Skip to main content

Modeling of Hysteretic Signaling Load Control in Next Generation Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7469))

Abstract

In this paper we investigate traffic load control mechanisms for controlling congestion in signaling networks based on three types of thresholds. The goal of the paper is to analyze congestion controlling mechanisms and develop corresponding queuing models of SIP servers. The study is based on hysteretic congestion control, which has been developed for Signaling System 7 (SS7). Models for describing the hysteretic control are developed. The current state and problems of basic overload control mechanism proposed by Internet Engineering Task Force (IETF) for SIP signaling networks are investigated. Approaches to building mathematical models of SIP servers in the form of a queuing system with hysteretic control are proposed.

This work was supported in part by the Russian Foundation for Basic Research (grants 10-07-00487-a and 12-07-00108), and by “Rosobrazovanie” (project no. 020619-1-174).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ITU-T Recommendation Q.704: Signalling System No.7 – Message Transfer Part, Signalling network functions and messages (1996)

    Google Scholar 

  2. Rosenberg, J.: Requirements for Management of Overload in the Session Initiation Protocol. RFC5390 (2008)

    Google Scholar 

  3. Hilt, V., Noel, E., Shen, C., Abdelal, A.: Design Considerations for Session Initiation Protocol (SIP) Overload Control. RFC6357 (2011)

    Google Scholar 

  4. Samouilov, K., Zharkov, M., Gaidamaka, Y.: Inconsistency between Q.706 and E.733 and queuing delay calculations in Q.706. COM11-D1479. ITU-O SG11, Geneva, Switzerland (November-December 1999)

    Google Scholar 

  5. Abaev, P., Gaidamaka, Y., Samouylov, K.: Load Control Technique with Hysteresis in SIP Signalling Server. In: XXIX International Seminar on Stability Problems for Stochastic Models, the Autumn Session of the V International Seminar on Applied Problems of Probability Theory and Mathematical Statistics related to Modeling of Information Systems, Svetlogorsk, Russia, October 10-16, pp. 67–69 (2011)

    Google Scholar 

  6. Rosenberg, J., Schulzrinne, H., Camarillo, G., et al.: SIP: Session Initiation Protocol. RFC3261 (2002)

    Google Scholar 

  7. Johnston, A., Donovan, S., Sparks, R., et al.: Session Initiation Protocol (SIP) Basic Call Flow Examples. RFC3665 (2003)

    Google Scholar 

  8. Kasera, S., Pinheiro, J., Loader, C., et al.: Fast and robust signaling overload control. In: Ninth International Conference on Network Protocols, pp. 323–331 (2001)

    Google Scholar 

  9. Ohta, M.: Overload Protection in a SIP Signaling Network. In: International Conference on Internet Surveillance and Protection, pp. 205–210 (2006)

    Google Scholar 

  10. Ohta, M.: Overload Control in a SIP Signaling Network. International Journal of Electrical and Electronics Engineering, 87–92 (2009)

    Google Scholar 

  11. Hilt, V., Widjaja, I.: Controlling Overload in Networks of SIP Servers. In: IEEE International Conference on Network Protocols, pp. 83–93 (2008)

    Google Scholar 

  12. Shen, C., Schulzrinne, H., Nahum, E.: Session Initiation Protocol (SIP) Server Overload Control: Design and Evaluation. In: Schulzrinne, H., State, R., Niccolini, S. (eds.) IPTComm 2008. LNCS, vol. 5310, pp. 149–173. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Montagna, S., Pignolo, M.: Performance Evaluation of Load Control Techniques in SIP Signaling Servers. In: Proceedings of Third International Conference on Systems (ICONS), pp. 51–56 (2008)

    Google Scholar 

  14. Yang, J., Huang, F., Gou, S.: An optimized algorithm for overload control of SIP signaling network. In: Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM (2009)

    Google Scholar 

  15. Garroppo, R.G., Giordano, S., Spagna, S., Niccolini, S.: Queueing Strategies for Local Overload Control in SIP Server. In: IEEE Global Telecommunications Conference, pp. 1–6 (2009)

    Google Scholar 

  16. Montagna, S., Pignolo, M.: Load Control techniques in SIP signaling servers using multiple thresholds. In: 13th International Telecommunications Network Strategy and Planning Symposium, NETWORKS, pp. 1–17 (2008)

    Google Scholar 

  17. Garroppo, R.G., Giordano, S., Spagna, S., Niccolini, S.: IEEE Transactions on Network and Service Management 8(1), 39–51 (2011)

    Google Scholar 

  18. Homayouni, M., Nemati, H., Azhari, V., Akbari, A.: Controlling Overload in SIP Proxies: An Adaptive Window Based Approach Using No Explicit Feedback. In: 2010 IEEE Global Telecommunications Conference, GLOBECOM 2010, pp. 1–5 (2010)

    Google Scholar 

  19. Abdelal, A., Matragi, W.: Signal-Based Overload Control for SIP Servers. In: 7th IEEE Consumer Communications and Networking Conference (CCNC), pp. 1–7 (2010)

    Google Scholar 

  20. Montagna, S., Pignolo, M.: Comparison between two approaches to overload control in a Real Server: ”local” or ”hybrid” solutions? In: 15th IEEE Mediterranean Electrotechnical Conference, MELECON 2010, pp. 845–849 (2010)

    Google Scholar 

  21. Hong, Y., Huang, C., Yan, J.: Mitigating SIP Overload Using a Control-Theoretic Approach. In: IEEE Global Telecommunications Conference, GLOBECOM 2010, pp. 1–5 (2010)

    Google Scholar 

  22. Gebhart, R.F.: A queuing process with bilevel hysteretic service-rate control. Naval Research Logistics Quarterly 14(1), 55–68 (1967)

    Article  Google Scholar 

  23. Brown, P., Chemouil, P., Delosme, B.: A Congestion Control Policy for Signalling Networks. In: Proceedings of 7th IeCC, pp. 717–724 (1984)

    Google Scholar 

  24. Filipiak, J.: Modelling and Control of Dynamic Flows in Communication Networks, 202 pages. Springer, New York (1988)

    Book  MATH  Google Scholar 

  25. Roughan, M., Pearce, C.: A martingale analysis of hysteretic overload control. Advances in Performance Analysis: A Journal of Teletraffic Theory and Performance Analysis of Communication Systems and Networks 3, 1–30 (2000)

    Google Scholar 

  26. Takagi, H.: Analysis of a Finite-Capacity M/G/1 Queue with a Resume Level. Performance Evaluation 5, 197–203 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yum, T.P., Yen, H.M.: Design algorithm for a hysteresis buffer congestion control strategy. In: Proceedings of the IEEE International Conference on Communications, pp. 499–503 (1983)

    Google Scholar 

  28. Camarillo, G., Roach, A., Peterson, J., Ong, L.: Integrated Services Digital Network (ISDN) User Part (ISUP) to Session Initiation Protocol (SIP) Mapping. RFC3398 (2002)

    Google Scholar 

  29. Gurbani, V., Hilt, V., Schulzrinne, H.: Session Initiation Protocol (SIP) Overload Control. draft-ietf-soc-overload-control-08 (2012)

    Google Scholar 

  30. Abaev, P.O.: Algorithm for Computing Steady-State Probabilities of the Queuing System with Hysteretic Congestion Control and Working Vacations. Bulletin of Peoples’ Friendship University of Russia (3), 58–62 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abaev, P., Gaidamaka, Y., Samouylov, K.E. (2012). Modeling of Hysteretic Signaling Load Control in Next Generation Networks. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networking. ruSMART NEW2AN 2012 2012. Lecture Notes in Computer Science, vol 7469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32686-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32686-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32685-1

  • Online ISBN: 978-3-642-32686-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics