Skip to main content

Simultaneous Estimation of Material Properties and Pose for Deformable Objects from Depth and Color Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7476))

Abstract

In this paper we consider the problem of estimating 6D pose, material properties and deformation of an object grasped by a robot gripper. To estimate the parameters we minimize an error function incorporating visual and physical correctness. Through simulated and real-world experiments we demonstrate that we are able to find realistic 6D poses and elasticity parameters like Young’s modulus. This makes it possible to perform subsequent manipulation tasks, where accurate modelling of the elastic behaviour is important.

This work was co-financed by the INTERREG 4 program Syddanmark-Schleswig-K.E.R.N. by EU funds from the European Regional Development Fund.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodenhagen, L., Fugl, A., Willatzen, M., Gordon, H., Krüger, N.: Learning peg-in-hole actions with flexible objects. In: ICAART (2011)

    Google Scholar 

  2. Chen, E.J., Novakofski, J., Jenkins, W.K., O’Brien Jr., W.D.: Young’s Modulus Measurements of Soft Tissues with Application to Elasticity Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 43(1) (January 1996)

    Google Scholar 

  3. Erkamp, R.Q., Wiggins, P., Skovoroda, A.R., Emelianov, S.Y., O’Donnell, M.: Measuring the elastic modulus of small tissue samples. Ultrasonic Imaging 20(1), 17–28 (1998)

    Google Scholar 

  4. Foresti, G., Pellegrino, F.: Automatic visual recognition of deformable objects for grasping and manipulation. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 34(3), 325–333 (2004)

    Article  Google Scholar 

  5. Frank, B., Schmedding, R., Stachniss, C., Teschner, M., Burgard, W.: Learning the elasticity parameters of deformable objects with a manipulation robot. In: Proc. of the Int. Conf. on Intelligent Robots and Systems, IROS (2010)

    Google Scholar 

  6. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. Journal of Sound and Vibration 225, 935–988 (1999)

    Article  MATH  Google Scholar 

  7. Hansen, N.: The CMA Evolution Strategy: A Comparing Review. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. STUDFUZZ, vol. 192, pp. 75–102. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Holm, P.: Robust Pose Refinement. Ph.D. thesis, University of Southern Denmark (2011)

    Google Scholar 

  9. Holm, P., Petersen, H.G.: Refining Visually Detected Object poses (2010)

    Google Scholar 

  10. Howard, A., Bekey, G.: Intelligent learning for deformable object manipulation. In: Computational Intelligence in Robotics and Automation, pp. 15–20 (1999)

    Google Scholar 

  11. Jordt, A., Koch, R.: Fast tracking of deformable objects in depth and colour video. In: Proceedings of the British Machine Vision Conference, BMVC 2011 (2011)

    Google Scholar 

  12. Jorgensen, J.A., Petersen, H.G.: Usage of simulations to plan stable grasping of unknown objects with a 3-fingered Schunk hand. In: IROS (2008)

    Google Scholar 

  13. Landau, L.D., Pitaevskii, L.P., Lifshitz, E.M., Kosevich, A.M.: Theory of Elasticity. Butterworth-Heinemann (1986)

    Google Scholar 

  14. Love, A.: A treatise on the mathematical theory of elasticity. Courier Dover Publications (1944)

    Google Scholar 

  15. Meththananda, I., Parker, S., Patel, M., Braden, M.: The relationship between shore hardness of elastomeric dental materials and young’s modulus. Dental Materials 25(8), 956–959 (2009)

    Article  Google Scholar 

  16. Mosegaard, J.: Cardiac Surgery Simulation - Graphics Hardware meets Congenital Heart Disease. Ph.D. thesis, Department of Computer Science, University of Aarhus, Denmark (October 2006)

    Google Scholar 

  17. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  18. Rivlin, R.S.: Large elastic deformations of isotropic materials. i. fundamental concepts. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 240(822), 459–490 (1948)

    Google Scholar 

  19. Schiller, I., Beder, C., Koch, R.: Calibration of a pmd camera using a planar calibration object together with a multi-camera setup. In: ISPRS, Beijing, China, vol. XXXVII, Part B3a, pp. 297–302 (2008), xXI. ISPRS Congress

    Google Scholar 

  20. Schraft, R.D., Ledermann, T.: Intelligent picking of chaotically stored objects. Assembly Automation 23, 38–42 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fugl, A.R., Jordt, A., Petersen, H.G., Willatzen, M., Koch, R. (2012). Simultaneous Estimation of Material Properties and Pose for Deformable Objects from Depth and Color Images. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds) Pattern Recognition. DAGM/OAGM 2012. Lecture Notes in Computer Science, vol 7476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32717-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32717-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32716-2

  • Online ISBN: 978-3-642-32717-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics