Skip to main content

Hamming Selection Pruned Sets (HSPS) for Efficient Multi-label Video Classification

  • Conference paper
Book cover PRICAI 2012: Trends in Artificial Intelligence (PRICAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7458))

Included in the following conference series:

  • 2823 Accesses

Abstract

Videos have become an integral part of our life, from watching movies online to the use of videos in classroom teaching. Existing machine learning techniques are constrained with this scaled up activity because of this huge upsurge in online activity. A lot of research is now focused on reducing the time and accuracy of video classification. Content-Based Video Information Retrieval CBVIR implementation (E.g. Columbia374) is one such approach. We propose a fast Hamming Selection Pruned Sets (HSPS) algorithm that efficiently transforms multi-label video dataset into single-label representation. Thus, multi-label relationship between the labels can be retained for later single label classifier learning stage. Hamming distance (HD) is used to detect similarity between label-sets. HSPS captures new potential label-set relationships that were previously undetected by baseline approach. Experiments show a significant 22.9% dataset building time reduction and consistent accuracy improvement over the baseline method. HSPS also works on general multi-label dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Snoek, C.G.M., Worring, M.: Concept-Based Video Retrieval. Found. Trends Inf. Retr. 2, 215–322 (2009)

    Article  Google Scholar 

  2. Bhatt, C., Kankanhalli, M.: Multimedia data mining: state of the art and challenges. Multimedia Tools and Applications 51, 35–76 (2011)

    Article  Google Scholar 

  3. Yu-Gang, J., Jun, W., Shih-Fu, C., Chong-Wah, N.: Domain adaptive semantic diffusion for large scale context-based video annotation. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1420–1427 (2009)

    Google Scholar 

  4. Kennedy, L.S., Chang, S.-F.: A reranking approach for context-based concept fusion in video indexing and retrieval. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 333–340. ACM, Amsterdam (2007)

    Google Scholar 

  5. Wei, X.-Y., Jiang, Y.-G., Ngo, C.-W.: Exploring inter-concept relationship with context space for semantic video indexing. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 1–8. ACM, Santorini (2009)

    Chapter  Google Scholar 

  6. Yanagawa, A., Chang, S.F., Kennedy, L., Hsu, W.: Columbia university’s baseline detectors for 374 lscom semantic visual concepts. Columbia University ADVENT technical report 222-2006 (2007)

    Google Scholar 

  7. Yu-Gang, J., Jun, Y., Chong-Wah, N., Hauptmann, A.G.: Representations of Keypoint-Based Semantic Concept Detection: A Comprehensive Study. IEEE Transactions on Multimedia 12, 42–53 (2010)

    Article  Google Scholar 

  8. Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.-M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, pp. 421–430. ACM, Santa Barbara (2006)

    Chapter  Google Scholar 

  9. Jiang, Y.G., Yanagawa, A., Chang, S.F., Ngo, C.W.: CU-VIREO374: fusing Columbia374 and VIREO374 for large scale semantic concept detection 223, 1 (2008)

    Google Scholar 

  10. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, US (2010)

    Google Scholar 

  11. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29, 147–160 (1950)

    MathSciNet  Google Scholar 

  12. Read, J.: A pruned problem transformation method for multi-label classification, pp. 143–150 (2008)

    Google Scholar 

  13. Park, S.H., Fürnkranz, J.: Multi-label classification with label constraints, pp. 157–171 (2008)

    Google Scholar 

  14. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2001)

    Google Scholar 

  15. Xun, Y., Wei, L., Tao, M., Xian-Sheng, H., Xiu-Qing, W., Shipeng, L.: Automatic Video Genre Categorization using Hierarchical SVM. In: 2006 IEEE International Conference on Image Processing, pp. 2905–2908 (2006)

    Google Scholar 

  16. Nowak, E., Juries, F.: Vehicle categorization: parts for speed and accuracy. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 277–283 (2005)

    Google Scholar 

  17. Petrovskiy, M.: Paired Comparisons Method for Solving Multi-Label Learning Problem. In: Sixth International Conference on Hybrid Intelligent Systems, HIS 2006, pp. 42–42 (2006)

    Google Scholar 

  18. Ráez, A.M., López, L.A.U., Steinberger, R.: Adaptive Selection of Base Classifiers in One-Against-All Learning for Large Multi-labeled Collections. In: Vicedo, J.L., Martínez-Barco, P., Muńoz, R., Saiz Noeda, M. (eds.) EsTAL 2004. LNCS (LNAI), vol. 3230, pp. 1–12. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Read, J., Bifet, A., Holmes, G., Pfahringer, B.: Efficient multi-label classification for evolving data streams (2010)

    Google Scholar 

  20. Tsoumakas, G., Vlahavas, I.P.: Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76, 211–225 (2009)

    Article  Google Scholar 

  22. Platt, J.C.: 12 Fast Training of Support Vector Machines using Sequential Minimal Optimization (1998)

    Google Scholar 

  23. Van Gemert, J.C., Geusebroek, J., Veenman, C.J., Snoek, C.G.M., Smeulders, A.W.M.: Robust Scene Categorization by Learning Image Statistics in Context. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, pp. 105–105 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, T.Y., Alhashmi, S.M., Hisham Jaward, M. (2012). Hamming Selection Pruned Sets (HSPS) for Efficient Multi-label Video Classification. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32695-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32694-3

  • Online ISBN: 978-3-642-32695-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics