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Abstract. We describe a controlled fragment of English for editing on-
tologies in OWL. Although this language substantially overlaps other
CNLs that have been proposed for this purpose, it has a number of spe-
cial features designed to simplify its learning and use. First, the language
allows users to start typing in sentences with little or no preliminary ef-
fort in building a controlled vocabulary or lexicon. Second, it disallows
sentences that people interpret as structurally ambiguous. Third, it em-
ploys a finite-state grammar, so facilitating fast and reliable implementa-
tion of an editing tool. These advantages are gained at the cost of severe
restrictions in coverage, which mean that the majority of potential OWL
axioms cannot be expressed. However, analysis of axiom patterns from
several ontology repositories suggests that these constraints are almost
invariably respected by ontology developers, so that in practice the loss
of expressivity is rarely noticeable.
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1 Introduction

A variety of controlled languages for the semantic web have been proposed,
prominent examples being ACE (Attempto Controlled English) [7], SOS (Sydney
OWL Syntax) [20], and Rabbit [6]. Most of these languages have been used both
in systems that generate text from OWL code (verbalisers) and in systems that
produce OWL code by interpreting text (editors). Examples of editing tools are
AceWiki [8], ROO [4], RoundTrip Ontology Authoring [3], and FluentEditor
[2]. These applications belong to a tradition in CNL research that predates the
semantic web, and includes for example Computer Processable English [15] and
PENG [18]; the general aim of this research is to design subsets of English that
can be unambiguously interpreted in some system of formal logic, while allowing
sufficient freedom for human authors to write fluent texts.

In comparing different CNLs for knowledge formation, it is useful to distin-
guish a number of design requirements and potential trade-offs among them.
Schwitter [17] and Kuhn [9] have both distilled these requirements into four
groups, which Kuhn calls clearness, naturalness, simplicity and expressivity.
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Clearness means that the syntax and semantics of the CNL should be well-
defined, and that any well-formed sentence in the CNL should be mapped un-
ambiguously to a formal semantic interpretation. Naturalness requires that sen-
tences in the CNL are understandable by people, and includes issues like whether
sentences are perceived as belonging to English or some other natural language,
and whether people interpret them unambiguously as having the desired mean-
ing. Simplicity requires that the CNL is easily described and processed: for people
this depends on whether the language is easily learned and applied, for instance
when checking that a sentence is correct; for programs it depends on whether
a sentence typed in by the user can be efficiently parsed (so confirming that it
belongs to the CNL) and interpreted. Finally, expressivity concerns how fully
the CNL covers the desired problem domain—or in the case of a semantic web
editor, its coverage of OWL. As will be obvious, these requirements may con-
flict, so that different trade-offs are possible between (for example) simplicity
and expressivity.

We describe in this paper a CNL for editing ontologies which aims broadly
to maximise simplicity and naturalness at the expense of expressivity; however,
we also present empirical evidence that this loss of expressivity is more theo-
retical than practical, since the proposed language can cover almost all OWL
patterns that are actually found in ontology corpora. Unlike ACE and some
other languages mentioned above, this CNL is designed solely for convenience
in verbalising and editing OWL ontologies, and has no other linguistic or logical
pretensions whatever; for this reason we provisionally name it OWL Simplified
English. In more detail, the design principles informing the CNL are as follows.

1. It should be possible to describe the language very briefly; as a rough guide,
the basic rules should fit comfortably on a sheet of A4.

2. Any preliminary work on the lexicon should be minimised: ideally, a user
should be able to type in sentences straight away, without having to list
content words or entity names.

3. The grammar should disallow sentences that people perceive as structurally
ambiguous.

4. The grammar should be finite-state, so that sentences can be parsed and
interpreted efficiently by a finite-state transducer.

5. No effort should be made to guarantee that sentences are grammatical ac-
cording to the conventions of normal English. Provided that the CNL makes
it possible to write fluent English, adherence to conventional grammar can
be left to the human author.

Empirically, OWL Simplified English is based on two findings derived from anal-
ysis of ontology corpora [13, 14]. The first is that the names of individuals, classes
and properties in an ontology have distinctive features which can be exploited
in order to determine where they begin and end. The second is that in practice,
complex OWL expressions are invariably right-branching, and so lend themselves
to verbalisations that are structurally unambiguous and can be described by a
finite-state grammar. These two ideas will be developed in detail in the following
sections.
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2 Recognising entity names

The following sentence verbalises a fairly complex OWL statement using strate-
gies typical of the CNLs that have been proposed:

London is a city that is capital of the United Kingdom and is divided
into at least 30 boroughs.

To interpret this sentence (which is correctly formed in OWL Simplified En-
glish), the parser must recognise a number of entity names—that is, phrases
denoting individuals and atomic classes or properties:1 thus ‘London’ and ‘the
United Kingdom’ name individuals, ‘city’ and ‘boroughs’ name classes, and ‘is
capital of’ and ‘is divided into’ name object properties. The other words in the
sentence provided a scaffolding signalling various axiom and class constructors;
they comprise the copular ‘is’, the indefinite article ‘a’, the conjunction ‘and’,
the relative pronoun ‘that’, and the quantifying phrase ‘at least 30’. Abstracting
from the entity names, we could represent the sentence pattern like this:

[Individual] is a [class] that [has-property] [Individual] and [has-property]
at least 30 [class].

In general, a CNL for verbalising OWL ontologies requires only a handful of func-
tion words to provide this scaffolding. As well as the words already illustrated,
most CNLs use ‘or’ for union, ‘not’ for complement, ‘exactly’ for exact cardinal-
ity, ‘at most’ for maximum cardinality, and the determiners ‘no’ and ‘every’ in
sentences expressing DisjointClasses and SubClassOf. By contrast, the potential
vocabulary for entity names is vast, ranging from the commonplace to the highly
technical, and will include many words that can belong to more than one part
of speech (e.g., ‘rank’, which can be noun, adjective or verb). To achieve the
goals of OWL Simplified English, we must find formation rules for entity names
that allow the parser to determine where a name begins and ends, and whether
it denotes an individual, a class or a property; moreover, the rules should allow
users sufficient freedom to construct appropriate names, while not demanding a
great deal of preliminary effort in specifying a controlled vocabulary. It is not at
all obvious that this combination of desiderata can be met.

For evidence on how entity names are formed in practice, we can refer to
studies on the structure of identifiers and labels in ontology corpora [10, 13],
which show that individuals, classes and properties are named by distinctive
part-of-speech sequences. Individual identifiers are made up mostly of proper
nouns, common nouns and numbers; where the opening word is not a proper
noun, the definite article ‘the’ is often implicit. Class identifiers are composed
mostly of common nouns and adjectives, although they may also contain numbers
and proper nouns (e.g., ‘1912 Rolls Royce’). Property identifiers often open with
a verb or auxiliary (‘is’, ‘has’) in the present tense; their other constituents
are mostly common nouns, participles, and prepositions. In all three types of

1 The qualification ‘atomic’ here distinguishes elementary classes/properties from ones
that are constructed, for instance through a restriction or intersection functor.
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identifier, the function words listed above as scaffolding are very rare—indeed,
the only function words that are at all common are auxiliaries (especially ‘has’)
and prepositions, both found mostly in property identifiers.

On the basis of these findings, suppose that we constrain entity names as
follows:

1. Some listed function words including ‘a’, ‘every’, ‘and’, ‘that’, must not be
used at all. These words can therefore serve as signals that an entity name
has just ended, or is about to begin.

2. Individual names must begin either with a proper noun or the definite article
‘the’, and may not contain verbs or auxiliaries.

3. Property names must begin either with ‘is’ or ‘has’ (or their plurals), or with
a verb in the present tense, and may not include proper nouns, numbers or
strings (these would signal the onset of an individual name or a literal).

4. Property names opening with an auxiliary must contain at least one further
word.

5. Class names may not contain verbs or auxiliaries (which would signal the
onset of a property name).

Consider the application of these rules to the following sentences, in which listed
function words are shown in italics:

Every capital city is an urban area.
Hyde Park is located in London.

Assume that we have no knowledge of the content words ‘capital’, ‘city’, etc.,
so that the first sentence might as well be ‘Every xxxxxxx xxxx is an xxxxx
xxxx’. We can tell immediately that ‘capital’ opens a class name, because it is
preceded by ‘every’. On reaching ‘is’ we know that the class name is over, but
cannot yet tell whether ‘is’ serves as scaffolding or as the opening of a property
name. The next word ‘an’ rules out a property name (which would require at
least one further word after ‘is’), and foreshadows another class name, which
opens with ‘urban’ and continues up to the full stop.

The second sentence, which is effectively ‘Xxxx Xxxx is xxxxxxx in Xxxxxx’,
provides little scaffolding, but we can still interpret it if we are allowed to assume
that any unlisted word opening with a capital letter is a proper noun.2 In this
case ‘Hyde’ must open an individual name; this continues up to ‘is’, which as
before has two possible interpretations, but this time the next word is unlisted,
and so we may infer that ‘is’ opens a property name. After adding ‘located’ and
‘in’ to this property name we arrive at another proper noun (‘London’), which
in this context can only signal the opening of another individual name.3

2 Note that this criterion would not work for languages such as German in which both
common and proper nouns start with a capital letter. This raises the general issue
of whether superficial methods, like those proposed here for English, could be found
for other languages, so permitting for example an OWL Simplified German—a point
that we have not yet investigated.

3 Note that ‘located’, although a verb, cannot open a property name because it is not
in the present tense.
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Fig. 1. Finite-state network for recognising basic clause patterns. PN = Proper Noun;
NC = Noun-phrase Continuation; VC = Verb-phrase Continuation; FV = Finite Verb;
FS = Full-Stop.

These examples are encouraging because they indicate how sentences might
be interpreted with minimal knowledge of content words. Any words used as verbs
in the present tense must be listed,4 but otherwise the parser can rely on lists
of common function words, supplemented by inferences based on typography
through which content words can be classified as follows:

Category Description
Verb Non-auxiliary verb in the present tense, listed by the user
Number sequence of digits, possibly including decimal point (10, 2.5)
String sequence of characters inside double-quotes (“J. Doe”)
Proper Noun any other word beginning with a capital letter (London)
Noun/Other any other word beginning with a lower-case letter

With this classification it is straightforward to define a finite-state transducer for
basic clause patterns which can distinguish individual, class and property names
without a lexicon of content words, and so construct an OWL expression from
the input sentence. A simplified version of the grammar is shown in figure 1,
where ‘verb-phrase continuation’ signifies only Noun/Other, while ‘noun-phrase
continuation’ also includes Number, String, Proper Noun, and the definite arti-
cle. The full grammar covers a wider range of sentences, and includes actions,
defined on each arc, which build the OWL output. These are illustrated by the
following table, which shows the state transitions in interpreting the sentence
‘London is a capital city’.

4 The reason verbs must be listed is that otherwise they could be construed as nouns
continuing the preceding class name. Thus in the sentence ‘Every building works
manager reports to a regional director’, both ‘works’ and ‘reports’ are potentially
verbs opening a property name, and the program cannot correctly recognise ‘building
works manager’ as a class name, and ‘reports to’ as a property name, unless ‘reports’
is a listed verb and ‘works’ is not.
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State 1 Word State 2 OWL expression
start London subject CA(?,I(London))

subject is copular CA(?,I(London))

copular a indef CA(C(?),I(London))

indef capital complement CA(C(capital),I(London))

complement city complement CA(C(capital city),I(London))

complement . finish CA(C(capital city),I(London))

Starting from the state start, the transducer reads the words of the sentence
(including the final full-stop) one at a time, from left to right, traversing an arc
every time a word is consumed. At each state, the current word will match the
conditions on at most one arc, so that progress through the network requires
no backtracking. If there are no outgoing arcs that match the current word,
interpretation fails; if the current word is a full-stop and there is an arc leading
to finish, interpretation succeeds.

OWL expressions are built progressively using actions defined on each arc.
For instance, on consuming ‘London’ (classified as a proper name) at the initial
state start, it can be inferred that the axiom will have the functor ClassAsser-
tion, and that its second argument will be an individual with a name beginning
‘London’.5 This is not necessarily the complete individual name (perhaps the
subject is ‘London Bridge’), but on consuming ‘is’ we know that the name is
complete, and await developments: perhaps ‘is’ opens a property name, and per-
haps it merely denotes class membership. The next word ‘a’, which cannot occur
in a property name, confirms the latter possibility, and prepares us to receive
a class name. Two noun-phrase continuations follow, both of type Noun/Other;
finally, the full-stop indicates that both the class name and the whole axiom are
complete.

As will be obvious, the grammar in figure 1 will accept and interpret many
sentences that are blatantly ungrammatical in English. To give just one example,
the rule for constructing class names does not guarantee that anything remotely
resembling a noun phrase will result: a nonsensical sequence of noun-phrase
continuations such as ‘of of the of’ will be accepted, allowing such sentences
as ‘An of of the of is a the the’. Of course we could tighten the grammar to
ensure, for example, that class names could not begin with a preposition or
the definite article, but we see no advantage in doing so except for helping the
user to correct accidental slips. This has to be set against several advantages
of our permissive policy: (1) the transition network is simpler (and faster); (2)
the rules of the language can be described more briefly; and (3) we allow slang
or technical phrases that violate normal English (e.g., ‘an in your face person’,
where the noun group opens with a preposition).

5 We abbreviate ClassAssertion to CA and Individual(#London)) to I(London)

(etc.) so that the table fits on the page.
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OWL Functor CNL Pattern Example
SubClassOf(C1 C2) A [C1] is a [C2] A city is a place
ClassAssertion(C I) [I] is a [C] London is a city
ObjectPropertyAssertion(OP I1 I2) [I1] [OP] [I2] London contains Hyde Park
EquivalentClasses(C1 C2) A [C1] is any [C2] A human is any person
DisjointClasses(C1 C2) No [C1] is a [C2] No village is a city
ObjectSomeValuesFrom(OP C) [OP] a [C] contains a park
ObjectHasValue(OP I) [OP] [I] contains Hyde Park
DataPropertyAssertion(DP I L) [I] [DP] [L] Hyde Park dates from 1536
DataHasValue(DP L) [DP] [L] dates from 1536
ObjectAllValuesFrom(OP C) [OP] only [C] contains only parks
ObjectExactCardinality(N OP C) [OP] exactly [N] [C] contains exactly 10 parks
ObjectMinCardinality(N OP C) [OP] at least [N] [C] contains at least 10 parks
ObjectMaxCardinality(N OP C) [OP] at most [N] [C] contains at most 10 parks

Table 1. OWL functors covered by the CNL. C = Class; I = Individual; OP = Object
property; DP = Data property; L = Literal; N = Cardinality.

3 Basic clause patterns

We list in table 1 the linguistic patterns for expressing common axiom and class
constructors in OWL Simplified English. For the most part these conform to
other CNLs [19], the main exception being the pattern for EquivalentClasses,
where we suggest using ‘any’ in the predicate (e.g., ‘A pet-owner is any person
that owns a pet’) as a means of articulating both directions of the equivalence.6

Another exception is that we allow the indefinite article as well as the quantifier
‘every’ at the start of the pattern for SubClassOf; this derives from an an evalu-
ation of the SWAT Tools verbaliser [21], in which ontology developers declared
a preference for the indefinite article at least in some contexts.

To cover DataPropertyAssertion and DataHasValue the CNL needs names
for data properties and literals. At present we assume that literals are named
by single tokens belonging to the word categories Number and String (see last
section), and that object and data properties are distinguished only by their
context (i.e., whether they are followed by a literal). The only other complica-
tion comes from universal and numerical quantifiers in restrictions (e.g., ‘only
parks’, ‘exactly 10 parks’), which require a singular/plural distinction on class
and property names—a potential problem for our approach in which the details
of English syntax are disregarded. Our provisional solution is to pluralise by ap-
plying standard morphological rules (including common exceptions) to the head
word of a class or property name, defined as the final word of a class name,7

or the opening verb/auxiliary in a property name. It is left to the user to avoid
names for which this simple rule yields odd results.

6 We are planning an empirical study on which of the proposed formulations best
expresses equivalence.

7 Except for a name like ‘student of art’, in which case it will be the word preceding
the preposition.
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4 Coordination, relative clauses and negation

We now turn to the class constructors for intersection and union, which are typ-
ically expressed through coordinated noun phrases or verb phrases, or through
relative clauses introduced by ‘that’. As we will see, the resulting sentences may
become complex and prone to structural ambiguity; to avoid this, OWL Simpli-
fied English strongly constrains the permitted sentence patterns.

The first constraint, a very sweeping one, is that constructed classes of any
kind may be expressed only in the predicate:8 we disallow sentences such as
‘Every person that owns a pet is a pet-owner’ where the subject is complex.
In terms of the underlying logic, this constraint means that the left-hand side
of an axiom constructed with ‘v’, ‘∈’ or ‘≡’ must be atomic: an axiom like
C1 u∃P.C2 v C3 is excluded.9 We impose this constraint because it enormously
simplifies the language at small practical cost, since axioms with a complex
subject term occur very rarely in practice; in a corpus study of around half a
million axioms, we found that 99.8% of them had atomic subject terms and
only 0.2% had complex subject terms [14]. Perhaps this is not surprising, given
that the purpose of description logic is to describe things—indeed, the graphical
editor Protégé assumes that subject terms will be atomic and makes no provision
for complex subjects at all [16].

4.1 Intersection

In agreement with all other CNLs that we know of, OWL Simplified English
expresses ObjectIntersectionOf by the pattern ‘[X] and [Y]’ when ‘[X]’ and ‘[Y]’
are both noun-phrases or both verb-phrases, and by the pattern ‘[X] that [Y]’
when ‘[X]’ is a noun-phrase and ‘[Y]’ is a verb-phrase. This policy achieves
the requirement (mentioned earlier) of simplicity, but runs the risk of violating
naturalness since even fairly simple combinations of intersection and restriction
may yield sentences that are structurally ambiguous:

OWL pattern English verbalisation
C v ∃P.(C u C) Every dog lives in a house and a kennel
C v ∃P.(C u (∃P.C u ∃P.C)) Every dog lives in a kennel that is located in

a garden and is painted a shade of pink

For the first of these sentences, the OWL pattern should mean ‘Every dog lives
in something that is both a house and a kennel’. For the second, ACE disam-
biguation rules would imply that it is the dogs, not the kennels, that are painted
pink.

8 In most cases, the predicate of a sentence in OWL Simplified English corresponds
to the second argument of the underlying OWL axiom. This holds for SubClassOf
and EquivalentClasses, for example. Two exceptions are ClassAssertion and Object-
PropertyAssertion, for which the argument verbalised as the subject (in all proposed
CNLs) is the second, and the other argument(s) are verbalised as the predicate.

9 Note that a developer could overcome this limitation by introducing a new class
C4 ≡ C1 u ∃P.C2 and then asserting C4 v C3.
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To eliminate these and other cases of structural ambiguity, OWL Simplified
English allows only three strategies for constructing complex sentences: noun-
phrase lists, verb-phrase lists, and verb-phrase chains. These are defined as fol-
lows:

1. A noun-phrase list has the form ‘[C] and [C] and [C] . . . ’ where each ‘[C]’ is
a class name.

2. A verb-phrase list has the form ‘[P] a [C] and [P] a [C] and . . . ’, or the
equivalent using other quantifiers such as ‘only’ and ‘exactly two’ (or using
individuals or literals instead of classes).

3. A verb-phrase chain has the form ‘[P] a [C] that [P] a [C] that . . . ’, or the
equivalent using other quantifiers or other property values (individuals or
literals).10

Examples of the three strategies are as follows:

(1) London is a city and a capital and a tourist attraction. (Noun-phrase
list)
(2) London is capital of the UK and has as population 15000000. (Verb-
phrase list)
(3) London is capital of a country that is governed by a man that lives
in Downing Street. (Verb-phrase chain)

We believe that each of these constructions is free from structural ambiguity, and
moreover that they can be combined in the same sentence provided that they
come in the specified order: noun-phrase list precedes verb-phrase list, verb-
phrase list precedes verb-phrase chain.

London is a city that has as population 15000000 and is capital of a
country that is governed by a man that lives in Downing Street.

Here and in the previous examples a parsing algorithm might find alternative
analyses of a phrase like ‘a city and a capital and a tourist attraction’ depending
on whether the bracketing was ‘[a city and a capital] and a tourist attraction’ or ‘a
city and [a capital and a tourist attraction]’, but these potential ambiguities are
innocuous rather than ‘nocuous’ [24] owing to the associativity of intersection.11

10 Note that the defining property of a verb-phrase chain is not the occurrence of the
word ‘that’, but the embedding of (at least) one restriction within another retriction.
Thus ‘[C] that [P] a [C] and [P] a [C]’ is a one-term noun-phrase list followed by a
verb-phrase list, despite the occurrence of ‘that’, and denotes the constructed class
Cu∃P.Cu∃P.C, which does not contain an embedded restriction. Instead, ‘[C] that
[P] a [C] that [P] a [C]’ denotes a constructed class C u∃P.(C u∃P.C) that contains
an embedded restriction (verbalised as a relative clause within a relative clause), and
thus ends in a chain.

11 Since our aim is to avoid sentences that might be misinterpreted by human readers,
we not interested here in whether a sentence is ambiguous relative to some specific
grammar, but in whether people might assign it different meanings. Research in
psycholinguistics has revealed two strategies called minimal attachment and late
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4.2 Union

Using ‘and’ (or ‘that’) and ‘or’ in the same sentence almost always leads to
ambiguity, as in these examples:12

John is a lawyer or an artist and a pet-owner.
John is a lawyer or an artist that owns a pet.

In one reading, John is definitely a pet-owner, as in ‘John is (1) a lawyer or an
artist, and (2) a pet-owner. In the other reading he might not be a pet-owner
(‘John is (1) a lawyer, or (2) an artist and a pet-owner’). As just shown, we
can disambiguate these examples with careful punctuation, but this will become
cumbersome or break down altogether for more complex sentences.

To avoid such ambiguities by simpler means, OWL Simplified English disal-
lows usage of ‘and’/‘that’ and ‘or’ in the same sentence. At present, just three
patterns with ‘or’ are allowed: noun-phrase lists, verb-phrase lists, and restric-
tions over a noun-phrase list.13 Here are examples of each:

C v C t C A married person is a husband or wife
C v ∃P.C t ∃P.C A student attends a school or attends a college
C v ∃P.(C t C) A student attends a school or college

4.3 Complement

For now we envisage just three cases in which negation will be allowed in a
predicate: negating a simple class; negating a simple restriction,14 and negating
the second term of a simple intersection:

C v ¬C A whale is not a fish
C v ¬∃P.C A child does not attend a university
C v C u ¬C A consonant is a letter that is not a vowel

As will probably be obvious, expressing the complement of an intersection or
union almost always leads to structural ambiguity.15

closure [1] which are relevant to some of the examples discussed here; however, for
the most part we have relied on intuition. Ideally, we would like to test at least
some doubtful patterns empirically, as has been done in the study of nocuous and
innocuous ambiguity cited here.

12 Of course the underlying OWL axiom has a precise unambiguous argument structure;
the ambiguity resides in the sentence verbalising this axiom, which could also be
construed as the verbalisation of a different non-equivalent axiom.

13 Chains are prohibited since ‘or’ cannot be used with ‘that’.
14 By a ‘simple’ restriction we mean one whose value is an atomic entity as opposed to

a constructed class.
15 Forming the complement of a class by prefixing ‘non-’ also leads to ambiguity for a

multiword class name (e.g., ‘non-blue whale’).
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5 Empirical results on coverage

We have outlined a CNL in which structural ambiguity (at least of the ‘nocuous’
kind) is avoided through severe constraints on the formation of complex pred-
icates using ‘and’, ‘or’ and ‘that’. In this section we summarise the theoretical
and practical consequences of these constraints.16 In a nutshell, we will argue
for two claims:

1. The proposed CNL can express only a tiny fraction of the statements that
could in theory be constructed using restriction, intersection and union.

2. In spite of this, the proposed CNL can express almost all the complex axioms
that occur in practice.

To assess the first claim, we need to find some method of enumerating all non-
equivalent classes that can be constructed using different combinations of restric-
tion, intersection, and union, and then counting how many can be expressed lin-
guistically under ther constraints defined above. Obviously the set of constructed
classes is infinite, so the only practical approach is to count all patterns up to a
given level of complexity.

To measure the complexity δ of a constructed class, we can count the number
of class constructors: thus C (an atomic class) will have δ=0, ∃P.C will have
δ=1, and C uC uC will have δ=2. The only complication here is that in OWL,
ObjectIntersectionOf and ObjectUnionOf may have more than two arguments,
so that C uC uC would normally be encoded using a single functor with three
arguments. However, since additional arguments imply additional complexity,
we will assume that only two arguments are allowed, so that in such a case
two functors would be needed. A class expression can then be represented as a
binary tree in which the terminal nodes are atomic entities (classes, properties,
etc.), and the non-terminal nodes are restriction, intersection or union functors;
the complexity is then given by the number of non-terminal nodes. It is then
straightforward to write a program that can generate all binary trees of a given
complexity.

As an exercise, let us generate all trees of complexity δ=2, using only two
functors, intersection (u) and existential restriction (∃) — by far the most com-
mon combination in practice. Using P for any property and C for any atomic
class, the full set of class expressions is shown in table 2. Of these patterns, we
would argue that three can be disregarded. First, pattern 1 cannot be verbalised
unless the inner restriction is recast into a form that can be expressed by a noun
phrase;17 to do this we have introduced ‘something that’, which is equivalent to
expressing the more complex pattern ∃P.(> u ∃P.C) (which would be covered

16 These consequences will be explored more fully in a separate paper.
17 We are assuming here that restrictions such as ∃P.C are realised by verb phrases in

which the object expresses the class C. This policy, which is followed in all the OWL
CNLs that we are aware of, runs into difficulty when C is replaced by a restriction,
yielding ∃P.(∃P.C), since for syntactic reasons a verb phrase cannot have another
verb phrase as its object.
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Logical pattern Verbalisation

*1 ∃P.(∃P.C) Vs (something that) Vs an N
2 ∃P.(C u C) Vs an N and an N

*3 (∃P.C) u C is something that Vs an N and an N
4 C u (∃P.C) is an N that Vs an N
5 C u (C u C) is an N and an N and an N

*6 (C u C) u C is an N and an N and an N
Table 2. All class patterns of complexity δ=2 that can be constructed using inter-
section and existential restriction. The proposed verbalisation patterns assume that
atomic properties are expressed by verbs (V) and atomic classes by nouns (N). Pat-
terns marked with an asterisk can be disregarded (see text).

anyway in the list for complexity 3). Next, since intersection is commutative,
patterns 3 and 4 are equivalent, and so are patterns 5 and 6; in such cases we
need consider only the form in which the arguments are optimally ordered with
simple preceding complex (so eliminating patterns 3 and 6). We are therefore
left with three non-equivalent patterns for δ=2, of which two (patterns 4 and 5)
can be expressed according to the constraints of our CNL, and one (pattern 2)
cannot. Thus if these three patterns were equally common in practice, one-third
of the relevant OWL axioms could not be verbalised.

To ascertain the frequency of these patterns in practice, we have collected
a corpus of around 550 ontologies from several repositories, containing some
500,000 axioms in all.18 By far the majority of these axioms have simple pred-
icates (complexities less than 2). Counting only axioms of complexity 2 using
intersection and existential restriction, the corpus contains 897 predicates dis-
tributed as follows: 892 have the form C u (∃P.C), 5 have the form ∃P.(C uC),
and none at all have the form C u (C uC). Thus instead of some 300 unverbal-
isable axioms, as we might have feared, we obtain only five.19

With increasing complexity, as one would expect, the proportion of unver-
balised axioms rises sharply. Thus for δ=3 there are six non-equivalent patterns
of which two are not verbalised (33%); for δ=4 the proportion rises to 60%
(6/10); for δ=5, 65% (13/20); for δ=6, 81% (30/37); for δ=7, 86% (66/77); for
δ=8, 93% (138/149); and so forth. Note that these figures apply only to classes
constructed from restriction and intersection; if we add union and/or comple-
ment, the proportion of unverbalised axioms at a given complexity level naturally
rises still further.

18 Our corpus is taken from three sources: first, the University of Manchester TONES
repository [22]; second, the Ontology Design Patterns corpus [11]; and finally a col-
lection of about 160 ontologies downloaded from Swoogle [5]. It embraces a wide
range of sizes, domains, and authoring styles.

19 Here and elsewhere in this section, ‘unverbalisable’ means that the axiom in question
cannot be verbalised by our grammar; obviously any axiom could be verbalised by
some grammar.
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Predicate pattern Frequency

1 C u P.C 1100
2 P.(C u P.C) 473
3 P.(C t C) 434
4 C u (P.C u P.C) 248
5 P.(C u (P.(C u P.C))) 164
6 P.(C t (C t C)) 105
7 C u (P.C u (P.C u P.C)) 78
8 P.C u P.C 59
9 C u (P.C u (P.C u (P.C u P.C))) 47

10 P.(C t (C t (C t C))) 43
11 C u (P.(C u P.C)) 39
12 P.(C t (C t (C t (C t C)))) 35
13 P.(P.C) 33
14 P.¬C 28
15 P.(C t (C t (C t (C t (C t C))))) 26
16 P.C t P.C 25
17 P.C u (P.C u P.C) 20
18 C u (P.C u (P.C u (P.C u (P.C u (P.C u P.C))))) 20
19 ¬P.C 19
20 P.(C t (C t (C t (C t (C t (C t C)))))) 17

Table 3. Frequencies of predicate patterns including intersection, union and comple-
ment. Restrictions are abstracted, so that P.C covers existential, universal and numeri-
cal restrictions together with object and data values. Frequencies are based on a corpus
of 3648 axioms of complexity δ ≥ 2.

By restricting the CNL to non-ambiguous sentence patterns, we thus incur a
potentially disastrous loss of coverage; our second claim is that in practice this
loss is negligible. We cannot defend this claim in detail here, but as suggestive
evidence table 3 lists the twenty most frequent predicate patterns in our corpus,
including some with high complexity values (e.g., pattern 18 has δ=12): never-
theless, with one exception, every single predicate in the list can be verbalised
by one of our permitted sentence patterns. Looking through the list, one finds
that again and again ontology authors opt for the familiar forms of restriction
lists and chains, while avoiding the combination of intersection and union in the
same predicate, almost as if they were composing axioms with the intention of
avoiding ambiguous verbalisations. The only exception is the pattern P.(P.C)
which, as already mentioned, cannot be verbalised for syntactic reasons unless
it is reformulated as P.(> u P.C), which corresponds to pattern 2 in the table
and can therefore be verbalised unambiguously.

6 Designing an editing tool

The sentence formation rules in OWL Simplified English ensure that complex
sentences are right-branching, since the first constituent of a coordinated unit is
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Fig. 2. Snapshot of editing tool

always a simple noun-phrase or verb-phrase expressing an atomic class or simple
restriction. As well as minimizing structural ambiguity, this constraint allows
the grammar to be cast in the form of a finite-state transducer (as in figure
1) which reads sentences word by word from left to right, while progressively
building an interpretation in OWL. Such a grammar brings an obvious advantage
in efficiency—processing time is linear with sentence length; it also facilitates
implementation of an editing tool that gives feedback and guidance as the user
composes each sentence: handcrafted information can simply be associated with
each state of the network.

We are now prototyping an editing tool that exploits these advantages in
order to combine menu-guided sentence construction, as in Wysiwym [12], with
free text entry. The appearance of the interface is shown in figure 2. Four sen-
tences have been composed in the editing pane at the top left; the cursor is now
placed at the start of the fifth line, ready to start a new sentence. As can be seen,
entity types are distinguished through a colour code based on the conventions of
Protégé: violet for individuals, orange for classes, and blue for properties.20 In
the top right pane are shown all the minimal patterns for complete sentences ex-
pressing the various axiom types, with entity names represented through place-
holders, as in Wysiwym applications. The pane at the bottom indicates the
words that may be typed in next, along with the interpretation of the current
(empty) sentence, shown in OWL Functional Syntax.

To add a new sentence, the user can either select a sentence pattern from the
options on the right, or simply start typing, perhaps entering the words ‘The
Tate’. Recognising a (possibly complete) individual name, the editor will colour
this text violet, and the options will be modified to show possible continuations—
for instance, they will include ‘is a [class].’. The feedback in the lower pane will
also change, including an OWL expression for which the functor is now known:

ClassAssertion(NamedIndividual(#The Tate ),null)

20 In versions of this paper formatted for printing in black and white, we will show
individual names in bold, class names in italics, and property names underlined.
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After completing the name by typing ‘Modern’, the user might click on the
option ‘is a [class].’, whereupon this string will be copied into the editing pane,
so yielding the outline of a complete sentence:

The Tate Modern is a [class].

As in a Wysiwym application, clicking on the place-holder will then yield a list
of substitution options in the right pane, based in this case on the class names
already used in the text:

The Tate Modern is a [class] . city

country
geographical location

Assuming that none of these options fits the bill, the user can simply type in a
new class name, replacing the selected substring as in any text editor.

The Tate Modern is a gallery.
ClassAssertion(NamedIndividual(#The Tate Modern),Class(#gallery))

A minimal sentence is now complete. To extend the sentence, the user deletes the
full stop and types a space: minimal continuations including ‘and a [class].’, ‘or a
[class].’, and ‘that [has-property] [Individual].’ then appear in the options pane.
If the user selects the last of these, overwrites the place-holder ‘[has-property]’
with the new property name ‘is located in’, and clicks on ‘[Individual]’, a more
complex sentence takes shape:

The Tate Modern is a gallery that is located London

in [Individual] . The Tate Modern

The United Kingdom

Clicking on ‘London’ completes the sentence, interpreted as a class assertion
with a constructed class as predicate.

The Tate Modern is a gallery that is located in London.
ClassAssertion(NamedIndividual(#The Tate Modern),

ObjectIntersectionOf(Class(#gallery),

ObjectHasValue(ObjectProperty(#is located in),

NamedIndividual(#London))))

If desired, the sentence could be extended further by the same method, yielding
perhaps ‘The Tate Modern is a gallery that is located in London and contains at
least three portraits that are painted by Strindberg.’. This continuation assumes
that ‘contains’ has been listed as a verb; otherwise the finite-state transducer
will fail at this point, with the substring after ‘and’ displayed in red. Verbs are
listed through metadata statements marked by the initial character ‘#’:

# VERB contain contains
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Apart from guiding the editing of single sentences, the prototype has most of the
functionality that one would expect from an editing tool: ontologies can be saved,
either as text files or in OWL/XML format; ontologies already in OWL/XML
format can be imported and converted to text in OWL Simplified English;21

texts can be regenerated from their OWL interpretations (this will help clear up
any errors in morphology, such as ‘a animal’); alternative versions of the text
can also be generated, such as a glossary that groups together the statements
about each individual or class, as in the SWAT verbaliser [23].

7 Conclusion

We have described work in progress on developing a CNL for specifying OWL
ontologies, and an accompanying editing tool. The hypothesis underlying this
work is that ontology editing can be supported using a simple finite-state gram-
mar in which complex sentences are always right-branching. We have argued that
such a language brings several potential advantages: effort in specifying a vocab-
ulary or lexicon is minimized; structurally ambiguous sentences are avoided; and
sentences can be parsed by a finite-state transducer which efficiently provides
feedback on the interpretation assigned so far, the words that may be typed
in next, and the linguistic patterns by which a sentence may be completed (or
extended when potentially complete). These advantages are gained only by ac-
cepting severely reduced coverage of the OWL statements that are possible in
principle; however, analysis of several hundred existing ontologies indicates that
in practice, developers overwhelmingly favour right-branching expressions that
can be verbalised by our grammar. As will be obvious, a crucial question not yet
addressed is whether the proposed CNL and editing tool prove effective in user
trials, especially for domain experts with limited knowledge of OWL.
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