Skip to main content

Observe and Remain Silent (Communication-Less Agent Location Discovery)

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

We study a randomised distributed communication-less coordination mechanism for n uniform anonymous agents located on a circle with unit circumference. We assume the agents are located at arbitrary but distinct positions, unknown to other agents. The agents perform actions in synchronised rounds. At the start of each round an agent chooses the direction of its movement (clockwise or anticlockwise), and moves at unit speed during this round. Agents are not allowed to overpass, i.e., when an agent collides with another it instantly starts moving with the same speed in the opposite direction. Agents cannot leave marks on the ring, have zero vision and cannot exchange messages. However, on the conclusion of each round each agent has access to (some, not necessarily all) information regarding its trajectory during this round. This information can be processed and stored by the agent for further analysis.

The location discovery task to be performed by each agent is to determine the initial position of every other agent and eventually to stop at its initial position, or proceed to another task, in a fully synchronised manner. Our primary motivation is to study distributed systems where agents collect the minimum amount of information that is necessary to accomplish this location discovery task.

Our main result is a fully distributed randomised (Las Vegas type) algorithm, solving the location discovery problem w.h.p. in O(nlog2 n) rounds (assuming the agents collect sufficient information). Note that our result also holds if initially the agents do not know the value of n and they have no coherent sense of direction.

This work was partially supported by the Royal Society Grant IJP - 2010/R2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proc. IEEE Symposium on Intelligent Control, pp. 453–460 (1995)

    Google Scholar 

  2. Attiya, H., Welch, J.: Distributed Computing. McGraw-Hill (1998)

    Google Scholar 

  3. Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proc. 35th Annual Symposium on Foundations of Computer Science, FOCS 1994, pp. 75–85 (1994)

    Google Scholar 

  4. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network Exploration by Silent and Oblivious Robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–219. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theoretical Computer Science 399(1-2), 71–82 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, C., Frieze, A., Radzik, T.: Multiple Random Walks and Interacting Particle Systems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 399–410. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary Patrolling by Mobile Agents with Distinct Maximal Speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Czyzowicz, J., Labourel, A., Pelc, A.: Optimality and competitiveness of exploring polygons by mobile robots. Information and Computation 209(1), 74–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment I: the rectilinear case. Journal of ACM 45(2), 215–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolev, S.: Self-Stabilization. MIT Press (2000)

    Google Scholar 

  12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard Tasks for Weak Robots: The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 93–102. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern formation by autonomous robots without chirality. In: SIROCCO 2001, pp. 147–162 (2001)

    Google Scholar 

  14. Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Computing 31(2), 577–600 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science 390, 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kong, C.S., Peng, N.A., Rekleitis, I.: Distributed coverage with multi-robot systems. In: Proc. Robotics and Automation, pp. 2423–2429 (2006)

    Google Scholar 

  18. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Morgan and Claypool Publishers (2010)

    Google Scholar 

  19. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)

    Google Scholar 

  20. Massias, J.-P., Robin, G.: Bornes effectives pour certaines fonctions concernant les nombres premiers. Journal de Théorie des Nombres de Bordeaux 8, 215–242 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)

    Google Scholar 

  22. Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley (2006)

    Google Scholar 

  23. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. J. Robotic Systems 13(3), 127–139 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedetzky, T., Gąsieniec, L., Gorry, T., Martin, R. (2012). Observe and Remain Silent (Communication-Less Agent Location Discovery). In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics