Skip to main content

Improving Differential Evolution Accuracy for Flexible Ligand Docking Using a Multi-solution Strategy

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Abstract

Docking of small ligand molecules in protein active sites is a very important and challenging problem in the structure-based drug design field. In this work we propose a Differential Evolution algorithm in conjunction with a multi-solution strategy for the flexible ligand docking problem. The proposed algorithm is evaluated on five highly flexible HIV-1 protease ligands, with known three-dimensional structures, having up to 19 conformational degrees of freedom. The docking results and comparison with classic Differential Evolution algorithm indicate that the incorporation of a multi-solution strategy in Differential Evolution algorithms is very promising and can significantly improve molecular docking accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov. 3(suppl. 11), 935–949 (2004)

    Article  Google Scholar 

  2. Meagher, K.L., Carlson, H.A.: Incorporating Protein Flexibility in Structure-based Drug Discovery: using HIV-1 Protease as a Test Case. J. Am. Chem. Soc. 126, 13276–13281 (2004)

    Article  Google Scholar 

  3. Zhao, Y., Sanner, M.F.: Protein-ligand Docking with Multiple Flexible Side Chains. J. Comput. Aided Mol. Des. 22, 673–679 (2008)

    Article  Google Scholar 

  4. Cozzini, P., Kellogg, G.E., Spyrakis, F., Abraham, D.J., Costantino, G., Emerson, A., Fanelli, F., Gohlke, H., Kuhn, L.A., Morris, G.M., Orozco, M., Pertinhez, T.A., Rizzi, M., Sotriffer, C.A.: Target Flexibility: An Emerging Consideration in Drug Discovery and Design. J. Med. Chem. 51(suppl. 20), 6237–6255 (2008)

    Article  Google Scholar 

  5. Bottegoni, G., Kufareva, I., Totrov, M., Abagyan, R.: Four-dimensional Docking: A Fast and Accurate Account of Discrete Receptor Flexibility in Ligand Docking. J. Med. Chem. 52, 397–406 (2009)

    Article  Google Scholar 

  6. B-Rao, C., Subramanian, J., Sharma, D.: Managing Protein Flexibility in Docking and its Applications. Drug Discov. Today 14(suppl. 7/8), 394–400 (2009)

    Article  Google Scholar 

  7. Mukherjee, S., Balius, T.E., Rizzo, R.C.: Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. J. Chem. Inf. Model. 50(11), 1986–2000 (2010)

    Article  Google Scholar 

  8. Chen, H., Liu, B., Huang, H., Hwang, S., Ho, S.: SODOCK: Swarm Optimization for Highly Flexible Protein-ligand Docking. J. Comput. Chem. 28, 612–623 (2007)

    Article  Google Scholar 

  9. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., Shenkin, P.S.: Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 47, 1739–1749 (2004)

    Article  Google Scholar 

  10. Kang, L., Li, H., Jiang, H., Wang, X.: An Improved Adaptive Genetic Algorithm for Protein-ligand Docking. J. Comput. Aided Mol. Des. 23, 1–12 (2009)

    Article  Google Scholar 

  11. Li, H., Zhang, H., Zheng, M., Luo, J., Kang, L., Liu, X., Wang, X., Jiang, H.: An Effective Docking Strategy for Virtual Screening Based on Multi-objective Optimization Algorithm. BMC Bioinformatics 10, 58 (2009)

    Article  Google Scholar 

  12. Grosdidier, A., Zoete, V., Michielin, O.: Blind Docking of 260 Protein-ligand Complexes with EADock 2.0. J. Comput. Chem. 30, 2021–2030 (2009)

    Article  Google Scholar 

  13. Abayan, R., Totrov, M., Kuznetzov, D.: ICM A New Method for Protein Modeling and Design: Applications to Docking and Structure Prediction from the Distorted Native Conformation. J. Comput. Chem. 15, 488–506 (1994)

    Article  Google Scholar 

  14. Davis, I.W., Baker, D.: ROSETTA Ligand Docking with Full Ligand and Receptor Flexibility. J. Mol. Biol. 385, 381–392 (2009)

    Article  Google Scholar 

  15. Warren, G.L., Andrews, W., Capeli, A., Clarke, B., LaLonde, J., Lambert, M.H., Lindvall, M., Nevins, N., Semus, S.F., Senger, S., Tedesco, G., Wall, I.D., Woolven, J.M., Peishoff, C.E., Head, M.S.: A Critical Assessment of Docking Programs and Scoring Functions. J. Med. Chem. 49, 5912–5931 (2006)

    Article  Google Scholar 

  16. Corbeil, C.R., Moitessier, N.: Docking Ligands into Flexible and Solvated Macromolecules. 3. Impact of Input Ligand Conformation, Protein Flexibility, and Water Molecules on the Accuracy of Docking Programs. J. Chem. Inf. Model. 49, 997–1009 (2009)

    Article  Google Scholar 

  17. Trosset, J.Y., Scheraga, H.A.: PRODOCK: Software Package for Protein Modeling and Docking. J. Comp. Chem. 20(suppl. 4), 412–427 (1999)

    Article  Google Scholar 

  18. Kontoyianni, M., McClellan, L.M., Sokol, G.S.: Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 47, 558–565 (2004)

    Article  Google Scholar 

  19. Sousa, S.F., Fernandes, P.A., Ramos, M.J.: Protein-ligand Docking: Current Status and Future Challenges. Proteins 65, 15–26 (2006)

    Article  Google Scholar 

  20. Erickson, J.A., Jalaie, M., Robertson, D.H., Lewis, R.A., Vieth, M.: Lessons in Molecular Recognition: The Effects of Ligand and Protein Flexibility on Molecular Docking Accuracy. J. Med. Chem. 47, 45–55 (2004)

    Article  Google Scholar 

  21. Li, X., Li, Y., Cheng, T., Liu, Z., Wang, R.: Evaluation of the Performance of Four Molecular Docking Programs on a Diverse Set of Protein-Ligand Complexes. J. Comp. Chem. 31, 2109–2125 (2010)

    Article  Google Scholar 

  22. Jones, G., Willet, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 267, 727–748 (1997)

    Article  Google Scholar 

  23. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated Docking using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  24. de Magalhães, C.S., Barbosa, H.J.C., Dardenne, L.E.: Selection-Insertion Schemes in Genetic Algorithms for the Flexible Ligand Docking Problem. In: Deb, K., Tari, Z. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 368–379. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Almeida, D.M.: Dockthor: Implementao, Aprimoramento e Validao de um Programa de Docking Receptor-Ligante. MSc. Dissertation (2011)

    Google Scholar 

  26. Thomsen, R.: Flexible Ligand Docking using Evolutionary Algorithms: Investigating the Effects of Variation Operators and Local Search Hybrids. Biosystems 72(1-2), 57–73 (2003)

    Article  Google Scholar 

  27. Storn, R., Price, K.: Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012, ICSI (March 1995), ftp.icsi.berkeley.edu

  28. Zaharie, D.: Extensions of Differential Evolution Algorithms for Multimodal Optimization. In: Proceedings of SYNASC 2004, 6th International Symposium of Symbolic and Numeric Algorithms for Scientific Computing, pp. 523–534 (2004)

    Google Scholar 

  29. Halgren, T.: Merck Molecular Force Field.1. Basis, Form, Scope, Parametrization, and Performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996)

    Article  Google Scholar 

  30. Thomsen, R.: Multimodal Optimization Using Crowding-based Differential Evolution. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1382–1389 (2004)

    Google Scholar 

  31. Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators. IEEE Transactions on Evolutionary Computation 15(1), 99–119 (2011)

    Article  Google Scholar 

  32. Harik, G.R.: Finding Multimodal Solutions Using Restricted Tournament Selection. In: Eshelman, L. (ed.) Proc. of the Sixth Intl. Conf. on Genetic Algorithms, pp. 24–31. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  33. De Magalhães, C.S., Barbosa, H.J.C., Dardenne, L.E.: A Genetic Algorithm for the Ligand-protein Docking Problem. Genet. Mol. Biol. 27(4) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Magalhães, C.S., dos S. Barbosa, C.H., Almeida, D.M., Dardenne, L.E. (2012). Improving Differential Evolution Accuracy for Flexible Ligand Docking Using a Multi-solution Strategy. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics