Skip to main content

Enhancing Sampling of the Conformational Space Near the Protein Native State

  • Conference paper

Abstract

A protein molecule assumes specific conformations under native conditions to fit and interact with other molecules. Due to the role that three-dimensional structure plays in protein function, significant efforts are devoted to elucidating native conformations. Many search algorithms are proposed to navigate the high-dimensional protein conformational space and its underlying energy surface in search of low-energy conformations that comprise the native state. In this work, we identify two strategies to enhance the sampling of native conformations. We show that employing an enhanced fragment library with greater structural diversity to assemble low-energy conformations allows sampling more native conformations. To efficiently handle the ensuing vast conformational space, only a representative subset of the sampled conformations are maintained and employed to further guide the search for native conformations. Our results show that these two strategies greatly enhance the sampling of the conformational space near the native state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25(17), 3389–33402 (1997)

    Article  Google Scholar 

  2. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)

    Article  Google Scholar 

  3. Ballester, P.J., Richards, G.: Ultrafast shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem. 28(10), 1711–1723 (2007)

    Article  Google Scholar 

  4. Berman, H.M., Westbrook, J., Feng, Z., Gilliand, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucl. Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  5. Bonneau, R., Baker, D.: De novo prediction of three-dimensional structures for major protein families. J. Mol. Biol. 322(1), 65–78 (2002)

    Article  Google Scholar 

  6. Bradley, P., Misura, K.M.S., Baker, D.: Toward high-resolution de novo structure prediction for small proteins. Science 309(5742), 1868–1871 (2005)

    Article  Google Scholar 

  7. Brunette, T.J., Brock, O.: Guiding conformation space search with an all-atom energy potential. Proteins: Struct. Funct. Bioinf. 73(4), 958–972 (2009)

    Article  Google Scholar 

  8. Canutescu, A.A., Shelenkov, A.A., Dunbrack Jr., R.L.: A graph-theory algorithm for rapid protein side chain prediction. Protein Sci. 12(9), 2001–2014 (2003)

    Article  Google Scholar 

  9. Choset, H., et al.: Principles of Robot Motion: Theory, Algorithms, and Implementations, 1st edn. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  10. Clementi, C.: Coarse-grained models of protein folding: Toy-models or predictive tools? Curr. Opinion Struct. Biol. 18, 10–15 (2008)

    Article  Google Scholar 

  11. DeBartolo, J., Colubri, A., Jha, A.K., Fitzgerald, J.E., Freed, K.F., Sosnick, T.R.: Mimicking the folding pathway to improve homology-free protein structure prediction. Proc. Natl. Acad. Sci. USA 106(10), 3734–3739 (2009)

    Article  Google Scholar 

  12. Dill, K.A., Chan, H.S.: From levinthal to pathways to funnels. Nat. Struct. Biol. 4(1), 10–19 (1997)

    Article  Google Scholar 

  13. Dill, K.A., Ozkan, B., Shell, M.S., Weikl, T.R.: The protein folding problem 37, 289–316 (2008)

    Google Scholar 

  14. Fersht, A.R.: Structure and Mechanism in Protein Science. A Guide to Enzyme Catalysis and Protein Folding, 3rd edn. W.H. Freeman and Co., New York (1999)

    Google Scholar 

  15. Frauenfelder, H., Sligar, S.G., Wolynes, P.G.: The energy landscapes and motion on proteins. Science 254(5038), 1598–1603 (1991)

    Article  Google Scholar 

  16. Haspel, N., Tsai, C., Wolfson, H., Nussinov, R.: Reducing the computational complexity of protein folding via fragment folding and assembly. Protein Sci. 12(6), 1177–1187 (2003)

    Article  Google Scholar 

  17. Heath, A.P., Kavraki, L.E., Clementi, C.: From coarse-grain to all-atom: Towards multiscale analysis of protein landscapes. Proteins: Struct. Funct. Bioinf. 68(3), 646–661 (2007)

    Article  Google Scholar 

  18. Huang, Y.J., Montellione, G.T.: Structural biology: Proteins flex to function. Nature 438(7064), 36–37 (2005)

    Article  Google Scholar 

  19. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292(2), 195–202 (1999)

    Article  Google Scholar 

  20. Kolodny, R., Koehl, P., Guibas, L., Levitt, M.: Small libraries of protein fragments model native protein structures accurately. J. Mol. Biol. 323(2), 297–307 (2002)

    Article  Google Scholar 

  21. Kortemme, T., Baker, D.: Computational design of protein-protein interactions. Curr. Opinion Struct. Biol. 8(1), 91–97 (2004)

    Article  Google Scholar 

  22. Kurniawati, H., Hsu, D.: Workspace-based connectivity oracle: An adaptive sampling strategy for PRM planning. In: WAFR. Springer Tracts in Advanced Robotics. vol. 47, pp. 35–51 (2006)

    Google Scholar 

  23. Ladd, A.M., Kavraki, L.E.: Motion planning in the presence of drift, underactuation and discrete system changes. In: Robotics: Sci. and Syst., pp. 233–241 (2005)

    Google Scholar 

  24. Lee, D., Redfern, O., Orengo, C.: Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8(12), 995–1005 (2007)

    Article  Google Scholar 

  25. Lee, J., Scheraga, H.A., Rackovsky, S.: New optimization method for conformational energy calculations on polypeptides: Conformational space annealing. J. Comput. Chem. 18(9), 1222–1232 (1997)

    Article  Google Scholar 

  26. Lee, J., Scheraga, H.A., Rackovsky, S.: Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. Biopolymers 46(2), 103–115 (1998)

    Article  Google Scholar 

  27. Matthews, B.W.: Protein structure initiative: geeting into gear. Nat. Struct. Biol. & Mol. Biol. 14(6), 459–460 (2007)

    Article  MathSciNet  Google Scholar 

  28. Plaku, E., Kavraki, L., Vardi, M.: Discrete search leading continuous exploration for kinodynamic motion planning. In: Robotics: Sci. and Syst., Atlanta, GA, USA (2007)

    Google Scholar 

  29. Rodriguez, S., Thomas, S., Pearce, R., Amato, N.: RESAMPL: A Region-Sensitive Adaptive Motion Planner. In: WAFR. Springer Tracts in Advanced Robotics, vol. 47, pp. 285–300 (2006)

    Google Scholar 

  30. Sánchez, G., Latombe, J.-C.: On delaying collision checking in PRM planning: Application to multi-robot coordination. Int. J. Robot. Res. 21(1), 5–26 (2002)

    Article  Google Scholar 

  31. Shehu, A.: An ab-initio tree-based exploration to enhance sampling of low-energy protein conformations, Seattle, WA, USA (2009)

    Google Scholar 

  32. Shehu, A., Kavraki, L.E., Clementi, C.: Unfolding the fold of cyclic cysteine-rich peptides. Protein Sci. 17(3), 482–493 (2008)

    Article  Google Scholar 

  33. Shehu, A., Kavraki, L.E., Clementi, C.: Multiscale characterization of protein conformational ensembles. Proteins: Struct. Funct. Bioinf. 76(4), 837–851 (2009)

    Article  Google Scholar 

  34. Shehu, A., Olson, B.: Guiding the search for native-like protein conformations with an ab-initio tree-based exploration. Int. J. Robot. Res. 29(8), 1106–11227 (2010)

    Article  Google Scholar 

  35. Stilman, M., Kuffner, J.J.: Planning among movable obstacles with artificial constraints. Int. J. Robot. Res. 12(12), 1295–1307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. van den Berg, J.P., Overmars, M.H.: Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. Int. J. Robot. Res. 24(12), 1055–1071 (2005)

    Article  Google Scholar 

  37. Wang, G., Dunbrack, R.L.: Pisces: a protein sequence culling server. Bioinformatics 19(12), 1589–1591 (2003)

    Article  Google Scholar 

  38. Yang, Y., Brock, O.: Efficient motion planning based on disassembly. In: Robotics: Sci. and Syst., Cambridge, MA, pp. 97–104 (2005)

    Google Scholar 

  39. Yin, S., Ding, F., Dokholyan, N.V.: Eris: an automated estimator of protein stability. Nat. Methods 4(6), 466–467 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Olson, B., Molloy, K., Shehu, A. (2012). Enhancing Sampling of the Conformational Space Near the Protein Native State. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32615-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32615-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32614-1

  • Online ISBN: 978-3-642-32615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics