Skip to main content

Experimental Comparison of DWT and DFT for Trajectory Representation

  • Conference paper
Book cover Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7435))

Abstract

In this work Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) were experimentally evaluated for their performances as tools for dimensionality reduction in a real data set of air traffic trajectories. Results showed that both DFT and DWT were able to provide very expressive reduction for trajectory representation with minimal loss of information. Overall, DWT performed slightly better requiring fewer coefficients than DFT to achieve the same signal energy or to provide the same quality of reconstruction of the trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piciarelli, C., Foresti, G., Snidaro, L.: Trajectory clustering and its applications for video surveillance. In: IEEE Conf. Advanced Video and Signal Based Surveillance, pp. 40–45. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  2. Kim, H.-S., Kim, J.-H., Ho, C.-H., Chu, P.-S.: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. Journal of Climate 24(2), 488–508 (2011)

    Article  Google Scholar 

  3. Spampinato, C., Giordano, D., Di Salvo, R., Chen-Burger, Y.-H.J., Fisher, R.B., Nadarajan, G.: Automatic fish classification for underwater species behavior understanding. In: Proc. First ACM Int. Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, ARTEMIS 2010, pp. 45–50. ACM, New York (2010)

    Google Scholar 

  4. Lee, J.W., Paek, O.H., Ryu, K.H.: Temporal moving pattern mining for location-based service. Journal of Systems and Software 73(3), 481–490 (2004)

    Article  Google Scholar 

  5. Melo, J., Naftel, A., Bernardino, A., Santos-Victor, J.: Detection and classification of highway lanes using vehicle motion trajectories. IEEE Trans. Intelligent Transportation Systems 7(2), 188–200 (2006)

    Article  Google Scholar 

  6. Knorr, E.M., Ng, R.T., Tukanov, V.: Distance-based outliers: algorithms and applications. VLDB Journal 8(3), 237–253 (2000)

    Article  Google Scholar 

  7. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proc. 2007 ACM SIGMOD Int. Conf. Management of Data, pp. 593–604 (2007)

    Google Scholar 

  8. Gariel, M., Srivastava, A.N., Feron, E.: Trajectory Clustering and an Application to Airspace Monitoring. IEEE Trans. Intelligent Transportation Systems 12(4), 1511–1524 (2011)

    Article  Google Scholar 

  9. Eckstein, A.: Automated flight track taxonomy for measuring benefits from performance based navigation. In: Integrated Communications, Navigation and Surveillance Conference (2009)

    Google Scholar 

  10. Naftel, A., Khalid, S.: Motion Trajectory Learning in the DFT-Coefficient Feature Space. In: Proc. IEEE Int. Conf. Computer Vision Systems (2006)

    Google Scholar 

  11. Kaplan, W.: Advanced Calculus. Addison-Wesley (1971)

    Google Scholar 

  12. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Pretice-Hall (1989)

    Google Scholar 

  13. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transform: A Primer. Prentice-Hall (1998)

    Google Scholar 

  14. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Analysis and Machine Learning 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  15. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2011) ISBN 3-900051-07-0, http://www.R-project.org/

  16. Nason, G.: wavethresh: Wavelets statistics and transforms. R package version 4.5. (2010), http://CRAN.R-project.org/package=wavethresh

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Annoni, R., Forster, C.H.Q. (2012). Experimental Comparison of DWT and DFT for Trajectory Representation. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics