Skip to main content

VR Training System for Endoscopic Surgery Robot

Development of a System Enabling 4D Analysis of Surgical Technique Training

  • Conference paper
Augmented Environments for Computer-Assisted Interventions (AE-CAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7264))

Included in the following conference series:

  • 748 Accesses

Abstract

Our research group is currently developing an endoscopic surgical robot for digestive organs. In the current study, we sought to train surgeons to manipulate the system we are developing for clinical applications. To this end, we are developing a training system with the same interface as the real system, so that surgeons in training can practice basic manipulations and surgical techniques using organ models. To learn the basic manipulations of the system, we emphasized training the surgeon to operate the robotic arms, as this is the biggest difference from the conventional surgical techniques. We set up several types of tasks for the trainee, so that a beginner trainee could get used to operating the robot arms of the system. We developed a surgical training method using a stomach model reconstructed from MRI data sets. In addition to basic surgical techniques such as grabbing, lifting and cutting open soft tissue with the robot arm, we enabled the training system to perform techniques necessary for the surgical system, such as delivering water to the surgical field in case of bleeding, and clipping of incision sites. We added a function to record the performance of the trainee, enabling the system to analyze changes of the surgical field and robot arms in four dimensions during training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor, R.H., Stoianovici, D.: Medical Robotics in Computer-Integrated Surgery. IEEE Transactions on Robotics and Automation 19(5), 765–781 (2003)

    Article  Google Scholar 

  2. Reichenspurner, H., Damiano, R.J., Mack, M., Boehm, D.H., Gulbins, H., Detter, C., Meiser, B., Ellgass, R., Reichart, B.: Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting. J. Thorac. Cardiovasc Surg. 118, 11–16 (1999)

    Article  Google Scholar 

  3. Hanly, E.J., Talamini, M.A.: Robotic abdominal surgery. Am. J. Surg. 188(suppl.), 19S–26S (2004)

    Article  Google Scholar 

  4. Ballantyne, G.H.: Robotic surgery, telerobotic surgery, tele-presence, and telementoring: review of early clinical results. Surg. Endosc. 10, 1389–1402 (2002)

    Article  Google Scholar 

  5. Tan, G.Y., Goel, R.K., Kaouk, J.H., Tewari, A.K.: Technological advances in robotic-assisted laparoscopic surgery. Urol. Clin. North Am. 36, 237–249 (2009)

    Article  Google Scholar 

  6. Gutt, C.N., Oniu, T., Mehrabi, A., Kashfi, A., Schemmer, P., Büchler, M.W.: Robot-assisted abdominal surgery. Br. J. Surg. 91, 1390–1397 (2004)

    Article  Google Scholar 

  7. Salisbury, J.K.: The heart of microsurgery. ASME Int’l Mechanical Engineering Magazine 120(12), 47–51 (1998)

    Google Scholar 

  8. Guthart, G.S., Salisbury, J.K.: The Intuitive Telesurgery System: Overview and Application. In: Proc. of the IEEE International Conference on Robotics and Automation (ICRA 2000), San Francisco, CA (April 2000)

    Google Scholar 

  9. Corcione, F., Esposito, C., Cuccurullo, D., Settembre, A., Miranda, N., Amato, F., Pirozzi, F., Caiazzo, P.: Advantage and limits of robot-assisted laparoscopic surgery: preliminary experience. Surg. Endosc. 19, 117–119 (2005)

    Article  Google Scholar 

  10. Bodner, J., Wykypiel, H., Wetscher, G., Schmid, T.: First experiences with the da Vinci operating robot in thoracic surgery. Eur. J. Cardiothorac. Surg. 25, 844–851 (2004)

    Article  Google Scholar 

  11. Kaul, S., Laungani, R., Sarle, R., Stricker, H., Peabody, J.: da Vinci-assisted robotic partial nephrectomy: technique and results at a mean of 15 months of follow-up. Eur. Urol. 51, 186–192 (2007)

    Article  Google Scholar 

  12. Hillel, A.T., Kapoor, A., Simaan, N., Taylor, R.H., Flint, P.: Applications of robotics for laryngeal surgery. Otolaryngol. Clin. North Am. 41, 781–791 (2008)

    Article  Google Scholar 

  13. Rentschler, M.E., Dumpert, J., Platt, S.R., Farritor, S.M., Oleynikov, D.: Natural orifice surgery with an endoluminal mobile robot. Surg. Endosc. 21, 1212–1215 (2007)

    Article  Google Scholar 

  14. Abbott, D.J., Becke, C., Rothstein, R.I., Peine, W.J.: Design of an endoluminal NOTES robotic system. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 1, pp. 410–416 (2007)

    Google Scholar 

  15. Flora, E.D., Wilson, T.G., Martin, I.J., O’Rourke, N.A., Maddern, G.: Review of natural orifice translumenal endoscopic surgery (NOTES) for intra-abdominal surgery: experimental models, techniques and applicability to the clinical setting. Annals of Surgery 247(4), 583–602 (2008)

    Article  Google Scholar 

  16. Lehman, A.C., Dumpert, J., Wood, N.A., Redden, L., Visty, A.Q., Farritor, S., Varnell, B., Oleynikov, D.: Natural orifice cholecystectomy using a miniature robot. Surg. Endosc. 23, 260–266 (2009)

    Article  Google Scholar 

  17. Suzuki, N., Hattori, A., Tanoue, K., Ieiri, S., Konishi, K., Tomikawa, M., Kenmotsu, H., Hashizume, M.: Scorpion Shaped Endoscopic Surgical Robot for NOTES and SPS with Augmented Reality Functions. In: Liao, H., Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 541–550. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Suzuki, N., Hattori, A., Tanoue, K., Ieiri, S., Konishi, K., Kenmotsu, H., Hashizume, M.: Development of endoscopic robot system with augmented reality functions for NOTES that enables activation of four robotic forceps. In: Augmented Medical Imaging including Augmented Reality in Computer-aided Surgery, pp. 12–18 (2009)

    Google Scholar 

  19. Suzuki, N., Hattori, A., Suzuki, S., Otake, Y.: Development of a surgical robot system for endovascular surgery with augmented reality function. In: Medicine Meets Virtual Reality, vol. 15, pp. 460–463 (2007)

    Google Scholar 

  20. Suzuki, N., Sumiyama, K., Hattori, A., Ikeda, K., Murakami, E.A., Suzuki, S., et al.: Development of an endoscopic robotic system with two hands for various gastric tube surgeries. In: Medicine Meets Virtual Reality, vol. 11, pp. 349–353 (2003)

    Google Scholar 

  21. Piskun, G., Rajpal, S.: Transumbilical laparoscopic cholecys-tectomy utilizes no incisions outside the umbilicus. J. Laparoendosc Adv. Surg. Tech. A 9, 361–364 (1999)

    Article  Google Scholar 

  22. Kosumi, T., Kubota, A., Usui, N., Yamauchi, K., Yamasaki, M., Oyanagi, H.: Laparoscopic ovarian cystectomy using a single umbilical puncture method. Surg. Laparosc. Endosc. Percutan. Tech. 11, 63–65 (2001)

    Google Scholar 

  23. Canes, D., Desai, M.M., Aron, M., Haber, G.P., Goel, R.K., Stein, R.J., Kaouk, J.H., Gill, I.S.: Transumbilical single-port surgery: evolution and current status. Eur. Urol. 54, 1020–1030 (2008)

    Article  Google Scholar 

  24. Autorino, R., Cadeddu, J.A., Desai, M.M., Gettman, M., Gill, I.S., Kavoussi, L.R., Escobar, P.F., Fader, A.N., Paraiso, M.F., Kaouk, J.H., Falcone, T.: Robotic-assisted laparoendoscopic single-site surgery in gynecology: Initial report and technique. J. Minim. Invasive Gynecol. 16, 589–591 (2009)

    Article  Google Scholar 

  25. Ding, J., Xu, K., Goldman, R., Allen, P., Fowler, D., Simaan, N.: Design, Simulation and Evaluation of Kinematic Alternatives for Insertable Robotic Effectors Platforms in Single Port Access Surgery. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, pp. 1053–1058 (2010)

    Google Scholar 

  26. Suzuki, N., Hattori, A., Hashizume, M.: Benefits of augmented reality function for laparoscopic and endoscopic surgical robot systems. In: Augmented Medical Imaging including Augmented Reality in Computer-aided Surgery, pp. 53–60 (2008)

    Google Scholar 

  27. Hattori, A., Suzuki, N., Tanoue, K., Ieiri, S., Konishi, K., Kenmotsu, H., Hashizume, M.: Development of an integrated information display system and training system for endoscopic surgical robot system for abdominal surgery. International Journal of Computer Assisted Radiology and Surgery 5(suppl.1), 129–130 (2010)

    Google Scholar 

  28. Hattori, A., Suzuki, N., Hayashibe, M., Suzuki, S., Otake, Y., Tajiri, H., Kobayashi, S.: Development of a navigation function for an endosocopic robot surgery system. In: Medicine Meets Virtual Reality 13, Studies in Health Technology and Informatics, vol. 111, pp. 167–171 (2005)

    Google Scholar 

  29. Hattori, A., Suzuki, N., Hayashibe, M., Suzuki, S., Otake, Y., Sumiyama, K., Tajiri, H., Kobayashi, S.: Navigation system for a developed endoscopic surgical robot system. International Congress Series, vol. 1268, pp. 539–544 (2004)

    Google Scholar 

  30. Mendoza, C., Laugier, C.: Tissue Cutting Using Finite Elements and Force Feedback. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 175–182. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Berkley, J., Turkiyyah, G., Berg, D., Ganter, M., Weghorst, S.: Real-Time Finite Element Modeling for Surgery Simulation: An Application to Virtual Suturing. IEEE Transactions on Visualization and Computer Graphics 10(3), 314–325 (2004)

    Article  Google Scholar 

  32. Cotin, S., Delingette, H., Ayache, A.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics 5(1), 62–73 (1999)

    Article  Google Scholar 

  33. Mollemans, W., Schutyser, F., Cleynenbreugel, J.V., Suetens, P.: Tetrahedral Mass Spring Model for Fast Soft Tissue Deformation. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 145–154. Springer, Heidelberg (2003)

    Google Scholar 

  34. Suzuki, N., Suzuki, S.: Surgery Simulation System with Haptic Sensation and Modeling of Elastic Organ That Reflect the Patients’ Anatomy. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 155–164. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  35. Suzuki, S., Suzuki, N., Hattori, A., Uchiyama, A., Kobayashi, S.: Sphere-filled organ model for virtual surgery system. IEEE Trans. Medical Imaging 23, 714–722 (2004)

    Article  Google Scholar 

  36. Lorensen, W.E., Cline, H.E.: Marching Cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, N., Hattori, A., Ieiri, S., Tomikawa, M., Kenmotsu, H., Hashizume, M. (2012). VR Training System for Endoscopic Surgery Robot. In: Linte, C.A., Moore, J.T., Chen, E.C.S., Holmes, D.R. (eds) Augmented Environments for Computer-Assisted Interventions. AE-CAI 2011. Lecture Notes in Computer Science, vol 7264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32630-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32630-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32629-5

  • Online ISBN: 978-3-642-32630-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics