
ar
X

iv
:1

01
1.

35
42

v3
 [

cs
.L

O
]

 1
5

Ju
n

20
12

Linearity in the Non-deterministic

Call-by-Value Setting

Alejandro Dı́az-Caro1,⋆ and Barbara Petit2

1 Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
2
Focus (inria) – Università di Bologna, Italy

Abstract. We consider the non-deterministic extension of the call-by-
value lambda calculus, which corresponds to the additive fragment of the
linear-algebraic lambda-calculus. We define a fine-grained type system,
capturing the right linearity present in such formalisms. After proving
the subject reduction and the strong normalisation properties, we pro-
pose a translation of this calculus into the System F with pairs, which
corresponds to a non linear fragment of linear logic. The translation pro-
vides a deeper understanding of the linearity in our setting.

Introduction

Several non-deterministic extensions of λ-calculus have been proposed in the
literature, e.g. [1–4]. In these approaches, the sometimes called must-convergent
parallel composition, is such that if t and u are two λ-terms, t+u (also written
t ‖ u) represents the computation that runs either t or u non-deterministically.
Therefore, (t+u)s can run either ts or us, which is exactly what ts+us expresses.
Extra rewriting rules (or equivalences, depending on the presentation) are set
up to account for such an interpretation, e.g. (t+ u)s → ts+ us.

This right distributivity can alternatively be seen as the one of the function
sum: (f + g)(x) is defined as f(x) + g(x). This is the approach of the algebraic
lambda-calculi presented in [5] and [6], that were introduced independently but
that resulted afterwards to be strongly related [7, 8]. In these algebraic calculi,
a scalar pondering each ‘choice’ is considered in addition to the sum of terms.

In the call-by-value (or cbv) version of these algebraic/non-deterministic cal-
culi, e.g. [1, 4, 5], it is natural to consider also the left distributivity of application
over sums: t(u+s) → tu+ts. To our knowledge, this was first observed in [9]. In-
deed, a sum u+s is not a value, in the sense that it represents a non-deterministic
choice that remains to be done, and therefore cannot subsitute the argument x.
In algebraic terms, it means that functions are linear: f(x + y) = f(x) + f(y).

The work we present here is motivated by a better understanding of this
linearity, and so our first attempt was to interpret such a cbv calculus in Linear
Logic [10] (indeed linear functions can be precisely characterised in this logic).
Surprisingly, it appeared that the target calculus was a non linear fragment of

⋆ Supported by grants from DIGITEO and Région Île-de-France

http://arxiv.org/abs/1011.3542v3

2 Alejandro Dı́az-Caro and Barbara Petit

the intuitionistic multiplicative exponential Linear Logic (imell), shining a light
on the difference between the linearity in these non-deterministic calculi, and the
common algebraic notion of linear functions. Since the non linear fragment of
imell corresponds to the System F with pairs [11, Sec. 1.5], and this latter
might be better known by the reader, we present in this paper a (reversible)
translation into the System F with pairs.

Notice also that the left distributivity of application over sum induces a com-
pletely different computational behaviour compared to the one in cbn calculi.
Consider for instance the term δ = λx.xx applied to a sum t + u. In the first
case, it reduces to δt+ δu and then to tt+ uu, whereas a cbn reduction would
lead to (t + u)(t + u) and then to t(t + u) + u(t + u). In particular, the cbv

algebraic calculus we mentioned above (Lineal, [5]) was originally meant to ex-
press quantum computing, where a superposition t + u is seen as a quantum
superposition. Hence reducing δ(t + u) into (t + u)(t + u) is considered as the
forbidden quantum operation of “cloning” [12], while the alternative reduction
to tt+uu is seen as a “copy”, or cnot, a fundamental quantum operation [13].

Outline. In this paper we propose (in Sec. 1) a type system, called Additive,
capturing the linear cbv behaviour of the sum operator that we discussed above.
Then we prove its correctness properties, namely subject reduction and strong
normalisation in Sec. 2. Its logical interpretation (that is, the translation into
System F with pairs) is developed in Sec. 3. We conclude with a discussion
about the linearity of the call-by-value setting. We leave in the appendices extra
examples and some technical details such as auxiliary lemmas.

1 The Calculus

1.1 The Language

We consider the call-by-value λ-calculus [14] extended with a non-deterministic
operator in the spirit of the parallel composition from [2]. This setting can be
seen as the additive fragment of Lineal [5]. The set of terms and the set of
values are defined by mutual induction as follows (where variables range over a
countable set and are denoted by x, y, z):

Terms: t,u, s ::= v | tu | t+ u | 0
Values: v ::= x | λx.t

Intuitively t+ u denotes the non-deterministic choice between t and u, and
hence, as discussed in the introduction, (t+u)s reduces to the non-deterministic
choice ts+us. Analogously, in this call-by-value setting, t(u+s) reduces to tu+
ts. The term 0 is introduced to express the impossible computation, and hence t+
0 always reduces to t, while t0 and 0t reduce to 0, because none of them continue
reducing (notice that 0 is not a value), and have an impossible computation on
them. Since the operator + represents a non deterministic choice, where no one
have precedence, terms are considered modulo associativity and commutativity
of + (that is an AC-rewrite system [15]). Notice that considering t+u either as

Linearity in the Non-deterministic Call-by-Value Setting 3

a sum of functions or as a sum of arguments—depending on its position—is also
natural with the previous definitions, where 0 becomes the sum of 0 elements.

The α-conversion and the set fv(t) of free variables of t are defined as usual
(cf. [16, Sec. 2.1]). We say that a term t is closed whenever fv(t) = ∅. Given
a term t and a value v, we denote by t{v/x} to the term obtained by simul-
taneously substituting v for all the free occurrences of x in t, taking care to
rename bound variables when needed in order to prevent variable capture. Here-
after, terms are considered up to α-conversion. The five rewrite rules plus the
β-reduction are summarised as follows.

Distributivity rules: Zero rules: β-reduction:
(t+ u)s → ts+ us, 0t → 0, t+ 0 → t, (λx.t)v → t{v/x}.
t(u+ s) → tu+ ts, t0 → 0,

1.2 The Additive Type System

Our objective is to define a type system, capturing as much as possible the
behaviour of +. Roughly speaking, we want a system where, if t has type T
and u has type R, then t + u has type T + R. So the natural typing rule for
such a construction is “Γ ⊢ t : T and Γ ⊢ u : R entails Γ ⊢ t + u : T + R”.
We also want a special type distinguishing the impossible computation 0, which
we call 0. Due to the associative and commutative nature of +, we consider an
equivalence between types taking into account its commutative nature. Hence
if T + R is a type, R + T is an equivalent type. Also the neutrality of 0 with
respect to + is captured by an equivalence between T + 0 and T . Finally, as
usual the arrow type T → R characterises the functions taking an argument in
T and returning an element of R. However, notice that the type (T + R) → S
captures a behaviour that is not appearing in our setting: there is no function
taking a non-deterministic superposition as argument. Indeed, if v1 has type T
and v2 type R, any function t distributes t(v1 + v2) as tv1 + tv2, so t needs to
be characterised by a function taking both T and R, but not simultaneously. In
order to capture such a behaviour, we introduce a unit type U (i.e. an atomic
type with respect to +), capturing elements which are not sums of elements, and
hence the arrow types have the shape U → T , where the different arguments
to which the function can be applied, are captured by polymorphic types with
variables ranging on unit types. For example, the previous term t can have type
∀X.(X → S), where if t is applied to the above discussed v1+v2 of type T +R,
it reduces to tv1 + tv2 of type S[T/X] + S[R/X].

To take into account the above discussion, the grammar of the Additive type
system is defined by mutual induction as follows (where type variables range
over a countable set and are denoted by X,Y, Z):

Types: T,R, S ::= U | T +R | 0
Unit types: U, V,W ::= X | U → T | ∀X.U

Contexts are denoted by Γ,∆ and are defined as sets of pairs x : U , where
each term variable appears at most once. The substitution of X by U in T is
defined analogously to the substitution in terms, and is written T [U/X]. We also

4 Alejandro Dı́az-Caro and Barbara Petit

use the vectorial notation T [~U/ ~X] for T [U1/X1] · · · [Un/Xn] if ~X = X1, . . . , Xn

and ~U = U1, . . . , Un. To avoid capture, we consider that Xi cannot appear free
in Uj , with j < i. Free and bound variables of a type are assumed distinct.

The above discussed equivalence relation ≡ on types, is defined as the least
congruence such that:

T +R ≡ R+ T, T + (R+ S) ≡ (T +R) + S, T + 0 ≡ T.
Within this equivalence, it is consistent to use the following notation:

Notation:
∑0

i=1 T = 0 ;
∑α

i=1 Ti =
∑α−1

i=1 Ti + Tα if α ≥ 1.

Remark 1. Every type is equivalent to a sum of unit types.

Returning to the previous example, t(v1 + v2) reduces to tv1 + tv2 and its
type have to be an arrow with a polymorphic unit type at the left. Such a type
must allow to be converted into both the type of v1 and the type of v2. Hence,
consider V1 and V2 to be the respective types of v1 and v2, we need t to be of
type ∀X.(U → S) for some S and where U [W1/X] = V1 and U [W2/X] = V2

for some unit types W1 and W2. That is, we need that if t has such a type,
then v1 has type U [W1/X] and v2 type U [W2/X]. We can express this with the
following rule

Γ ⊢ t : ∀X.(U → S) Γ ⊢ v1 + v2 : U [W1/X] + U [W2/X]

Γ ⊢ t(v1 + v2) : S[W1/X] + S[W2/X]

In the same way, for the right distributivity, if t and u are two functions of
types U → T and V → R respectively, then the application (t+u)v needs U and
V to be the type of v. Therefore, the polymorphism plays a role again, and if t has
type ∀X.(U → T) and u has type ∀X.(V → R) such that U [W1/X] = V [W2/X]
and also equal to the type of v, then (t+u)v has a type. It can be expressed by

Γ ⊢ t+ u : ∀X.(U → S) + ∀X.(V → R) Γ ⊢ v : U [W1/X] = V [W2/X]

Γ ⊢ (t+ u)v : S[W1/X] +R[W2/X]

Notice that when combining both cases, for example in (t+ u)(v1 + v2), we
need the type of t to be an arrow accepting both the type of v1 and the type of
v2 as arguments, and the same happens with the type of u. So, the combined
rule is

Γ ⊢ t+ u : ∀X.(U → S) + ∀X.(U → R) Γ ⊢ v1 + v2 : U [V/X] + U [W/X]

Γ ⊢ (t+ u)(v1 + v2) : S[V/X] +R[W/X]

The arrow elimination has become also a forall elimination. For the general
case however it is not enough with the previous rule. We must consider bigger
sums, which are not typable with such a rule, as well as arrows with more than
one ∀, e.g. ∀X.∀Y.(U → R), where U [V/X][W/Y] has the correct type. Since
it is under a sum, and the elimination must be done simultaneously in all the
members of the sum, it is not possible with a traditional forall elimination.

The generalised arrow elimination as well as the rest of the typing rules are
summarised in Fig. 1. Rules for the universal quantifier, axiom and introduction

Linearity in the Non-deterministic Call-by-Value Setting 5

of arrow are the usual ones. As discussed before, any sum of typable terms can
be typed using rule +I . Notice that there is no elimination rule for + since the
actual non-deterministic choice step (which eliminates one branch) is not consid-
ered here. For similar calculi where the elimination is present in the operational
semantics, see e.g. [2, 17]. Finally, a rule assigns equivalent types to the same
terms.

ax
Γ, x : U ⊢ x : U

ax
0

Γ ⊢ 0 : 0

Γ ⊢ t : T T ≡ R
≡

Γ ⊢ t : R

Γ, x : U ⊢ t : T
→I

Γ ⊢ λx.t : U → T

Γ ⊢ t :

α∑

i=1

∀ ~X.(U → Ti) Γ ⊢ u :

β∑

j=1

U [~Vj/ ~X]

→E

Γ ⊢ tu :
α∑

i=1

β∑

j=1

Ti[~Vj/ ~X]

Γ ⊢ t : T Γ ⊢ u : R
+I

Γ ⊢ t+ u : T +R

Γ ⊢ t : ∀X.U
∀E

Γ ⊢ t : U [V/X]

Γ ⊢ t : U X /∈ FV (Γ)
∀I

Γ ⊢ t : ∀X.U

Fig. 1. Typing rules of Additive

Example 2. Let V1 = U [W1/X], V2 = U [W2/X], Γ ⊢ v1 : V1, Γ ⊢ v2 : V2,
Γ ⊢ λx.t : ∀X.(U → T) and Γ ⊢ λy.u : ∀X.(U → R). Then

Γ ⊢ λx.t + λy.u : ∀X.(U → T) + ∀X.(U → R) Γ ⊢ v1 + v2 : V1 + V2
→E

Γ ⊢ (λx.t + λy.u)(v1 + v2) : T [W1/X] + T [W2/X] +R[W1/X] +R[W2/X]

Notice that this term reduces to (λx.t)v1
︸ ︷︷ ︸

T [W1/X]

+(λx.t)v2
︸ ︷︷ ︸

T [W2/X]

+(λy.u)v1
︸ ︷︷ ︸

R[W1/X]

+(λy.u)v2
︸ ︷︷ ︸

R[W2/X]

.

Example 3. Let Γ ⊢ v1 : U and Γ ⊢ v2 : V . Then the term (λx.x)(v1 + v2),
which reduces to (λx.x)v1 + (λx.x)v2 , can be typed in the following way:

Γ ⊢ λx.x : ∀X.X → X Γ ⊢ v1 + v2 : U + V
→E

Γ ⊢ (λx.x)(v1 + v2) : U + V

Notice that without the simultaneous forall/arrow elimination, it is not possible
to type such a term.

2 Main Properties

The Additive type system is consistent, in the sense that typing is preserved
by reduction (Theorem 4). Moreover, only terms with no infinite reduction are
typable (Theorem 11).

6 Alejandro Dı́az-Caro and Barbara Petit

The preservation of types by reduction, or subject reduction property, is
proved by adapting the proof of Barendregt [18, Section 4.2] for the System F :
we first define a binary relation 4 on types, and then prove the usual generation
and substitution lemmas (cf. Appendix A for more details).

Theorem 4 (Subject Reduction). For any terms t, t′, any context Γ and
any type T , if t →∗ t′ then Γ ⊢ t :T ⇒ Γ ⊢ t′ :T .

We also prove the strong normalisation property (i.e. no typable term has
an infinite reduction) by adapting the standard method of reducibility candi-
dates [19, Chap. 14] to the Additive type system. The idea is to interpret types
by reducibility candidates, which are sets of strongly normalising terms. Then
we show that as soon as a term has a type, it is in its interpretation, and thereby
is strongly normalising.

We define here candidates as sets of closed terms. The set of all the closed
terms is writen Λ0, and SN0 denotes the set of strongly normalising closed terms.
In the following, we write Red(t) for the set of reducts in one step of a term t
(with any of the six rules given in Sec. 1.1), and Red∗(t) for the set of its reducts
in any number of steps (including itself). Both notations are naturally extended
to sets of terms. A term is a pseudo value when it is an abstraction or a sum
of them: b,b′ ::= λx.t | b+ b′. A term that is not a pseudo value is said to be
neutral, and we denote by N the set of closed neutral terms.

Definition 5. A set S ⊆ Λ0 is a reducibility candidate if it satisfies the three
following conditions: (CR1)Strong normalisation: S ⊆ SN0. (CR2)Stability un-
der reduction: t ∈ S ⇒ Red(t) ⊆ S. (CR3)Stability under neutral expansion:
If t ∈ N , then Red(t) ⊆ S implies t ∈ S.

We denote the reducibility candidates by A,B, and the set of all the reducibility
candidates by RC. Note that SN0 is in RC. In addition, the term 0 is a neutral
term with no reduct, so it is in every reducibility candidate by (CR3). Hence
every reducibility candidate is non-empty.

Let S be the closure of a set of terms S by (CR3). It can be defined inductively
as follows: If t ∈ S, then t ∈ S, and if t ∈ N and Red(t) ⊆ S, then t ∈ S.

We can actually use this closure operator to define reducibility candidates:

Lemma 6. If S ⊆ SN0, then Red∗(S) ∈ RC.

In order to interpret types with reducibility candidates, we define the op-
erators ‘arrow’, ‘plus’ and ‘intersection’ in RC: Let A,B ∈ RC. We define:
A → B = {t ∈ Λ0/ ∀u ∈ A, tu ∈ B} and A ∓ B = (A+ B) ∪ A ∪ B where
A+ B = {t+ u / t ∈ A and u ∈ B}.

Proposition 7. Let A,B ∈ RC. Then both A → B and A∓ B are reducibility
candidates. Moreover, if (Ai)i∈I is a family of RC, then

⋂

i∈I Ai is a reducibility
candidate.

The operator + is commutative and associative on terms, and hence so is the
operator + defined on sets of terms. Therefore, ∓ is commutative and associative
on reducibility candidates. In addition, ∅ (a reducibility candidate according to
Lemma 6) is neutral with respect to ∓. Lemma 8 formalises these properties.

Linearity in the Non-deterministic Call-by-Value Setting 7

Lemma 8. Let A,B, C ∈ RC. Then A∓B = B∓A, (A∓B)∓C = A∓ (B∓ C)
and A∓ ∅ = A.

Type variables are interpreted using valuations, i.e. partial functions from
type variables to reducibility candidates: ρ := ∅ | ρ,X 7→ A. The interpretation
JT Kρ of a type T in a valuation ρ (that is defined for each free type variable of T)
is given by

JXKρ = ρ(X) J0Kρ = ∅
JU → T Kρ = JUKρ → JT Kρ JT +RKρ = JT Kρ ∓ JRKρ
J∀X.T Kρ =

⋂

A∈RC JT Kρ,X 7→A

Lemma 6 and Proposition 7 ensure that each type is interpreted by a reducibility
candidate. Furthermore, Lemma 8 entails that this interpretation is well defined
with respect to the type equivalences.

Lemma 9. For any types T, T ′, and any valuation ρ, if T ≡T ′ then JT Kρ=JT ′Kρ.

Adequacy lemma. We show that this interpretation complies with typing judge-
ments. Reducibility candidates deal with closed terms, whereas proving the ade-
quacy lemma by induction requires the use of open terms with some assumptions
on their free variables (which are ensured by the context). Therefore we use sub-
stitutions σ to close terms:

σ := ∅ | x 7→ u;σ t∅ = t , tx 7→u;σ = t{u/x}σ.

Given a context Γ , we say that a substitution σ satisfies Γ for the valuation ρ
(notation: σ ∈ JΓ Kρ) when (x : T) ∈ Γ implies σ(x) ∈ JT Kρ. A typing judgement
Γ ⊢ t : T is said to be valid (notation Γ � t : T) if for every valuation ρ, and for
every substitution σ satisfying Γ for ρ, we have tσ ∈ JT Kρ.

Proposition 10 (Adequacy). Every derivable typing judgement is valid: for
each Γ , each term t and each type T , we have that Γ ⊢ t :T implies Γ � t :T .

This immediately provides the strong normalisation result:

Theorem 11 (Strong normalisation). Every typable term in Additive is
strongly normalising.

Proof. If a term t is typable by a type T , then the adequacy lemma ensures
that t ∈ JT K∅. As a reducibility candidate, JT K∅ is included in SN0, and thus t
is strongly normalising. ⊓⊔

3 Logical Interpretation

In this section, we interpret the Additive type system into System F with pairs
(System FP for short). Sum types are interpreted with Cartesian products. Since
this product is neither associative nor commutative in System FP , we first con-
sider Additive without type equivalences. This involves a slightly modified but
equivalent type system, that we call Addstr . We then translate every term of
Addstr into a term of System FP . Finally, we show that our translation is correct
with respect to typing in Additive (Theorem 17) and reduction (Theorem 18).

8 Alejandro Dı́az-Caro and Barbara Petit

Structured Additive Type System. The system Addstr is defined with the same
grammar of types as Additive, and the same rules ax, ax0, →I , +I , ∀I and ∀E .
There is no type equivalence, and thereby no commutativity nor associativity
for sums (also 0 is not neutral for sums). Hence rule →E , has to be precised. To
specify what an n-ary sum is, we introduce the structure of trees for types.

Example 12. In Addstr , the type (U1 + (0 + U2)) + U3 is no longer
equivalent to U1 + (U2 +U3). We can represent the first one by the
labelled tree on the right. U1

0 U2

U3

ℓ

Z ℓ

ℓ

To formalise Addstr , we use the standard representation of bi-
nary trees, with some special leaves ℓ (which can be labelled by
a unit type): T , T ′ := ℓ | Z | S(T , T ′) .
Each leaf is denoted by the finite word on the alphabet {l, r} (for
left and right) representing the path from the root of the tree.
For instance, the type (U1 +(0+U2)) +U3 is obtained using the
labelling {ll 7→ U1, lrr 7→ U2, r 7→ U3}, with the tree of the left.

We say that a labelling function s (formally, a partial function from {l, r}∗

to unit types) labels a tree T when each of its leaves ℓ is in the domain of s.
In this case, we write T [s] the type of Addstr obtained by labelling T with s.
Notice that conversely, for any type T , there exists a unique tree TT and a
labelling function sT such that T = TT [sT]. The tree composition T ◦T ′ consists
in “branching” T ′ to each leaf ℓ of T (cf. Example 25 in Appendix B.1). By
extending the definition of labelling functions to functions from leaves to types,
we have T [w 7→ T ′[s]] = T ◦T ′[wv 7→ s(v)], where w denotes a ℓ-leaf of T , and v
a ℓ-leaf of T ′. Then the rule for the arrow elimination in Addstr is:

Γ ⊢ t : T [w 7→ ∀ ~X.(U→ Tw)] Γ ⊢ u : T ′[v 7→ U [~Vv/ ~X]]
→E′

Γ ⊢ tu : T ◦ T ′[wv 7→ Tw[~Vv/ ~X]]

where wv is a word whose prefix w represents a leaf of T (cf. Example 26).

Proposition 13 (Additive equivalent to Addstr). Γ ⊢ t : T is derivable in
Additive if and only if there is a type T ′ ≡ T such that Γ ⊢ t : T ′ is derivable
in Addstr.

Translation into the System F with Pairs. We recall the syntax of System FP [11]:

Terms : t, u := x | λx.t | tu | ⋆ | 〈t, u〉 | πl(t) | πr(t)
Types : A,B := X | A ⇒ B | ∀X.A | 1 | A×B

(reduction and typing rules are well known, cf. Fig. 2 on Appendix B).
In the same way than for the types, we define a term of System FP with a tree

(whose binary nodes S are seen as pairs) and a partial function τ from {l, r}∗

to FP -terms. We write πα1...αn
(t) for πα1

(πα2
(. . . παn

(t))) (with αi ∈ {l, r}).
Remark that if t = T [τ] and w is a ℓ-leaf of T , then τ(w) is a subterm of t that can
be obtained by reducing πw(t), where w is the mirror word of w (cf. Example 14).

Linearity in the Non-deterministic Call-by-Value Setting 9

Example 14 (Representation of FP -terms with trees).
Let t = 〈〈u1, 〈u2, u3〉〉, ⋆〉. Then t = T [ll 7→ u1, lrl 7→ u2, lrr 7→ u3]
(where T is the tree on the right) and u3 reduces from π221(t).

ℓ

ℓ ℓ

Z

Every type T is interpreted by a type |T | of System FP .

|X | = X, |0| = 1, |∀X.U | = ∀X.|U |,
|U → T | = |U | ⇒ |T |, |T +R| = |T | × |R|.

Then any term t typable with a derivation D is interpreted by a FP -term [t]D:
If D =

Γ, x : T ⊢ x : T
ax, then [x]D = x.

If D =
Γ ⊢ 0 : 0

ax0, then [0]D = ⋆.

If D =
D1 D2

Γ ⊢ t+ u : T +R
+I , then [t+ u]D = 〈[t]D1

, [u]D2
〉.

If D =
D′

Γ ⊢ λx.t : U → T
→I , then [λx.t]D = λx.[t]D′ .

If D =
D1 D2

Γ ⊢ tu : T ◦ T ′[wv 7→ Tw[~Vv/ ~X]]
→E′ ,

then [tu]D = T ◦ T ′[wv 7→ πw([t]D1
)πv([u]D2

)].

If D =
D′

Γ ⊢ t : ∀X.U
∀I , then [t]D = [t]D′ .

If D =
D′

Γ ⊢ t : U [V/X]
∀E , then [t]D = [t]D′ .

This interpretation is in fact a direct translation of sums by pairs at each
step of the derivation, except for the application: informally, all the distributivity
redexes are reduced before the translation of a term tu, which requires to ‘know’
the sum structure of t and u. This structure is actually given by their type, and
that is why we can only interpret typed terms.

Example 15. If t has type (U → T1) + (U → T2) and u has type (U + 0) +
U , then we see them as terms of shape t1 + t2 and (u1 + 0) + u2 respec-
tively (the reducibility model of section 2 ensures that they actually reduce to
terms of this shape). Indeed, the translation of tu reduces to the translation of
(
((t1u1) + 0) + t1u2

)
+
(
((t2u1) + 0) + t2u2

)
:

[tu]D = 〈 〈 〈t1u1, ⋆〉 , t1u2〉 , 〈 〈t2u1, ⋆〉 , t2u2〉〉,
where t1 = π11([t]D1

), t2 = π21([t]D1
), u1 = π1([u]D2

), and u2 = π12([u]D2
)

Theorem 16 (Correction with respect to typing). If a judgement Γ ⊢ t :
T is derivable in Addstr with derivation D, then |Γ | ⊢F [t]D : |T |.

The technical details for its proof are given in Appendix B.2. In Appendix B.3 it
is given a theorem showing that the translation is not trivial since it is reversible.

To return back to Additive, observe that if T ≡ T ′, their translations are
equivalent in System FP (in the sense that there exists two terms establishing
an isomorphism between them), and conclude with Proposition 13.

10 Alejandro Dı́az-Caro and Barbara Petit

Theorem 17. If a judgement Γ ⊢ t : T is derivable in Additive, then there is
a term t′ of System FP such that |Γ | ⊢F t′ : |T |

To some extent, the translation from Addstr to System FP is also correct
with respect to reduction (technical details for its proof in Appendix B.4).

Theorem 18 (Correction with respect to reduction). Let Γ ⊢ t : T be
derivable (by D) in Addstr, and t → u. If the reduction is not due to rule
t+ 0 → t, then there is D’ deriving Γ ⊢ u : T , and [t]D →+ [u]D′ .

Notice that the associativity and commutativity of types have their analogous
in the term equivalences. However, the equivalence T + 0 ≡ T has its analogous
with a reduction rule, t+0 → t. Since Addstr has no equivalences, this reduction
rule is not correct in the translation. However, if Γ ⊢ t + 0 : T + 0 is derivable
by D in Addstr , then there is some D′ = Γ ⊢ t : T such that ε|T+0|,|T |[t+ 0]D →∗

[t]D′ , where ε|T+0|,|T | and ε|T |,|T+0| are the terms establishing the isomorphism

between |T | and |T + 0| in System FP .

Conclusion

In this paper we considered an extension to call-by-value lambda calculus with
a non-deterministic (or algebraic) operator +, and we mimiced its behaviour at
the level of types. As we discussed in the introduction, this operator behaves
like the algebraic sum with linear functions: f(x + y) = f(x) + f(y). However,
our system is simulated by System F with pairs, which corresponds to the non
linear fragment of imell.

This puts in the foreground the deep difference between the linearity in the
algebraic sense (the one of Linear Logic), and the linearity of Additive (which
is the same, for instance, as Lineal [5]). In the first case, a function is linear if it
does not duplicate its argument x (that is, x2 –or xx– will not appear during the
computation), whereas in Additive a linear behaviour is achieved by banning
sum terms substitutions: while computing (λx.t)(u + s), the argument (u + s)
will never be duplicated even if t is not linear in x. We can only duplicate val-
ues (that intuitively correspond to constants in the algebraic setting, so their
duplication does not break linearity). Actually, in Additive, the application is
always distributed over the sum before performing the β-reduction, and these
both reductions do not interact. This is what our translation shows: all distribu-
tivity rules are simulated during the translation (of the application), and then
the β-reduction is simulated in System F , without paying any attention to the
linearity.

As mentioned in the introduction, Lineal was meant for quantum computing
and forcing the left distributivity is useful to prevent cloning. Moreover, it makes
perfectly sense to consider any function as linear in this setting, since every
quantum operator is given by a matrix, and thereby is linear. A cbv reduction
for this kind of calculus is thus entirely appropriate.

Linearity in the Non-deterministic Call-by-Value Setting 11

Acknowledgements. We would like to thank Olivier Laurent for the useful advice
he gave us about the interpretation we present in this paper, as well as Pablo
Arrighi for the fruitful discussions about Lineal and its linearity.

References

1. Boudol, G.: Lambda-calculi for (strict) parallel functions. Information and Com-
putation 108(1) (1994) 51–127

2. Bucciarelli, A., Ehrhard, T., Manzonetto, G.: A relational semantics for parallelism
and non-determinism in a functional setting. Annals of Pure and Applied Logic
163(7) (2012) 918–934

3. Dezani-Ciancaglini, M., de’Liguoro, U., Piperno, A.: Filter models for conjunctive-
disjunctive lambda-calculi. Theoretical Computer Science 170(1-2) (1996) 83–128

4. Dezani-Ciancaglini, M., de’Liguoro, U., Piperno, A.: A filter model for concurrent
lambda-calculus. SIAM Journal on Computing 27(5) (1998) 1376–1419

5. Arrighi, P., Dowek, G.: Linear-algebraic lambda-calculus: higher-order, encodings,
and confluence. In Voronkov, A., ed.: Proceedings of RTA-2008. Volume 5117 of
Lecture Notes in Computer Science., Springer (2008) 17–31

6. Vaux, L.: The algebraic lambda calculus. Mathematical Structures in Computer
Science 19(5) (2009) 1029–1059

7. Assaf, A., Perdrix, S.: Completeness of algebraic cps simulations. In: Proceedings
of the 7th International Workshop on Developments of Computational Methods
(DCM 2011), Zurich, Switzerland (2011) To appear in EPTCS.

8. Dı́az-Caro, A., Perdrix, S., Tasson, C., Valiron, B.: Equivalence of algebraic λ-
calculi. In: Informal Proceedings of the 5th International Workshop on Higher-
Order Rewriting, HOR-2010, Edinburgh, UK (July 2010) 6–11

9. Hennessy, M.: The semantics of call-by-value and call-by-name in a nondetermin-
istic environment. SIAM Journal on Computing 9(1) (1980) 67–84

10. Girard, J.Y.: Linear logic. Theoretical Compututer Science 50 (1987) 1–102
11. Cosmo, R.D.: Isomorphisms of Types: From Lambda-Calculus to Information

Retrieval and Language Design. Progress in Theoretical Computer Science.
Birkhauser (1995)

12. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299

(1982) 802–803
13. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstra-

tion of a fundamental quantum logic gate. Physical Review Letters 75(25) (1995)
4714–4717

14. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science 1(2) (1975) 125–159

15. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM Journal on Computing 15(4) (1986) 1155–1194

16. Barendregt, H.P.: The lambda calculuis: its syntax and semantics. Volume 103 of
Studies in Logic and the Foundations of Mathematics. Elsevier (1984)

17. Dı́az-Caro, A., Dowek, G.: Non determinism through type isomorphism. Draft.
Available at http://diaz-caro.info/ndti.pdf (April 2012)

18. Barendregt, H.P.: Lambda calculi with types. Handbook of Logic in Computer
Science: Volume 2. Oxford University Press (1992)

19. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University
Press (1989)

20. Krivine, J.L.: Lambda-calcul: types et modèles. Études et recherches en informa-
tique. Masson (1990)

12 Alejandro Dı́az-Caro and Barbara Petit

A Formalisation of the Proof of Subject Reduction

The preservation of types by reduction, or subject reduction property, is proved
by adapting the proof of Barendregt [18, Section 4.2] for the Sytem F : we first
define a binary relation 4 on types, and then we give the usual generation and
substitution lemmas. Finally, we give a needed property (Lemma 24) for the
typing of 0 and values.

Definition 19 (Relation 4 on types).

– Given two types U1 and U2, we write U1 ≺ U2 if either
• U2 ≡ ∀X.U1 or
• U1 ≡ ∀X.U ′ and U2 ≡ U ′[T/X] for some type T .

– We write 4 the reflexive (with respect to ≡) transitive closure of ≺.

The following property says that if two arrow types are related by 4, then they
are equivalent up to substitutions.

Lemma 20 (Arrow comparison). For any unit types U , U ′ and types T , T ′,

if U ′ → T ′ 4 U → T , then there exist ~V , ~X such that U → T ≡ (U ′ → T)[~V / ~X].

As a pruned version of a subtyping system, we can prove the subsumption
rule:

Lemma 21 (4-subsumption). For any context Γ , any term t and any unit
types U , U ′ such that U 4 U ′ and no free type variable in U occurs in Γ , if
Γ ⊢ t :U then Γ ⊢ t :U ′.

Generation lemmas allows to study the conclusion of a derivation so as to
understand where it may come from, thereby decomposing the term in its basic
constituents.

Lemma 22 (Generation lemmas). For any context Γ , any terms t,u, and
any type T ,

1. Γ ⊢ tu :T implies Γ ⊢ t :
∑n

i=1 ∀
~X.(U → Ti) and Γ ⊢ u :

∑m
j=1 U [~Vj/ ~X] for

some integers n, m, some types T1, . . . , Tn, and some unit types U, ~V1, . . . , ~Vm

such that
∑n

i=1

∑m
j=1 Ti[~Vj/ ~X] 4 T .

2. Γ ⊢ λx.t : T implies Γ, x :U ⊢ t :R for some types U ,R such that U → R 4 T .
3. Γ ⊢ t + u :T implies Γ ⊢ t :R and Γ ⊢ u :S with for some types R, S such

that R+ S ≡ T .

The following lemma is standard in proofs of subject reduction, and can be found
for example in [18, Prop. 4.1.19] and [20, Props. 8.2 and 8.5]. It ensures than by
substituting type variables for types or term variables for terms in an adequate
manner, the type derived is still valid.

Lemma 23 (Substitution). For any Γ , T , U , v and t,

1. Γ ⊢ t :T implies Γ [U/X] ⊢ t : T [U/X].

Linearity in the Non-deterministic Call-by-Value Setting 13

2. If Γ, x :U ⊢ t :T , and Γ ⊢ v :U , then Γ ⊢ t{v/x} :T .

Finally we need a property showing that 0 is only typed by 0 and its equivalent
types, and values are always typed by unit types or equivalent.

Lemma 24 (Typing 0 and values).

1. For any Γ , if Γ ⊢ 0 :T then T ≡ 0.
2. For any value v (i.e. a variable or an abstraction), if Γ ⊢ v : T then T is

necessarily equivalent to a unit type.

Using all the previous lemmas, the proof of subject reduction is made by induc-
tion on typing derivation.

B Formalisation of the Translation into System F

B.1 Some Examples

Example 25 (Tree composition).
Let T =

ℓ Z

ℓ

and T ’=

ℓ Z

. Then T ◦ T ′=

ℓ Z

Z ℓ Z

Example 26 (Arrow elimination rule in Addstr).
The following derivation is correct:

Γ ⊢ t :
(
∀ ~X.(U → T1) + ∀ ~X.(U → T2)

)
+ 0 Γ ⊢ u : U [~V / ~X] + 0

Γ ⊢ tu :
(
(T1[~V / ~X] + 0) + (T2[~V / ~X] + 0)

)
+ 0

→E′

Graphically, we can represent this rule as follows:
if t has type

∀ ~X.(U→T1)∀ ~X.(U→T2)

0

and u has type

U [~V / ~X] 0

, then tu has type

T1[~V / ~X] 0 T2[~V / ~X] 0

0

B.2 Soundness with respect to Typing.

We need first some lemmas and definitions. It can be immediately checked that
the tree structure of a type is preserved by translation, as expressed in the
following lemma.

14 Alejandro Dı́az-Caro and Barbara Petit

Reduction rules :
(λx.t)u → t{u/x} ; πi(〈t1, t2〉) → ti

λx.tx → t (if x /∈ FV (t)) ; 〈πl(p), πr(p)〉 → p

Typing rules :

∆,x : A ⊢F x : A
Ax ;

∆ ⊢F ⋆ : 1
1 ;

∆,x : A ⊢F t : B

∆ ⊢F λx.t : A ⇒ B
⇒I

∆ ⊢F t : A ⇒ B ∆ ⊢F u : A

∆ ⊢F tu : B
⇒E ;

∆ ⊢F t : A ∆ ⊢F u : B

∆ ⊢F 〈t, u〉 : A×B
×I

∆ ⊢F t : A×B

∆ ⊢F πl(t) : A
×El ;

∆ ⊢F t : A×B

∆ ⊢F πr(t) : B
×Er

∆ ⊢F t : A X /∈ FV (∆)

∆ ⊢F t : ∀X.A
∀I ;

∆ ⊢F t : ∀X.A

∆ ⊢F t : A[B/X]
∀E

Fig. 2. System F with pairs

Lemma 27. If T = T [w 7→ Uw] is a type of Addstr, then |T | = T [w 7→ |Uw|].

Definition 28. We call F-labelling a function defined from leaves to types of
System FP . Given φ, an F-labelling, and T , a tree, the type T [φ] of System FP
is defined as expected:

ℓ[φ] = φ(ε), Z[φ] = 1, S(T , T ′)[φ] = T [w 7→ φ(lw)] × T ′[w 7→ φ(rw)]

There is a trivial relation between the term-labelling of a tree, and its F-labelling,
that we give in the following lemma.

Lemma 29. Let T be a tree.

1. If Γ ⊢F tw : Aw for each ℓ-leave w, then Γ ⊢F T [w 7→ tw] : T [w 7→ Aw].
2. If Γ ⊢F t : T [w 7→ Aw], then for each ℓ-leaf of T , Γ ⊢F πw(t) : Aw.

Theorem 16 (Correction with respect to typing). If a judgement Γ ⊢ t : T
is derivable in Addstr with derivation D, then |Γ | ⊢F [t]D : |T |.

Proof. We prove this proposition by induction on the derivation D. If it ends
with rule ax or ax0, we use rule Ax or 1 respectively in System FP . If the last
rule of D is +I or →I we can conclude by induction. If the last rule is ∀I , we
just need to note that X /∈ FV (Γ) implies X /∈ FV (|Γ |). If it is the rule ∀E ,
we just have to note that |U [V/X] | = |U | [|V | /X] to conclude with induction
hypothesis. The only interesting case is when D ends with rule →E′ :

D =
Γ ⊢ t : T [w 7→ ∀ ~X.(U → Tw)] Γ ⊢ u : T ′[v 7→ U [~Vv/ ~X]]

Γ ⊢ tu : T ◦ T ′[wv 7→ Tw[~Vv/ ~X]]

Linearity in the Non-deterministic Call-by-Value Setting 15

By induction hypothesis, |Γ | ⊢F [t]D1
: |T [w 7→ ∀ ~X.(U → Tw)]| and |Γ | ⊢F

[u]D2
: |T ′[v 7→ U [~Vv/ ~X]]|. By Lemma 27, it means that |Γ | ⊢F [t]D1

: T [w 7→

∀ ~X.|U | ⇒ |Tw|] and |Γ | ⊢F [u]D2
: T ′[v 7→ |U |[~|Vv|/ ~X]]. By Lemma 29.2, for

every ℓ-leaf w of T , and every ℓ-leaf v of T ’, we can derive

|Γ | ⊢F πw([t]D1
) : ∀ ~X.|U | ⇒ |Tw|

|Γ | ⊢F πw([t]D1
) : |U |[~|Vv|/ ~X] ⇒ |Tw|[~|Vv|/ ~X] |Γ | ⊢F πv([u]D2

) : |U |[~|Vv|/ ~X]

|Γ | ⊢F πw([t]D1
) πv([u]D2

) : |Tw|[~|Vv|/ ~X]

Since [tu]D = T ◦ T ′[wv 7→ πw([t]D1
) πv([u]D2

)], by Lemma 29(1) we can

conclude |Γ | ⊢F [tu]D : T ◦ T ′[wv 7→ |Tw|[~|Vv|/ ~X]], and then conclude using
Lemma 27 again. ⊓⊔

B.3 Partial Translation from System FP to Addstr.

To show that the translation from Addstr to System FP is meaningful and non
trivial, we define a partial encoding from System FP to Addstr , and prove that
it is the inverse of the previous translation. We define inductively the partial
function (|·|) from the types of System FP to those of Addstr , as follows.

(|X |) = X and (|1|) = 0 ;

if (|A|), (|A′|) and (|B|) are defined, then

(|∀X.A|) = ∀X.(|A|) and (|A×B|) = (|A|) + (|B|) ;

and if also (|A′|) ∈ U, then (|A′ ⇒ B|) = (|A′|) → (|B|).

This translation is extended to contexts in the usual way. Similarly, we define
a partial function from terms of System FP to those of Addstr :

〈|x|〉 = x ; 〈|λx.t|〉 = λx.〈|t|〉 ; 〈|tu|〉 = 〈|t|〉〈|u|〉 ; 〈|⋆|〉 = 0 ;

〈|T [wv 7→ πw(t)πv(u)]|〉 = 〈|t|〉〈|u|〉 if T 6= Z and T 6= ℓ ;

〈|〈t1, t2〉|〉 = 〈|t1|〉+ 〈|t2|〉 if 〈t1, t2〉 6= T [wv 7→ πw(u)πv(u
′)] for any T , u, u′

This defines the inverse of [·]D, as specified by the following theorem.

Theorem 30. If Γ ⊢ t : T is derivable in Addstr with derivation D, then
(||Γ ||) ⊢ 〈|[t]D|〉 : (||T ||) is syntactically the same sequent.

B.4 Soundness with respect to Reduction.

First we need a substitution lemma for the translation of terms.

Lemma 31. Let D1 = Γ, x :U ⊢ t : T and D2 = Γ ⊢ b :U , then ∃D3 such that
[t]D1

{[b]D2
/x} = [t{b/x}]D3

.

Theorem 18 (Correction with respect to reduction). Let Γ ⊢ t : T
be derivable (by D) in Addstr, and t → u. If the reduction is not due to rule
t+ 0 → t, then there is D’ deriving Γ ⊢ u : T , and [t]D →+ [u]D′ .

Proof. The proof is long but straightforward using the previous lemmas. It fol-
lows by induction over D. ⊓⊔

