Skip to main content

Comparison between MLP and LVQ Neural Networks for Virtual Upper Limb Prosthesis Control

  • Conference paper
Book cover Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Abstract

During the rehabilitation process, individuals who have experienced a total or partial loss of upper limbs are exposed to many risks. Besides this, a great mental effort is required during the training phase to adapt to a real prosthesis. In many cases, the use of Virtual Reality in Medicine has proven to be an excellent tool for evaluation and support as well as to mitigate risk and to reduce mental effort required. In order to be useful, virtual prosthesis must have a great similarity with the real world. For this reason, artificial neural networks have been explored to be applied in the training phase to provide real time response. The objective of this study is to compare the performance of the LVQ and MLP neural networks in EMG (muscle activity) pattern recognition. To achieve this, different feature extraction techniques for simulation and control of virtual prostheses are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nishikawa, D., Yu, W., Yokoi, H., Kakazu, Y.: On-Line Learning Method for EMG Prosthetic Hand Control. Electronics and Communications in Japan, 1510–1519 (2001)

    Google Scholar 

  2. Fausett, L. (ed.): Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River (1994)

    MATH  Google Scholar 

  3. Herle, S., Raica, P., Lazea, G., Robotin, R., Marcu, C., Tamas, L.: Classification of surface electromyographic signals for control of upper limb virtual prosthesis using time-domain features. In: Proceedings of the 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 160–165 (2008)

    Google Scholar 

  4. Sebelius, F., Axelsson, M., Danielsen, N., Schouenborg, J., Laurell, T.: Real-time control of a virtual hand. Technology and Disability 17(3), 131–141 (2005)

    Google Scholar 

  5. Huang, H., Liu, Y., Liu, L., Wong, C.: Emg classification for prehensile postures using cascaded architecture of neural networks with self-organizing maps. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 1, pp. 1497–1502. IEEE (2003)

    Google Scholar 

  6. Pons, J., Ceres, R., Rocon, E., Levin, S., Markovitz, I., Saro, B., Reynaerts, D., Van Moorleghem, W., Bueno, L.: Virtual reality training and EMG control of the MANUS hand prosthesis. Robotica 23(03), 311–317 (2005)

    Article  Google Scholar 

  7. Nogueira, K.L.: O Uso de Técnicas de Realidade Virtual e Aumentada na Simulação de Prótese de Membros Superiores. Master’s thesis, Universidade Federal de Uberlndia, Uberlndia (Julho 2007)

    Google Scholar 

  8. Soares, A., Andrade, A., Lamounier, E., Carrijo, R.: The development of a virtual myoelectric prosthesis controlled by an EMG pattern recognition system based on neural networks. Journal of Intelligent Information Systems 21(2), 127–141 (2003)

    Article  Google Scholar 

  9. Mattioli, F., et al.: Utilização de redes neurais para a classificação de sinais emg aplicados no controle de próteses virtuais de mão. In: Proceedings of the WRVA 2010, pp. 230–235 (2010)

    Google Scholar 

  10. Peretta, I.: A novel Word Boundary Detector based on the Teager Energy Operator for Automatic Speech Recognition. PhD thesis, Master’s Thesis, Federal University of Uberlândia, UFU (2010)

    Google Scholar 

  11. Mattioli, F., Lamounier, E., Cardoso, A., Soares, A., Andrade, A.: Classification of emg signals using artificial neural networks for virtual hand prosthesis control. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 7254–7257. IEEE (2011)

    Google Scholar 

  12. Hudgins, B., Parker, P., Scott, R.N.: A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering 40(1), 82–94 (1993)

    Article  Google Scholar 

  13. Lamounier, E.A., Lopes, K., Soares, A.B.: Using augmented reality techniques to simulate myoelectric upper limb prostheses. Bioengineering & Biomedical Science, S1:010 (2012), doi:10.4172/2155-9538.S1-010

    Google Scholar 

  14. Machover, C., Tice, S.: Virtual reality. IEEE Computer Graphics and Applications 14(1), 15–16 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caetano, D., Mattioli, F., Nogueira, K., Lamounier, E., Cardoso, A. (2012). Comparison between MLP and LVQ Neural Networks for Virtual Upper Limb Prosthesis Control. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics