Skip to main content

Synchronization of Inhibitory Molecular Spike Oscillators

  • Conference paper

Abstract

Molecular communication is the process of transmitting information by modulating the concentration of molecules over time. Molecular communication is suitable for autonomous nanomachines which are limited in size and capability and for interfacing with biological systems which perform functions controlled or influenced by molecules. Some functions may require nanomachines to perform sequential processes. Molecular communication can be used to synchronize multiple nanomachines and to coordinate the timing of the functionality. In this paper, transmitters self-oscillate by releasing a spike of negative autoregulating molecules when concentration of the molecule is below a threshold. When the concentration from a spike disperses and decreases below the threshold, the transmitter releases another spike of molecules. When the environment includes two transmitters, the oscillations of the two transmitters achieve in-phase or anti-phase synchronization depending on the distance between the transmitter and receiver. When there are multiple transmitters arranged in a circle, the oscillations of the transmitters produce in-phase or partially in-phase synchronization. Simulations were performed to characterize the period of oscillation and the phase difference in the oscillations of multiple transmitters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., Nakano, T.: Molecular Communication. In: Technical Proceedings of the 2005 NSTI Nantechnology Conference and Trade Show, vol. 3, pp. 391–394 (2005)

    Google Scholar 

  2. Moore, M., Enomoto, A., Suda, T., Nakano, T., Okaie, Y.: Molecular Communication: New Paradigm for Communication among Nano-scale Biological Machines. In: The Handbook of Computer Networks, vol. 3, pp. 1034–1054. John Wiley and Sons Inc. (2007)

    Google Scholar 

  3. Akyildiz, I.F., Brunetti, F., Blazquez, C.: Nanonetworks: A New Communication Paradigm. Computer Networks Journal 52, 2260–2279 (2008)

    Article  Google Scholar 

  4. Goldbeter, A.: Computation Approaches to Cellular Rhythms. Nature 420, 238–245 (2002)

    Article  Google Scholar 

  5. Alon, U.: An Introduction to Systems Biology Design Principles of Biological Circuits. Chapman & Hall, Boca Raton (2007)

    MATH  Google Scholar 

  6. Ernst, U., Pawelzik, K., Geisel, T.: Delay-induced Multistable Synchronization of Biological Oscillators. Phys. Rev. E 57, 2150–2162 (1998)

    Article  MathSciNet  Google Scholar 

  7. Mosharov, E., Sulzer, E.: Analysis of Exocytotic Events Recorded by Amperometry. Nature Method 2(9), 651–658 (2005)

    Article  Google Scholar 

  8. Toiya, M., Gonzalez-Ochoa, H.O., Vanag, V.K., Fraden, S., Epstein, I.R.: Synchronization of Chemical Micro-oscillators. The Journal of Physical Chemistry 8(1), 1241–1246 (2010)

    Google Scholar 

  9. Abadala, S., Akyildiz, I.F.: Automata Modeling of Quorum Sensing for Nanocommunication Networks. Nano Communication Networks 2(1), 74–83 (2011)

    Article  Google Scholar 

  10. Grachevanw, M.E., Gunton, J.D.: Intercellular Communication via Intracellular Calcium Oscillations. J. Theor. Biol. 221, 513–518 (2003)

    Article  Google Scholar 

  11. Garralda, N., Llatser, I., Cabellos-Aparicio, A., Pierobon, M.: Simulation-based Evaluation of the Diffusion-based Physical Channel in Molecular Nanonetworks. In: 2011 IEEE Conference on Computer Communications Workshops, pp. 443–448 (2011)

    Google Scholar 

  12. Berg, H.C.: Random Walks in Biology, pp. 22–23. Princeton University Press (1993)

    Google Scholar 

  13. Moore, M., Suda, T., Oiwa, K.: Molecular Communication: Modeling Noise Effects on Information Rate. IEEE Transactions on Nanobioscience 8(2), 169–180 (2009)

    Article  Google Scholar 

  14. Nakano, T., Shuai, J.: Repeater Design and Modeling for Molecular Communication Networks. In: Proceedings IEEE INFOCOM (International Conference on Computer Communications) Workshops, pp. 501–506 (2011)

    Google Scholar 

  15. Pierobon, M., Akyildiz, I.F.: Diffusion-based Noise Analysis for Molecular Communication in Nanonetworks. IEEE Transactions on Signal Processing 59(6), 2532–2547 (2011)

    Article  MathSciNet  Google Scholar 

  16. Bossert, W.H., Wilson, E.O.: The analysis of olfactory communication among animals. Journal of Theoretical Biology 5(3), 443–469 (1963)

    Article  Google Scholar 

  17. Endres, R.G., Wingreen, N.S.: Accuracy of Direct Gradient Sensing by Single Cells. Proceedings of the National Academy of Sciences 105(41), 15749–15754 (2008)

    Article  Google Scholar 

  18. Moore, M.J., Nakano, T., Enomoto, A., Suda, T.: Measuring Distance with Molecular Communication Feedback Protocols. In: 5th ACM/ICST Int. Conf. Bio-Inspired Models of Network, Information, and Computing Systems (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Moore, M.J., Nakano, T. (2012). Synchronization of Inhibitory Molecular Spike Oscillators. In: Hart, E., Timmis, J., Mitchell, P., Nakamo, T., Dabiri, F. (eds) Bio-Inspired Models of Networks, Information, and Computing Systems. BIONETICS 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32711-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32711-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32710-0

  • Online ISBN: 978-3-642-32711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics