Skip to main content

Breaking the Box: Simulated Protein Computing

  • Conference paper
Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2010)

Abstract

Computers since the 1940s have shared the same basic architecture described by Turing and von Neumann, in which one central processor has access to one contiguous block of main memory. This architecture is challenged by modern applications that require greater parallelism, distribution, coordination, and complexity. Here we show that a model of protein interactions can serve as a new architecture, performing useful calculations in a way that provides for much greater scalability, flexibility, adaptation, and power than does the traditional von Neumann architecture. We found that even this simple simulation of protein interactions is universal, being able to replicate the calculation performed on a digital computer, yet without relying upon a central processor or main memory. We anticipate that the convergence of information- and life-sciences is poised to deliver a platform that invigorates computing as it provides insight into the complexity of living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A., De Lacy Costello, B.: Experimental logical gates in a reaction-diffusion medium: The XOR gate and beyond. Phys. Rev. E 66(4), 046112 (2002)

    Article  Google Scholar 

  2. Adar, R., Benenson, Y., Linshiz, G., Rosner, A., Tishby, N., Shapiro, E.: Stochastic computing with biomolecular automata. Proceedings of the National Academy of Sciences 101(27), 9960–9965 (2004)

    Article  Google Scholar 

  3. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)

    Article  Google Scholar 

  4. Anderson, D.P.: Public computing: Reconnecting people to science. In: Conference on Shared Knowledge and the Web, Residencia de Estudiantes (2003)

    Google Scholar 

  5. Bull, L., Adamatzky, A., De Lacy Costello, B.: On polymorphic logical gates in sub-excitable chemical medium (June 2010)

    Google Scholar 

  6. Banâtre, J.-P., Le Métayer, D.: A parallel machine for multiset transformation and its programming style. Future Generation Computer Systems 4(2), 133–144 (1988)

    Article  Google Scholar 

  7. Banâtre, J.-P., Le Métayer, D.: The GAMMA model and its discipline of programming. Sci. Comput. Program. 15(1), 55–77 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banâtre, J.-P., Le Métayer, D.: Programming by multiset transformation. Commun. ACM 36(1), 98–111 (1993)

    Article  Google Scholar 

  9. Banâtre, J-P., Priol, T.: Chemical programming of future serviceoriented architectures

    Google Scholar 

  10. Bánsági, T., Leda, M., Toiya, M., Zhabotinsky, A.M., Epstein, I.R.: High-frequency oscillations in the Belousov-Zhabotinsky reaction. The Journal of Physical Chemistry A 113(19), 5644–5648 (2009)

    Article  Google Scholar 

  11. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: Dna molecule provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci. U.S.A. 100(5), 2191–2196 (2003)

    Article  Google Scholar 

  12. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1), 217–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boudol, G.: A Generic Membrane Model, Global Computing Workshop, Rovereto. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 208–222. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-sat problem on a dna computer. Science 296(5567), 499–502 (2002)

    Article  Google Scholar 

  15. Creighton, T.E.: Proteins: Structures and Molecular Properties. W. H. Freeman and Company (1993)

    Google Scholar 

  16. Davis, M., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Languages, Fundamentals of Theoretical Computer Science, 2nd edn (1994)

    Google Scholar 

  17. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Communications of the ACM 8(9) (1965)

    Google Scholar 

  18. Dubash, M.: Moore’s Law is dead, says Gordon Moore. Techworld (2005)

    Google Scholar 

  19. Giavitto, J.-L., Michel, O.: Mgs: a rule-based programming language for complex objects and collections. Electronic Notes in Theoretical Computer Science 59(4) (2001)

    Google Scholar 

  20. Goodsell, D.S.: Acetylcholinesterase: molecule of the month. In: RCSB Protein Data Bank (June 2004)

    Google Scholar 

  21. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan (1975)

    Google Scholar 

  22. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI — a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  23. Sutovic, M., Lederman, H., Pendri, K., Andrews, W.L.B.L., Stefanovic, D., Macdonald, J., Li, Y., Stojanovic, M.N.: Medium scale integration of molecular logic gates in an automaton. Nano Letters 6(11), 2598–2603 (2006)

    Article  Google Scholar 

  24. Kahan, M.: Towards molecular computers that operate in a biological environment. Physica D: Nonlinear Phenomena 237(9), 1165–1172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fanning, M.L., Macdonald, J., Stefanovic, D.: Advancing the Deoxyribozyme-Based Logic Gate Design Process. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 45–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Matsumaru, N., Centler, F.,, P.S.: Chemical organization theory as a theoretical base for chemical computing. In: Teuscher, C., Adamatzky, A. (eds.) Unconventional Computing 2005: From Cellular Automata to Wetware (2005)

    Google Scholar 

  27. Matsumaru, N., Dittrich, P.: Organization-oriented chemical programming for the organic design of distributed computing systems. In: BIONETICS 2006: Proceedings of the 1st International Conference on Bio Inspired Models of Network, Information and Computing Systems, p. 14. ACM, New York (2006)

    Google Scholar 

  28. Mendes, P., Hoops, S., Sahle, S., Gauges, R., Dada, J., Kummer, U.: Computational modeling of biochemical networks using copasi. In: Maly, V. (ed.) Methods in Molecular Biology, Systems Biology, vol. 500, Humana Press, a part of Springer Science + Business Media, LLC (2009)

    Google Scholar 

  29. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8) (1965)

    Google Scholar 

  30. Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence. In: CODES+ISSS 2004: Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 2–5. ACM, New York (2004)

    Google Scholar 

  31. di Speroni, P., Matsumaru, F.N., Centler, F., Dittrich, P.: Chemical organization theory as a theoretical base for chemical computing. International Journal of Unconventional Computing 3(4), 285–309 (2007)

    Google Scholar 

  32. National Center for Computational Sciences. Jaguar (2009), http://www.nccs.gov/computing-resources/jaguar/

  33. Pelletier, F.J., Martin, N.M.: Post’s functional completeness theorem. Notre Dame Journal of Formal Logic 31(2) (1990)

    Google Scholar 

  34. Sayut, D.J., Niu, Y., Sun, L.: Construction and enhancement of a minimal genetic and logic gate. Applied and Environmental Microbiology 75(3), 637–642 (2009)

    Article  Google Scholar 

  35. Simmel, F.C., Yurke, B., Sanyal, R.J.: Operation kinetics of a dna-based molecular switch. J. Nanosci Nanotechnol 2, 383–390 (2002)

    Article  Google Scholar 

  36. Stepney, S. (et al.) Journeys in non-classical computation : A grand challenge for computing research (2004) www.nesc.ac.uk/esi/events/Grand_Challenges/proposals/stepney.pdf

  37. Su, X., Smith, L.M.: Demonstration of a universal surface DNA computer. Nucl. Acids Res. 32, 3115–3123 (2004)

    Article  Google Scholar 

  38. Top500 Supercomputer Sites. ORNLs Jaguar claws its way to number one, leaving reconfigured Roadrunner behind in newest TOP500 list of fastest supercomputers (2009), http://www.top500.org/lists/2009/11/press-release

  39. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  40. von Neumann, J.: First draft of a report on the edvac (1945)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Eichelberger, C.N., Hadzikadic, M. (2012). Breaking the Box: Simulated Protein Computing. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32615-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32615-8_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32614-1

  • Online ISBN: 978-3-642-32615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics