1202.5233v4 [cs.DS] 30 Nov 2012

arxXiv

Computing Lempel-Ziv Factorization Online

Tatiana Starikovskaya

Lomonosov Moscow State University, Moscow, Russia
tat.starikovskaya@gmail.com

Abstract. We present an algorithm which computes the Lempel-Ziv
factorization of a word W of length n on an alphabet X' of size o online
in the following sense: it reads W starting from the left, and, after read-
ing each r = O(log, n) characters of W, updates the Lempel-Ziv factor-
ization. The algorithm requires O(n log o) bits of space and O(n log®n)
time. The basis of the algorithm is a sparse suffix tree combined with
wavelet trees.

1 Introduction

The Lempel-Ziv factorization (further LZ-factorization for short) of a word W
is a decomposition W = f;fa... f,, where a factor f;, 1 < ¢ < z, is either a
character that does not occur in fifs... f;—1 or the longest prefix of f;... f.
that occurs in fy fa ... f; at least twice [6I21].

The most famous application of the LZ-factorization is data compression (e.g.
the LZ-factorization is used in gzip, WinZip, and PKZIP). Moreover, it is a basis
of several algorithms [I2IT0] and text indexes [13].

Let W be a word of length n on an alphabet X' of size o. There are many
algorithms that compute the LZ-factorization in O(n logn) bits of spacell. These
algorithms use suffix trees [19], suffix automata [6] or suffix arrays [TI2[7I89I17]
as a basis.

However, only two algorithms have been known which use O(nlog o) bits of
space [I8/I7]. The algorithms exploit similar ideas (both are based on an FM-
index and a compressed suffix array). The algorithm [17] is offline and requires
O(n) time.

Running time of the algorithm [I8] is rather big, O(nlog®n), but the algo-
rithm computes the LZ-factorization of a word W online. Consider the factors
f1, f2, ..., fi of the LZ-factorization of a word X . The LZ-factorization of a word
Xa, where a is a character, contains either ¢ or 4 1 factors: in the first case the
factors are f1, fa,..., fi—1, fI, where the last factor f] = f;a; and in the second
case the factors are fi, fa,..., fi, fi+1, where f;+1 = a. The algorithm reads W
and after reading each new character updates the LZ-factorization, i.e. either
increases the length of the last factor by one or adds a new factor.

For many practical applications dealing with large volumes of data it would
be natural to allow updating the LZ-factorization only each r > 1 new characters

! In this paper log stands for log,.


http://arxiv.org/abs/1202.5233v4

of W, for some small parameter r, in order to reduce the running time. Unfor-
tunately, naive application of this idea to the algorithm [I8] does not improve
its running time.

Here we propose a new linear-space algorithm which achieves a reasonable
trade-off between frequency of updates and running time. The algorithm updates
the LZ-factorization of W each r = logT"" characters of W, requiring O(n log? n)
time and O(nlogo) bits of space. It is assumed that both ¢ and n are known
beforehand and n > o. The basis of the algorithm is a sparse suffix tree combined
with wavelet trees.

Let X be a word of length | X| on X. Throughout the paper, positions in X are
numbered from 1. The subword of X from position 4 to position j (inclusively) is
denoted by X[i..j]. If j = | X]|, then we write X[i..] instead of X[i..|X|]. A word
X[i..] is called a suffix of X and a word X|[1..j] is called a prefix of X.

With each word YV of length r on X we associate a meta-character Y’ formed
by concatenating bit representations of characters of Y. Note that a bit repre-
sentation of any character of Y can be obtained from the bit representation of
Y’ in constant time by two shift operations. Also, Y’ can be obtained from Y in
O(r) time.

2 Algorithm

Let f1, f2,..., f. be the factors of the LZ-factorization of W. For the sake of
clarity we describe not how to update the LZ-factorization after reading each
block of characters but rather how to compute fi, fa,..., f. sequentially. How-
ever, it will be easy to see that the presented algorithm can be modified to solve
the problem we formulated in the introduction.

Suppose that fi, fa,..., fi—1 of total length ¢; have been computed. The
algorithm consists of two procedures. The procedure P, checks if |f;| is less
than r and, if it is, computes f; (Section 22). The procedure P>, computes
fi only if it is already known that |f;| > r (Section 23). To compute f; the
algorithm runs P, first and then, if necessary, runs P>,.

2.1 Data Structures

The algorithm makes use of several data structures. To explain what these data
structures are, we need to give a definition of a trie and a compacted trie first.

Definition 1. A trie for a set of words S is a rooted tree edges of which are
labelled by characters. For each prefix P of a word € S there exists exactly one
vertex such that P is spelled out by the path from the root of the trie to this
vertex, and vice versa, a word spelled out by any path starting at the root must
be a prefiz of one of the words € S. A compacted trie for S can be constructed
from the trie by eliminating all vertices with one son, thus forming edges that
are labelled by words rather than single characters.



The algorithm reads W by blocks of r characters starting from the left. After
reading the ¢-th block of W, the first data structure is an (uncompacted) trie on
suffixes of words W(rj + 1..r(j + 2)], j = 0..t — 2. Each explicit vertex v of the
trie stores the leftmost starting position of a suffix ending in the subtree rooted
at v.

Let W’ be the meta-word formed by replacing each block of characters of W
with the corresponding meta-character. The second data structure is an implicit
suffix tree for W’[1..t], i.e. a compacted trie for the set of suffixes of W’[1..¢].
This tree is also called a sparse suffix tree for W[1..tr] [I54], though the original
definition of a sparse suffix tree is slightly different [IT].

For each explicit vertex v of the suffix tree we store a compacted trie CT,,
on words of length r corresponding to the first meta-characters on the edges
outgoing from v.

Definition 2. Consider a tree with labels on edges (a suffix tree or a trie). We
say that a word X is represented by a vertex v (or that v represents X ), if the
word spelled out by the path from the root of the tree to v is equal to X.

If the label of an edge (v,u) of the suffix tree begins with a meta-character
Y’, and Y is the corresponding word of length r, then we store a pointer to
the edge (v, u) in the leaf of CT, representing Y. Tries in vertices are used for
navigation in the suffix tree (but not only for it). Clearly, given a vertex v and
a meta-character Y’ it takes O(rlogo) = O(logn) time to find an edge (v, u)
such that its label starts with Y.

Also, the algorithm maintains a dynamic data structure which allows, given a
vertex v of the suffix tree, to compute the ranks of the leftmost and the rightmost
leaves of the subtree rooted at v in O(logn) time.

Definition 3. Block borders are positions of W of the form pr+1, p=1.. L%J

Finally, we store a data structure which allows, given an interval I, a word
Y € X171 and a block border b, to determine whether a set of block borders
corresponding to the starting positions of the suffixes which are represented
by the leaves of the suffix tree with ranks in the interval I contains a block
border different from b and preceded by an occurrence of Y. The procedure
Ex1sT(I,Y,b) returns zero if there is no such block border and one of them
otherwise.

Details of implementation are not important to understand the algorithm
and will be explained later, in Section Bl

Hereafter VT%J is denoted by £;. We assume that the algorithm has read the
first ¢; + 1 blocks of W before running the procedures P, and Ps,.

2.2 Procedure P,

Let W[¢; +1..4;+ s] be the longest prefix of W[¢; 4+ 1..£; + r] which occurs before
the position ¢; + 1. Obviously, |f;| > r if s = r (see Fig.[Il), and |f;| = s if s < r.



Previous occurrence of f; fi
Wle; +1..45 + 7] WL, +1..0; + 7]

Wirk + 1] Wir(k+ 2)] W [t;]

Fig. 1. Case |fi| > r, r = 4. Block borders are in bold.

P, first computes the longest prefix W[¢; + 1..4; + so] of W[¢; 4+ 1..r(¢; + 1)]
which occurs before the position ¢; + 1. It traverses the trie starting at the
root and following edges labelled by the characters of W[¢; 4+ 1..r(¢; + 1)]. The
algorithm stops in a vertex vy either when vy has no outgoing edge labelled by
the next character of W[¢; + 1..r(¢; 4+ 1)] or when the position stored in the next
vertex is bigger than ¢; (which means that its label does not occur at positions
1..4;).

Clearly, vy will be labelled by W[¢; + 1..4; + so]. If £; + so < r(€; + 1), then
|fil = s = sg. Otherwise, the algorithm reads W{r(¢;+1)..r(¢; +2)], updates the
data structures and proceeds the traverse in a similar manner this time starting
at vg and following edges labelled by the characters of Wir(¢; + 1) + 1..4; + r].
A vertex v the procedure will stop at will be labelled by W[¢; + 1..4; + s].

From the definition of a trie it follows that the traverse will take O(| f;| log o)
time.

2.3 Procedure P>,

P~ consists of two steps. The first can be considered as preliminary, and during
the second step we compute |f;].

The First Step P>, starts with reading W. After reading the s-th block, it
updates the data structures and checks whether W'[¢} 4 1..s] is represented by a
leaf of the suffix tree of W'[1..s]. If it is, P>, proceeds to the second step. From
the definition of a suffix tree it follows that after the first step of P>, all suffixes
starting at positions less than ¢, will be represented by leaves.

Lemma 1. During the first step at most |f;| +r characters of W will be read.

Proof. Since s is the minimal position such that W'[¢, 4 1..s] is represented by
a leaf, W'[¢, + 1..s — 1] is represented by an inner vertex in the suffix tree of
W'[1..s—1] and, consequently, occurs before the position ¢, +1 in W’. Therefore,
W1e; + 1..(s — 1)r] occurs before the position ¢; + 1 (see Fig. @) and |f;| >
[Wl; + 1..(s — 1)r]|. The statement of the lemma easily follows.

We initialize M with |W[¢; + 1..(s — 1)r]|. From the proof of the lemma it
follows that | f;| > M. During the computation process we will increase M until,
finally, it will become equal to | f;|.



Wt +1.r(s —1)] Wt +1.r(s — 1)]

Prev. occ. of W'[l; 4+ 1..s — 1] W'l +1..s — 1]

W'l +1] W'[s]

Fig. 2. Relation between W'[¢; + 1..s — 1] and W[¢; + 1..r(s — 1)].

Furthermore, the lemma guarantees that after the first step the difference
between the position of the last read character of W and ¢; + M is less than r.
This invariant will be maintained throughout the second step of the procedure
as well in the following way: we will read a new block of characters and update
the data structures only when ¢; + M is equal to the position of the last read
character of W.

The Second Step Consider the first block border which intersects a previous
occurrence of f; (see Fig. B)). It divides the occurrence into two parts: the first
short part equal to W[¢; + 1..¢; + m — 1] and the second part equal to a prefix
of W[l; +m..], m € [1,7].

Previous occurrence of f; fi

Wirk + 1] Wir(k+ 2)] Wt;]

Fig. 3. A previous occurrence of f;. The part equal to W[l; + 1..4; + m — 1] (m = 4)
is highlighted in grey.

Let fI™ be the longest prefix of W[¢; + m..] with at least one occurrence
at a block border which is less than ¢; + 1 and preceded by an occurrence of
Wi +1..4; +m — 1]. Obviously, |f;| = max,,cq1,(|f7| +m —1).

For each m = 1..r the procedure P>, either computes |f/"| and updates M
or proves that |f/"| +m — 1 < M and starts computation of | f™*?|.

If (¢;+1)r+1—m < ¢;, then the second step of P>, starts with computing the
length ¢ of the longest common prefix of W[¢; + 1..] and W[(¢, + 1)r +1—m..].
In order to compute g the procedure compares the two strings character by
character. If ¢ > M, the procedure puts M equal to ¢. Then the procedure
starts to work with the suffix tree.



The procedure traverses the suflix tree starting at the root and following
the edges so that characters of the words corresponding to meta-characters of
labels coincide with characters of W [¢; +m..]. For navigation the procedure uses
compact tries stored in the vertices of the suffix tree.

Suppose that after reading a word W¢; +m..p| of length at least M —m +1
the procedure is on the edge (v,u) of the suffix tree. Two cases are possible
depending on whether u is an inner vertex of the suffix tree or a leaf.

Let u be an inner vertex. Obviously, |f™| > |W[¢; + m..p]| iff a set of the
block borders corresponding to the leaves of the subtree rooted at w contains a
block border less than ¢; + 1 preceded by an occurrence of W[¢; +1..4; +m — 1].

Definition 4. String depth of a vertex u of the suffix tree is the length of its
label.

Lemma 2. Let u be an explicit inner vertex of the suffix tree of W'[1..s] with
string depth at least L%J Then a block border corresponding to a leaf in the
subtree rooted at v can not be bigger than (€; + 1)r + 1.

Proof. Indeed, a subtree rooted at v can only contain leaves representing suffixes
of length at least L%J +1 = s—¢}, and all such suffixes start at positions < ¢;+1.
The statement immediately follows.

Since |W[¢;+m..p]| > M —m+1, the string depth of u is at least [ =241 >
L%J It follows from the lemma that a set of the block borders corresponding
to the leaves of the subtree rooted at u might contain only one block border
situated to the left of ¢; + 1, namely, (¢, + 1)r + 1.

Let left(u) and right(u) be the ranks of the leftmost and the rightmost leaves
of the subtree rooted at u. The ranks left(u) and right(u) can be computed in
O(logn) time (see Section B]). Then the set of the block borders corresponding
to the leaves of the subtree rooted at u contains a block border less than ¢; + 1
preceded by an occurrence of W[¢; + 1..¢; + m — 1] iff the set of block borders
corresponding to leaves with ranks belonging to the interval [left(u), right(u)]
contains at least one block border different from (¢; + 1)r 4+ 1 and preceded by
an occurrence of W[¢; + 1..4; + m — 1]. To define is this condition holds we call
the procedure EXIST. If such a block border exists, the procedure updates M
and proceeds. Otherwise, the procedure starts computation of | fl-m"’l|.

If w is a leaf then instead calling the procedure EXIST we first check if this
leaf corresponds to a block border less than ¢; +1 and then check if the border is
preceded by an occurrence of W[¢; 4+1..4;4+m — 1] using a character-by-character
comparison.

Suppose now that after reading W[¢; +m..p] of length at least M —m+1 the
procedure stops on an edge (v',u’) of the compact trie CT,,, stored in a vertex v
of the suffix tree (which means that we are looking for an edge outgoing from v
which has an appropriate label). Let u; and us be sons of v, which correspond
to the leftmost and the rightmost leaves of the subtree of CT, rooted at u’'.
Obviously, u; and uy can be found in O(r) time. All block borders corresponding
to leaves with ranks le ft(u1),le ft(u1)+1, ..., right(uz) are the starting positions



of occurrences of W[¢; +m..p]. Moreover, if one of these block borders is bigger
than £; +1 then it is equal to (¢, +1)r+1 (Lemma[2). To define if there is a block
border corresponding to a leaf with the rank in the interval [le ft(uq), right(uz)]
preceded by an occurrence of W¢;..¢; +m — 1] and different from (¢} + 1)r + 1
the algorithm calls the procedure EXIST.

Correctness of the procedure P>, follows from its description. The following
lemma estimates the time spent during P>, not including the time for updates
of the data structures.

Lemma 3. To compute f; the procedure P>, needs O(|f;] log? n+rlog? n) time.

Proof. During the first step P>, reads O(|f;| + r) characters of W (Lemma [IJ).

To compute the longest common prefix of W[¢;+1..] and W[(£;+1)r+1—m..]
we need O(|f*]) time. To follow f/™ down in the suffix tree we need O(|f"|log o)
time. Since after each execution of the procedure EXIST we either increase M
or proceed to the computation of fim“, it is executed at most r + |f;| times.
The procedure EXIST takes O(log® n) time (see Section [). Therefore, the total
time spent during the second step of Ps,. is O((r + |fi|) log* n + 7| fi| logo) =
O(If:|log® n + rlog®n).

3 Data Structures

As we have already said, our algorithm maintains two data structures. In this
section we give the details and describe update procedures.

3.1 Trie

After reading W/[l..tr] the trie contains suffixes of words W{rj + 1..r(j + 2)],
j = 0..t — 2. To update the trie after reading the (¢ + 1)-th block of characters
we first check if W{[r(t — 1) + 1..r(t 4+ 1)] is represented in the trie. To do that
we traverse the trie starting at the root and following edges labelled by the
characters of Wr(t — 1) + 1..r(t + 1)]. If we read out the whole word, then
Wir(t—1)+1..r(t+1)], and, consequently, all its suffixes are represented in the
trie. If not, we add all suffixes of W[r(t — 1) 4+ 1..r(¢t + 1)], including the word
itself, to the trie.

Lemma 4. The trie occupies o(n) bits of space and its maintenance takes
O(nlogo) time.

Proof. Due to our choice of r, there are at most %" = o = n3 different
words of length 2r on X. Therefore, the trie has at most nzr? vertices and
occupies o(n) bits of space.

To check if the words W(rj +1..7(j +2)], j = 0..2 — 2, are represented in the
trie one needs O(nlog o) time in total. During the algorithm we add suffixes of
at most n? < 7= words. All suffixes of a word of length 2r can be added to the
trie in O(r? log o) time, so we get the announced time bound.



Finally, suppose that we create a new vertex v in the process of adding a
suffix Wip..r(k + 2)] of the word W([rk + 1..r(k + 2)] to the trie. Then we just
remember the position p as the leftmost starting position of a suffix ending in
the subtree rooted at v. This completes the description of the update procedure
of the trie.

3.2 Suffix Tree

The suffix tree is updated by Ukkonen’s algorithm [20]. When we create a new
edge outgoing from a vertex v with the first character of the label equal to W'[k],
we add W[(k — 1)r 4+ 1..kr] to CT,.

Below we describe the procedure EXIST and how to compute the ranks of
the leftmost and the rightmost leaves in a subtree rooted at a vertex v.

Ranks of the leftmost and the rightmost leaves The data structure we will
use to compute the ranks of the leftmost and the rightmost leaves of a subtree
is similar to the one from [14].

We maintain a dynamic doubly-linked list EL corresponding to the Euler
tour of the current suffix tree. Each internal vertex of the suffix tree is stored
in two copies in FL, corresponding respectively to the first and last visits of
the vertex during the Euler tour. Leaves of the suffix tree are kept in one copy.
Observe that the leaves of the suffix tree appear in E'L in the “left-to-right”
order, although not consecutively.

We also maintain a balanced binary tree, denoted BT, whose leaves are
elements of F'L. Note that the number of vertices of BT is bounded by 27
and the height of BT is O(logn). We call leaves of BT corresponding to leaves
of the suffix tree suffix leaves. For each suffix leaf we store the corresponding
block border (we will use this information in the procedure EXIST), and for each
internal vertex u of BT we store the number of suffix leaves in the subtree of BT
rooted at wu.

The rank of the leftmost leaf in the subtree rooted at v is the number of the
suffix leaves in FL preceding the first copy of v in EL plus one. This number
can be computed in O(logn) time by following the path from the leaf of BT
corresponding to this copy to the root of BT and summing up the number of
the suffix leaves in the subtrees rooted at the left sons of the vertices on the
path. The rank of the rightmost leaf can be computed in a similar way.

Now we should explain how to update FL and BT. When a new vertex v is
added to a suffix tree, the following updates should be done (in order):

(i) insert v at the right place of the list EL (in two copies if v is an internal
vertex),
(ii) rebalance the tree BT if needed,
(iii) if v is a leaf of the suffix tree (i.e. a suffix leaf of BT'), update information
about the number of suffix leaves in BT



To see how update (i) works, we have to recall how suffix tree is updated
when a new document is inserted. Two possible updates are creation of a new
internal vertex v by splitting an edge into two (edge subdivision) and creating
a new leaf u as a child of an existing vertex. In the first case, we insert the first
copy of v right after the first copy of its parent, and the second copy right before
the second copy of its parent. In the second case, the parent of u has already at
least one child, and we insert u either right after the second (or the only) copy
of its left sibling, or right before the first (or the only) copy of its right sibling.

Rebalancing the tree BT (update (ii)) is done using standard methods. Ob-
serve that during the rebalancing we may have to adjust the information about
the number of the suffix leaves for internal vertices, but this is easy to do as only
a constant number of local modifications is done at each level.

Update (iii) is triggered when a new leaf u is created in the suffix tree and
added to EL. We then have to follow the path in BT from the new leaf u to
the root and update the information about the number of suffix leaves for all
vertices on this path. These updates are straightforward. All these steps take
O(logn) time.

Procedure ExisT(I,Y,b) Let p; be the starting position of the suffix repre-
sented by the i-th leaf in the left-to-right order on the leaves of the suffix tree.
Consider a virtual sequence GBWT, where GBWT|i] is equal to the reverse of
the bit representation of W'[p; — 1]|. Elements of GBWT belong to a segment
[0,07] = [0,n7].

Consider a dynamic wavelet tree for GBWT. The wavelet tree for a se-
quence GBWT, elements of which belong to a segment [min, maz] C [0,n1]
can be defined recursively. If min = max then the wavelet tree consists of
one vertex corresponding to min. Otherwise the tree has a root correspond-
ing to the segment [min, max]. A binary vector V., is defined as follows: if
GBWT[i] < |mndmat | then Vyonli] = 0, otherwise Vyon[i] = 1. We store a
data structure [I6] which allows ro read any bit V,t[¢], compute the number of
zeros or ones in a prefix Vipo[1..7] (ranko(i, Vieot) or ranky (i, Vieot) ), Or com-
pute the position of i-th zero or i-th one (selecty(i, Vioot) or selecty (i, Vioot)), as
well as to add a new bit between Vi.o0t[i] and Vipoe[i + 1] in O(logn) time. The
data structure occupies the number of bits proportional to the vector’s length.
Let GBWT st be a subsequence of GBWT formed by the elements GBWT]i],
GBWTIi] < LWJ, and GBWT,;gn: be the complementary subsequence.
Then a subtree rooted at the left son of the root is the wavelet tree for GBWT 4,
elements of which belong to a segment [min, [ 24792 |1 and a subtree rooted
at the right son of the root is the wavelet tree for GBWT 41+, elements of which
belong to a segment [| Z42EMOL | 1 mag].

It follows from the definition that the wavelet tree for GBWT has o(n) leaves
and, consequently, o(n) vertices. As there are at most O(logn) levels in the tree
and the total length of the bit vectors is at most 7, the wavelet tree for GBWT
occupies o(n) + O(% logn) = O(nlog o) bits of space in total.



We define a meta-character ¢,,;, as follows: reverse the bit representation of
Y and then append (r—1|Y|) log o zeros to it. A meta-character ¢,q, is defined in
a similar way, but ones are appended instead of zeros. Obviously, a block border
pr+ 1 is preceded by an occurrence of Y iff the reverse of the bit representation
of W'[p — 1] lies in the interval [¢nin, Cmaz]- Let BY be the set of block borders
corresponding to the leaves with ranks in I and preceded by an occurrence of Y.
First the procedure EXIST finds p1,ps € I such that GBWT[p1|, GBWT|p2] €
[¢mins Cmaz), and then computes the block borders b1, be corresponding to leaves
with ranks pi,pe. Obviously, BY contains at least one block border different
from b iff either b, or bs is not equal to b.

The dynamic wavelet tree for GBWT allows to find pi,ps € I such that
GBWT[p1], GBWT[ps] belong to [Cmin, Cmaz] in O(log®n) time [I5]. We start
at the interval [start,end] = I of V,4ot. Now we map the interval to the left
and to the right, replacing start by rankg/ (start — 1,V;00¢) + 1 and end by
rankg,1(end, Vioot), and continue recursively. We stop the recursion (i) if the
interval [start,end] is empty; (ii) if the interval corresponding to the current
vertex does not intersect with the interval [¢iin, Cmaz]; (iil) if the interval cor-
responding to the current vertex is contained in [¢min, Cmaz]- It can be shown
that only O(logn) vertices will be visited. Suppose that the traverse stops at
some vertex u because of (iii) and GBWT,, is the corresponding subsequence of
GBWT. Then elements GBWT,[start], GBWT,[start + 1],..., GBWT,[end]
belong to the interval [¢inin, Cmaz], and their positions in GBWT belong to I.
Any of these positions, e.g., the position of an element GBWT,[k] in GBWT,
can be computed in O(log?n) time in the following way: we go along the path
from u to the root replacing k by selecty/,(k,V,) when moving from the left
(right) son of a vertex p to p. The value of k at the root will be equal to the
position of the element GBWT,[k] in GBWT.

Using BT the block borders corresponding to the leaves of the suffix tree
with ranks p; and ps can be computed in O(logn) time, since it is enough to
find the corresponding suffix leaves of BT. Hence, O(log2 n) time is sufficient to
determine whether a set of block borders corresponding to the starting positions
of the suffixes which are represented by the leaves of the suffix tree with ranks
in the interval I contains a block border different from b and preceded by an
occurrence of Y.

It remains to describe how the wavelet tree is updated. To add a new element
between GBWT[i] and GBWT[i+1] we need O(log® n) time, because we need to
create at most log n vertices and to add a new bit to O(logn) binary vectors. To
update the wavelet tree after adding a new leaf to the suffix tree we first compute
the rank of this leaf in the left-to-right order on the leaves of the suffix tree in
O(logn) time using BT and then add the corresponding element to GBWT.

Lemma 5. The suffiz tree and additional data structures occupy O(nlogo) bits
and their maintenance takes O(nlog®n) time.

Proof. The suffix tree has at most 7 leaves and therefore O(?:) edges. We specify
labels of edges by their starting and final positions in W’. Hence, the suffix tree
occupies O(nlog o) bits.



Tries in vertices of the suffix tree have O(%) leaves in total and occupy
O(nlogo) bits as well (labels of edges are specified by their starting and final
positions in W). Finally, BT, EL and the dynamic wavelet tree use O(% logn) =
O(nlogo) bits of space.

Ukkonen’s algorithm [20] takes O(% logn) = O(nlog o) time (additional logn
appears because of the cost of navigation). To update tries in the vertices of the
suffix tree we need O(% logn) = O(nlogo) time. All wavelet tree updates take
o(% log?n) = O(nlognlogo) = O(nlog®n) time. And finally, updates of BT
and EL take O(%logn) = O(nlogo) time.

4 Results and Conclusions

To conclude, we prove the following theorem.

Theorem 1. The presented algorithm computes the Lempel-Ziv factorization of
a word W in O(nlog®n) time and O(nloga) bits of space.

Proof. Lemmas M and [l guarantee that the data structures occupy O(nlogo)
bits of space in total and that their maintenance takes O(nlog®n) time.

To compute f;, first P, is run. As we have proved, it takes O(|f;|log o) time.
P, is run only when |f;| > r (i.e., at most 2 times) and takes O((|fi|+7) log®n)
time. Therefore, the total time spent by procedures P, and P>, is O(n log?n),
and this completes the proof.

It is easy to see that the described algorithm can be implemented online with
the same running time and space.

Acknowledgement The author has been supported by a grant 10-01-93109-
CNRS-a of the Russian Foundation for Basic Research and by the mobility grant
funded by the French Ministry of Foreign Affairs through the EGIDE agency.

The author thanks Simon J. Puglisi, who proposed to consider the problem of
computation of the Lempel-Ziv factorization on a sparse suffix tree, and Gregory
Kucherov and Alexei Lvovich Semenov for very helpful discussions.

References

1. Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing
suffix trees with enhanced suffix arrays. J. of Discrete Algorithms, 2:53-86, 2004.

2. Gang Chen, Simon J. Puglisi, and William F. Smyth. Lempel-Ziv factorization
using less time & space. Mathematics in Computer Science, 1(4):605-623, 2008.

3. Shing-Yan Chiu, Wing-Kai Hon, Rahul Shah, and Jeffrey S. Vitter. Geometric
Burrows-Wheeler transform: Linking range searching and text indexing. In Pro-
ceedings of the Data Compression Conference, pages 252-261. IEEE Computer
Society, 2008.

4. Shing-Yan Chiu, Wing-Kai Hon, Rahul Shah, and Jeffrey S. Vitter. 1/O-efficient
compressed text indexes: From theory to practice. In Proceedings of the Data
Compression Conference, pages 426-434. IEEE Computer Society, 2010.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Shing-Yan Chiu, Rahul Shah, Sharma V. Thankachan, and Jeffrey S. Vitter. On
entropy-compressed text indexing in external memory. In Proceedings of the 16th
International Symposium on String Processing and Information Retrieval, volume
5721 of Lecture Notes in Computer Science, pages 75-89. Springer, 2009.

Maxime Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45:63-86,
1986.

Maxime Crochemore and Lucian Ilie. Computing longest previous factor in linear
time and applications. Inf. Process. Lett., 106:75-80, 2008.

. Maxime Crochemore, Lucian Ilie, Costas S. Iliopoulos, Marcin Kubica, Wojciech

Rytter, and Tomasz Walen. LPF computation revisited. In IWOCA, volume 5874
of Lecture Notes in Computer Science, pages 158-169. Springer, 2009.

Maxime Crochemore, Lucian Ilie, and William F. Smyth. A simple algorithm for
computing the Lempel Ziv factorization. In Proceedings of the Data Compression
Conference, pages 482-488, Washington, DC, USA, 2008. IEEE Computer Society.
Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing
all the tandem repeats in a string. J. Comput. Syst. Sci., 69:525-546, 2004.

Juha Kérkkéinen and Esko Ukkonen. Sparse suffix trees. In Proceedings of the 2nd
Annual International Computing and Combinatorics Conference, volume 1090 of
Lecture Notes in Computer Science, pages 219-230. Springer Verlag, 1996.
Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word
in linear time. In Proceedings of the 1999 Symposium on Foundations of Computer
Science, pages 596-604. IEEE Computer Society, 1999.

Sebastian Kreft and Gonzalo Navarro. Self-indexing based on LZ77. In Proceedings
of the 22nd annual conference on Combinatorial Pattern Matching, CPM’11, pages
41-54, Berlin, Heidelberg, 2011. Springer-Verlag.

G. Kucherov, Y. Nekrich, and T. Starikovskaya. Cross-document pattern matching.
In Proceedings of the 23rd Annual Symposium on Combinatorial Pattern Matching
(CPM), July 8-5, 2012, Helsinki (Finland), Lecture Notes in Computer Science.
Springer Verlag, 2012. to appear.

Veli Makinen and Gonzalo Navarro. Position-restricted substring searching. In
Proceedings of the 7th Latin American Symposium, Lecture Notes in Computer
Science, pages 703—714. Springer, 2006.

Veli Makinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and
full-text indexes. ACM Trans. Algorithms, 4:32:1-32:38, 2008.

Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Proceedings
of the 22nd annual conference on Combinatorial Pattern Matching, CPM’11, pages
15-26, Berlin, Heidelberg, 2011. Springer-Verlag.

Daisuke Okanohara and Kunihiko Sadakane. An online algorithm for finding the
longest previous factors. In Proceedings of the 16th Annual European Symposium
on Algorithms, ESA ’08, pages 696-707, Berlin, Heidelberg, 2008. Springer-Verlag.
Michael Rodeh, Vaughan R. Pratt, and Shimon Even. Linear algorithm for data
compression via string matching. J. ACM, 28:16—24, 1981.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica, pages 249260,
1995.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337-343, 1977.



	Computing Lempel-Ziv Factorization Online

