. Since Fun−1Vpn
⊆ Vpn−1 , the

letter pn−1 is uniquely determined by pn and the prefix p[0,n) of p is uniquely
determined by pn. ⊓⊔
Theorem 8 Assume that (F,W ,V) is a modular MNS and for u ∈ LW denote

by P(u) ⊆ B∗ the set of paths with label u.
1. There exists r > 0 such that the set {p[0,n−r] : p ∈ P(u)} is a singleton for

each n > r and each finite word u ∈ Ln
W .

2. There exists s > 0 such that P(u) has at most s elements for each u ∈ LW .

3. The map π−1 : SW → S(W,V) can be computed by a finite state transducer.

Proof. The existence of constants r, s follows from Theorem 7 by a compactness
argument. We define a finite state transducer for π−1 as follows. Its vertices are
sets X ⊆ Bn, where 0 < n ≤ r. The labelled edges are

X a/λ
−→ {p ∈ Bn+1 : p[0,n−1] ∈ X, pn−1

a
→ pn} if X ⊆ Bn, n < r,

X a/b
−→ {p ∈ Br : bp[0,r−2] ∈ X, pr−2

a
→ pr−1} if X ⊆ Br.

Then u/p is the label of a path with the source B iff p is a prefix of a path whose
label is u. ⊓⊔
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In Table 2 left we show the computation of π−1(u) on input word u = 00133.
For each n > 0 we give the set P(u[0,n)) of all paths p ∈ Bn+1 with label u[0,n).

8 Arithmetical algorithms

Definition 9 The unary graph for an integer sofic MNS (F,W ,V) is a labelled

graph whose vertices are (X, p), where X ∈ M(Z) and p ∈ B. Its labelled edges

are
absorption: (X, p) a/λ

−→ (XFa, q) if FaVq ⊆ Vp ⊆ Wa,

emission: (X, p) λ/b
−→ (F−1

b X, p) if XVp ⊆ Wb.

The labels of paths are concatenations of the labels of their edges. They have
the form u/v where u ∈ LW is an input word and v ∈ LW is an output word.

Proposition 10 If (X, p) u/v
−→ (Y, q) is a path in the unary graph, then

Y = F−1
v XFu, FuVq ⊆ Vp ∩Wu, XFuVq ⊆ Wv.

Proof. Since Wλ = R and Fλ = Id, the statement holds for the absorption and
emission edges. Assume by induction that the statement holds for a path with

label u/v. If (X, p) u/v
−→ (Y, q) a/λ

−→ (Z, r) then Z = Y Fa = F−1
v XFua, FaVr ⊆ Vq ⊆

Wa, so FuaVr ⊆ FuVq ⊆ Vp ∩Wu ∩FuWa = Vp ∩Wua, and XFuaVr ⊆ XFuVq ⊆
Wv, so the statement holds for (X, p) ua/v

−→ (Z, r). If (X, p) u/v
−→ (Y, q) λ/b

−→ (Z, q)
then Z = F−1

b Y = F−1
vb XFu. From F−1

v XFuVq = Y Vq ⊆ Wb we get XFuVq ⊆
FvWb, and therefore XFuVq ⊆ Wv ∩ FvWb = Wvb. Moreover, FuVq ⊆ Vp ∩Wu,

so the statement holds for (X, p) u/vb
−→ (Z, q). ⊓⊔

procedure unary;
input: M ∈ M(Z), (p, u) ∈ S(W,V) ∪ L(W,V);
output: v ∈ SW ∪ LW ;
variables X ∈ M(Z) (state), n,m ∈ N (input and output pointers);
begin
X := M ; n := 0; m := 0;
while n < |u| repeat
if ∀a ∈ A, XVpn 6⊆ Wa then begin
X := XFun ; n := n+ 1; end;

else begin
vm := a, where XVpn ⊆ Wa and XVpn 6⊆ Wb for all b < a;
X := F−1

a X; m := m+ 1; end;
end;

Table 1. The unary algorithm.
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n P(001333[0,n))

1 00, 01, 12, 13, 24,
2 000, 001, 012, 013, 124,
3 0017, 0120, 0121,
0132, 0133,

4 00176, 00177,
5 001764, 001765,
001776, 001777,

6 0017653, 0017764,
0017765, 0017776,
0017777,

n m out X XVpn input

0 0 0 [2, 1, 1, 2] ( 1
2
, 4
5
) 0

0 1 1 [2, 1,−1, 1] ( 1
1
, 4
1
) 0

0 2 [3, 0,−1, 1] ( 0
1
, 3
1
) 0 0

→ 0
1 2 0 [3, 0, 0, 1] ( 0

1
, 3
2
) 0

1 3 [3, 0,−3, 1] ( 0
1
, 3
−1

) 0 0
→ 1

2 3 2 [3, 0,−2, 1] ( 3
0
, 3
−1

) 1

2 4 2 [1, 1,−2, 1] ( 3
0
, 2
−1

) 1

2 5 2 [−1, 2,−2, 1] ( 3
0
, 1
−1

) 1

2 6 [−3, 3,−2, 1] ( 3
0
, 0
−1

) 1 1
→ 7

3 6 [−3, 0,−2,−1] ( 3
0
, 0
−1

) 7 3
→ 7

Table 2. The computation of a path p = 0017 = π−1(001333) = π−1(u) (left) and the
computation of v = 010222 = ΘM (p, u) on the input matrix M(x) = (2x + 1)/(x+ 2)

and the input path 0
0
→ 0

0
→ 1

1
→ 7

3
→ 7 by the unary algorithm (right). The third

column gives the values vm on emission steps and the empty word on absorption steps.
The last column gives the vertex pn on emission steps and the edge pn un

−→ pn+1 on
absorption steps.

We consider a deterministic unary algorithm given in Table 1, which com-
putes a path in the unary graph. Its input is a matrix M ∈ M(Z) and either a
finite path (p, u) ∈ L(W,V) or an infinite path (p, u) ∈ S(W,V). We assume that
the alphabet A is linearly ordered. At each step, the algorithm performs the
first possible emission if there is one, and an absorption if there is no emission
applicable. For an infinite input path, the algorithm computes an output word
v ∈ SW such that u/v is the label of a path in the unary graph with source
(M,p0). An example of the computation of the unary algorithm is given in Ta-
ble 2 right. We are going to prove that for a modular system (F,W ,V), the norm
of the state matrix X remains bounded during the computation of the unary
algorithm. To do so, we define some constants and prove several lemmas. Set

B0 = max{
√
5 · ||x|| : x ∈ E(W)}, B1 = max{1, |sz(F−1

b Wb)| : b ∈ A}
D0 = min{| det(Vp)| : p ∈ B}, D1 = max{| det(Vp)| : p ∈ B},
G = max{1, ||V −1

p FaVq|| : p
a→ q}, H = max{√D0, ||Vp|| : p ∈ B},

B = max{B0, 2B1}, C0 = max{B2D2
1G

2/2D0, B1}

Lemma 3 1. If (X, p) a/λ
−→ (XFa, q), then sz(XFaVq) < sz(XVp).

2. If (X, p) λ/b
−→ (F−1

b X, p), then 0 > sz(XVp) < sz(F−1
b XVp) < B1.

Proof. The first claim follows from XFaVq ⊆ XVp. To prove the second claim,
note that for each M ∈ M(Z) we have sz(V(M)) < 0, so sz(Wb) < 0 for each b ∈
A. If (X, p) λ/b

−→ (F−1
b X, p) is an emission edge, then XVp ⊆ Wb, so sz(XVp) < 0.

Since F−1
b XVp ⊆ F−1

b Wb, we get sz(F−1
b XVp) < B1. Since F−1

b is an expansion
on Wb, we get sz(XVp) < sz(F−1

b XVp). ⊓⊔
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Lemma 4 If (X, p) a/λ
−→ (XFa, q) is an absorption performed by the unary algo-

rithm and sz(XVp) < B1, then ||XVp|| < BD1 det(X), |sz(XVp)| < C0 det(X)
and |sz(XFaVq)| < C0 det(X).

Proof. We distinguish two cases. If 0 ≤ sz(XVp) < B1, then by Lemma 1 we have
||XVp|| < 2| det(XVp)| · max{1, |sz(XVp)|} ≤ 2B1D1 det(X). If sz(XVp) < 0,
then we use the fact that XVp is not contained in any Wa, so it must contain a
point from E(W). By Lemma 2, ||XVp|| ≤ B0 · | det(XVp)| ≤ B0D1 det(X). Thus
in both cases we have ||XVp|| ≤ BD1 det(X). It follows ||XFaVq|| ≤ ||XVp|| ·
||V −1

p FaVq|| ≤ BD1G · det(X). By Lemma 1 we get

|sz(XVp)| ≤ ||XVp||2/2| det(XVp)| ≤ B2D2
1

2D0
det(X) ≤ C0 det(X), and similarly

|sz(XFaVq)| ≤ B2D2
1G

2

2D0
det(X) ≤ C0 det(X). ⊓⊔

Lemma 5 Every infinite path computed by the unary algorithm contains an

infinite number of emissions.

Proof. Assume by contradiction that there exists an infinite path of absorptions
with vertices (Xn, pn) and label u/λ, where u ∈ SW . Since Fu[0,n)

Vpn
⊆ Wu[0,n)

and limn→∞ |Wu[0,n)
| = 0, we get limn→∞ |X0Fu[0,n)

Vpn
| = 0 by the continuity

of X0, and therefore limn→∞ sz(X0Fu[0,n)
Vpn

) = −∞. This is in a contradiction
with Lemma 4. ⊓⊔
Theorem 11 For a modular MNS (F,W ,V) there exists a constant C > 0
such that for every input matrix M ∈ M(Z), the unary algorithm computes a

continuous function ΘM : S(W,V) → SW with ΦΘM (p, u) = MΦ(u), and the state

matrix X satisfies ||X || < C ·max{||M ||2, det(M)2} during the computation.

Proof. Let (Xn, pn) be the vertices of the infinite path with source (X0, p0) =
(M,p0). If sz(XnVpn

) > C0 det(M), then (Xn, pn) is an absorption vertex by
Lemma 3 and sz(Xn+1Vpn+1) < sz(XnVpn

). If sz(XnVpn
) < −C0 det(M), then

(Xn, pn) is an emission vertex by Lemma 4, and sz(Xn+1Vpn+1) > sz(XnVpn
).

Thus there exists m, such that for all n ≥ m we have |sz(XnVpn
)| < C0 det(M)

while for n < m we have |sz(XnVpn
)| ≤ |sz(MVp0)| ≤ H2·||M||2

2D0 det(M) . By Lemma 1

we get either ||XnVpn
|| ≤ 2D1C0 det(M)2 in the former case and ||XnVpn

|| ≤
H2D1

D0
||M ||2 in the latter case. Taking C = max{2HD1C0, H

3D1/D0} we get

||Xn|| ≤ ||XnVpn
|| · ||V −1

pn
|| ≤ C ·max{||M ||2, det(M)2}

for all n, so the algorithm can be realized by a finite state transducer. By
Lemma 5, for each (p, u) ∈ S(W,V) there exists a unique v = ΘM (p, u) such
that u/v is the label of an infinite path with source (M,p0). For each m there
exists n such that u[0,n)/v[0,m) is the label of a finite path with source (M,p0),
∅ 6= Fu[0,n)

Vpn
⊆ Wu[0,n)

, and ∅ 6= MFu[0,n)
Vpn

⊆ Wv[0,m)
. The intersection⋂

n Fu[0,n)
Vpn

⊆ ⋂
n Wu[0,n)

is nonempty by compactness and has zero diame-

ter, so it contains the unique point Φ(u). The intersection
⋂

n MFu[0,n)
Vpn

⊆⋂
m Wv[0,m)

is a nonempty singleton which contains both M(Φ(u)) and Φ(v), so
M(Φ(u)) = Φ(v). ⊓⊔
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Corollary 12 If (F,W ,V) is a modular MNS, then for each M ∈ M(Z) there

exists a finite state transducer which computes a continuous function ΨM : SW →
SW which satisfies ΦΨM = MΦ.

Proof. Using Theorems 8 and 11 we get ΨM = ΘM ◦ π−1.

A disadvantage of modular systems is that they are not redundant. As shown
in Kůrka [7], the cylinder intervals of a modular system contain neither 0 nor
∞, so they cannot form a cover but only an almost-cover. In Kůrka [8] we
argue that in some redundant MNS, the unary algorithm has asymtotically linear
time complexity. The norm of the state matrix remains small most of the time,
although fluctuations to larger values occur sporadically.
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Société Mathématique de France, Paris, 2003.
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