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Abstract. We propose a multi-view photometric stereo technique that
uses photometric normal consistency to jointly estimate surface posi-
tion and orientation. The underlying scene representation is based on
oriented points, yielding more flexibility compared to smoothly varying
surfaces. We demonstrate that the often employed least squares error of
the Lambertian image formation model fails for wide-baseline settings
without known visibility information. We then introduce a multi-view
normal consistency approach and demonstrate its efficiency on synthetic
and real data. In particular, our approach is able to handle occlusion,
shadows, and other sources of outliers.

1 Introduction

Recently, several multi-view photometric stereo techniques have been proposed
that use some kind of global surface smoothness or similar assumptions [4, 9,
12]. In contrast, classical single-view photometric stereo is a very local technique
allowing to recover even fine variations of the surface normals. In this paper,
we analyze to what extent a multi-view reconstruction of surface orientation is
possible if surface points are considered to be totally independent. We propose to
move to a different scene representation consisting of surface points with normal
information. Such a representation is especially suited for cluttered, real-world
scenes with multiple, arbitrary objects.

One could argue that real-world objects typically show some kind of con-
nectivity that should be exploited. However, the validity of any assumption on
surface point interdependence is subject to the scale at which we observe the sur-
face. For example, any approximation with linear or even curved patches only
makes sense for a sufficiently low-frequent surface compared to the patch size.
On the other hand, complete independence of surface points is a much more
flexible paradigm. If we know that the data fulfills certain assumptions, such as
smoothness, then it of course makes sense to exploit those. But if such properties
are not known a priori it makes more sense to employ a general algorithm than
to work with a method whose prerequisites are not met.

Similar arguments hold for explicit outlier removal: Modeling each error
source individually, e.g., by shadow detection or special treatment of non-Lambert-
ian points, can only address limited types of outliers. In contrast, the proposed
hypotheses concept allows us to treat all outliers uniformly and to automatically
select suitable subsets of observations that lead to consistent normals.
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Our contribution lies in deriving a consistency measure that incorporates
both position and surface orientation and does not rely on assumptions concern-
ing surface smoothness. This new measure is based on the consistency of normal
hypotheses that are generated from different subsets of all available views. In
particular, we present a reconstruction approach that operates without an initial
segmentation of object and background. It can handle scenes with an unknown
number of objects, and is robust against shadows and occlusions by treating
both uniformly as outliers.

1.1 Related Work

Multi-view stereo techniques [5, 14, 16] reconstruct a surface by comparing the
texture of small patches. They typically fail on uniformly colored objects [15].
In contrast, photometric methods use shading information, e.g., based on the
Lambertian image formation model to estimate the surface orientation. This is
only possible if pixel correspondences in different views are known. In the single-
view case these correspondences are given inherently. But for a multi-view data
set this poses a fundamental challenge since knowing the pixel correspondences
is equivalent to knowing the actual 3D position of the respective surface point.

As observed by Zhang et al. [19], most multi-view reconstruction techniques
do not explicitly compute surface normals or even consider them in their match-
ing cost. A notable exception are techniques that reconstruct specular surfaces [1,
13]. One of the first approaches was proposed by Coleman and Jain [3] who also
introduced the concept of normal hypotheses. They propose to extend classical
photometric stereo by taking four images from a fixed view-point under varying
illumination, therefore generating four albedo and normal hypotheses per pixel.
Only those hypotheses observing the surface under Lambertian conditions are
correct and mutually consistent. Maki and Cipolla [10] extend this later to five
images. We use the idea of hypothetical normals and extend it to the multi-view
setting. This increases the number of hypotheses tremendously and introduces
new challenges including computational complexity and occlusion handling.

Similar to us, Higo et al. [6] determine several normals at a single point from
different sets of lighting directions, but for a single-view setting. They restrict
the solution space to a cone spanned by these normals whereas we use them to
find a maximal inlier set and then perform regular photometric stereo. Another
line of research related to our work is the reconstruction of moving, diffuse
objects. Maki et al. [11] present the theory and analyze the least squares intensity
constraint. Their ideas use intensity subspaces and assume that the light source
illuminates all points on the object, avoiding shadows and occlusions. Simakov
et al. [15] also use the least squares error of the Lambertian image formation
model as their consistency measure. The maximal rotation in their experiments
is 50 degrees between a pair of views, but the whole set of views actually spans
only a limited range of angles. Almost all surface points are seen in every view
and therefore there are no outliers due to occlusion that would bias the least
squares error. Lim et al. [9] investigate the question whether inaccurate initial
pixel correspondences, e.g., from a rough, piecewise planar approximation, can
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be improved by photometric stereo. They assume an evolving surface that arises
from an integrable normal field and minimizes the least squares error of the
Lambertian model. Similarly, Joshi and Kriegman [7] use a cost function based
on the error of a rank three approximation of the observed image intensities to
get an initial, smoothed surface. The main difference that separates our work
from these approaches is that they all cannot handle occlusions, shadows, or
other sources of outliers. This becomes, however, a necessity if we consider wide
baseline scenarios with complex scenes.

Several methods try to circumvent the problem of unknown occlusions or
visibility with a proxy object that is refined iteratively. Weber et al. [17] ap-
ply a voxel-based approach. It relies on object silhouettes and iteratively carves
away voxels outside the consistency hull. Due to visibility information from the
evolving surface, their technique can also handle wide baseline scenarios. Simi-
larly, Hernandez et al. [4] use a triangle mesh as proxy geometry and iteratively
refine vertex positions and face normals. Again, the initialization and the illu-
mination estimation rely on the visual hull being extracted from object silhou-
ettes. Moses and Shimshoni [12] reconstruct a smooth 3D model from several
calibrated images of a featureless Lambertian object under known point light
illumination. Starting at an initial depth, the algorithm estimates neighbour-
ing positions guided by the recovered normal at that point and then grows the
surface by iterating this procedure. Yoshiyasu and Yamazaki [18] also use silhou-
ettes and a mesh deformation approach. Their iterative optimization alternates
between a mesh-based representation and oriented points to handle topology
changes. In our work, we directly recover oriented points and do not assume
an evolving surface. This is especially challenging since it implies that visibility
information is not available, but allows us to reconstruct scenes even with multi-
ple objects. Another distinguishing feature is that we are independent of object
silhouettes and visual hulls which are difficult to recover in some scenes.

2 Multi-view Photometric Stereo

Outlier-free settings with a narrow baseline between views have been studied
repeatedly and with good results [7, 15]. We assume that we have N images
taken from known camera positions Ci under a point light source with constant
intensity d and changing but known light position Li. In this case, for any voxel
p, we can find a normal ñ which minimizes the least squares error

e(p) = min
ñ

1

N

N∑
i=1

(Ip,i − dp,iLp,i · ñ)
2

(1)

defined by the corresponding pixel intensities Ip,i, light directions Lp,i = (Li −
p)/‖Li−p‖ and light intensities dp,i = d/‖Li−p‖2 in each of the N images. For
large e(p) we can be sure that the voxel is not on the surface S, since for p ∈ S
the corresponding normal would explain all observations with a small error. For
small e(p), however, we cannot conclude the inverse since the error can be small
for certain p /∈ S. This occurs, e.g., if the true surface points observed through
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Fig. 1: Error measures along a viewing ray (blue: L2-error, green: inlier ratio for
normal consistency). (a) The ray marked in the input image. (b) For narrow
baseline (9 views) both measures indicate the correct depth (ground truth in
red). (c) For 62 views (wide baseline) the inlier ratio detects even the intersec-
tion at the back whereas the L2-error is not discriminant. (d) Upper and lower
hemisphere with selected views for the front (red) and back (blue) intersections.

p have the same normal (e.g., for a planar target). The blue curve in Fig. 1(b)
shows this L2-error for voxels along a ray from the camera center of the reference
view in Fig. 1(a). The ground truth depth of the surface point is indicated by the
red line and we observe that the L2-error is a useful indicator of the surface. This
example was computed from nine synthetic images of the bunny (see Section 3)
with camera positions from the same octant.

The illustration in Fig. 1(c), however, clearly shows that this error measure
is not suitable for wide-baseline datasets. In this example, the same object is
rendered from 62 views that are uniformly distributed on a sphere. There is no
minimum at the ground truth location and the curve gives no indication of the
true surface. In contrast our proposed technique (in green) which we will discuss
in detail in the next section finds both front and back surface points reliably.

2.1 Consistency of Normal Hypotheses

The problem with the least squares error is that it treats all occurring errors
equally and is thus not robust against outliers. In real scenarios with multi-
ple views and wide baselines, an observed intensity might be an outlier due
to occlusion, shadows, or for various other reasons. Since we have no visibility
information available, it is important to robustly select a subset of suitable ob-
servations. We therefore introduce the concept of normal hypotheses that allows
for a more fine-grained selection of reasonable observations and fits well into a
RANSAC framework.

For a single voxel p and each possible triplet of intensities I arising from
linearly independent light directions Lp,i we can solve the illumination equation

I =

dp,1Lp,1
T

dp,2Lp,2
T

dp,3Lp,3
T

 · n (2)
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for n. This yields a hypothesis for the albedo β = ‖n‖ and for the normal
ñ = n/β. The case N = 4 with a fixed camera has been discussed by Coleman
et al. [3] in the context of specularities. We consider arbitrary N and make use
of the fact that the concept is independent of the fixed view-point assumption.
Because we do not allow repetitions this results in

(
N
3

)
/3! distinct possibilities.

The similarity of these hypotheses can now provide an important clue. For p /∈
S the actually observed surface points differ and thus the computed normal
hypotheses will differ considerably. For points on the surface, most hypotheses
will coincide except those obtained from false observations.

We propose to look at the set of supporting observations for each hypothesis.
That means we build an inlier set I of views that are consistent with the normal
ñ we estimated from views i1, i2 and i3 by applying an angular threshold tang:∣∣∣∣cos−1

(
Ii

βdp,i

)
− cos−1(Lp,i · ñ)

∣∣∣∣ < tang, ∀i ∈ I. (3)

Instead of evaluating all triplets which becomes infeasible with an increasing
number of images we use a RANSAC algorithm at each p to select the best sup-
ported hypothesis. We found, however, the above criterion alone to be ambiguous
in some cases. If view i has actually observed the occluding surface point p with
normal n and this normal is by chance in the cone defined by Lp,i and the hypoth-
esis ñ, then i will be included as inlier. For this reason we introduce an additional
check for views in I. We require all hypotheses h̃ ∈ {ñi1,i2,i, ñi1,i,i3 , ñi,i2,i3} to
deviate at most tang degrees from the candidate ñ before including i in I:

cos−1(h̃ · ñ) ≤ tang. (4)

With the triplet approach we can also easily perform further analysis on views.
In particular, we check for ’front-facing’ cameras and lights by evaluating the
corresponding dot product before assigning them to the inlier set.

Fig. 1 shows our error measure along a ray from the reference camera: For
each voxel the size #I of the largest inlier set over all hypotheses is computed
and then normalized with the maximal number of inliers encountered along the
ray. From the ground truth overlay we conclude that this is a good indicator for
whether or not a point is part of the surface. The maximum is attained at the
correct position for both the narrow- and wide-baseline settings. We observe a
second maximum in the wide-baseline case which is due to the back of the object.
The inlier set in Fig. 1(d) is comprised of different views for each maximum.
Finally, from the observations in the inlier set we can robustly re-estimate the
normal at each voxel using least squares. So we not only obtain an indicator for
the position of the surface but also its orientation.

3 Results

In this section, we present results for the consistency measure, recovered inlier
views, surface orientation, and final 3D models. For these datasets, we determine
the largest inlier set for all voxels in a regular 2563 grid that we manually posi-
tion in the scene. We found 500 RANSAC iterations at each point and tang = 5◦
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Fig. 2: Analysis: (a) 2D slice showing the inlier ratio for the bunny data set
normalized over the maximum inlier set of the slice (b) L2-error for the same
slice is not discriminant at all. The error is normalized over the maximum L2-
error of the slice. (c) Cumulative percentage of surface points plotted over the
number of missed (blue) and erroneous (green) views.

Fig. 3: Normal Comparison: Three surface regions with different curvature and
visibility. The normals computed by our method (black) for the most consistent
grid points (#I > 15) are close to the ground truth (blue ticks).

to yield good results — often fewer iterations suffice. Furthermore, we discard
image triples with over- or underexposed pixels (Ii < 0.05 or Ii > 0.95).

Rendered Input Images To separately study the impact of various effects
on the consistency measure, we first evaluate the performance of our technique
on ray traced images with available ground truth data. We choose 62 light and
coinciding camera positions uniformly distributed around the observed object.
The 2563 volume was computed in 11 hours on an Intel quad-core i7 960. Given
the totally independent voxels further parallelization is trivial.

Extending Fig. 1, we now show a complete slice through the 3D volume in
Fig. 2(a). Again, the size of the largest inlier set is a good surface indicator. The
consistency is smeared out in regions with planar surfaces (e.g., the bottom of
the bunny). This shading ambiguity is expected in the planar case. Nevertheless,
the normals estimated for voxels in that region still yield the correct orientation.
Fig. 3 shows the normals corresponding to the most consistent points in the grid
together with the ground truth normals. Note that both the 3D points and the
estimated surface orientation match the ground truth quite accurately.

We also investigated whether the least squares error for the normal estimated
from the inlier set could be used as a discriminant error measure. Fig. 2(b) shows
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Fig. 4: Robustness through outlier handling: Input image and a 2D slice of the
consistency measure for (a) an object deviating from the Lambertian assumption
and (b) a data set showing strong shadows.

Fig. 5: Multiple object scene. Left to right: One of the input images. Visualisation
of the selected 2D slice. Consistency in the 2D slice for a complete scene. Closeup
of the spiral with ground truth overlaid in blue.

that this is not the case: RANSAC works so well that the inlier set leads to a small
error for almost all voxels. The ability of RANSAC to select the correct subset of
views at each voxel is illustrated in Fig. 2(c). For each point on the ground truth
surface, we determine the views IGT that actually observe it. We then compute
the number of missed views # (IGT \ I) and the number of erroneously included
views # (I \ IGT). The cumulative histogram (blue) indicates that for about
50% of the surface points, we miss at most 7 views. The green curve shows that
we select less than 5 erroneous views in 70% of the cases.

Our approach is also robust against different non-ideal conditions. Fig. 4(a)
uses a plastic material with specular highlights in the reflection direction. In
Fig. 4(b), we move the light sources away from the camera positions to add cast
shadows to the images. Even the shiny material which violates the Lambertian
assumption underlying photometric stereo has no apparent effect on the quality
of the surface contour. The consensus-based reconstruction automatically dis-
cards those views as outliers that do not exhibit sufficiently diffuse behaviour.
A similar argument holds for self-shadowing as in Fig. 4(b).

Finally, the flexibility of the consensus-based approach becomes most appar-
ent when considering scenes with multiple surfaces instead of a single object. Fig.
5 shows our technique on such a challenging data set that we rendered with 89
views distributed on a hemisphere. The two arms of the spiral to the left are only
partially recovered (see closeup). The missing parts are due to the surface facing
downwards and are thus not seen by most of the views. The bunny is well recon-
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Fig. 6: Real sphere. Left: normal maps for the single-view case (classical least
squares and our approach). Right: consistency, normals (blue: ground truth), and
positions of camera (top) and light source (bottom) in the multi-view setting.

(a) (b) (c) (d)

Fig. 7: Chalk dataset: (a) Input image. (b) Visualisation of two slices. (c-d) Con-
sistency measure for the horizontal and vertical slice.

structed and for the flower on the right we recover even the sharply twirled edges.

Results on Real Images We spray-painted a sphere with chalk and took
several linear 14 bit images with a Canon EOS 5D after calibrating its intrinsic
parameters. Computing the point light source positions from the reflections on
five shiny spheres while keeping the camera fixed allows us to estimate the surface
orientation using classical least squares as in Eq. (1). A multi-view photometric
reconstruction technique should ideally fall back to the classical photometric
stereo method if the camera positions Ci all coincide. The comparison in Fig.
6 proves that our algorithm recovers the correct surface normals in the single-
view case. We also used the same setup to capture a wide-baseline multi-view
dataset. In this case it is hard to determine the correct surface position from the
smeared-out consistency in Fig. 6. The recovered normals, however, still follow
the curvature even at voxels that are slightly off the surface.

To evaluate another multi-view reconstruction, we placed four pieces of chalk
on a turnable checkerboard. 84 images were taken from different heights with
a flash attached to the camera and pointing at the scene. We determine the
extrinsic camera parameters with the camera calibration toolbox [2]. The light
directions are then given by the fixed distance between flash and the optical axis
of the camera (which we measured as 175 mm). In Fig. 7 we show the results for
the Chalk dataset. Note that we do not compute an object mask or any occluding
contours. With the proposed measure, the overall shape of the surface is clearly
visible in the individual slices. We capture the smoothly curving parts as well as
the sharp edge at the end of the sticks in Fig. 7(d). We observe, however, that
a lot of voxels inside the object have quite high consistency scores. There is still
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Fig. 8: Rendering novel views: Smooth surface extraction can be applied as an
additional step if required, e.g. for rendering. (Thresholds used: tcs = 15/15/25).

a difference between the consistency scores for on and off the surfaces but it is
less pronounced than in the synthetic test cases. Some problems occur in surface
regions with low local visibility, e.g., where the sticks touch in Fig. 7(c).

3.1 Surface Extraction

The aim of our work is to analyze to which extend the reconstruction of possibly
disconnected, oriented points is possible for uniformly colored objects. But if
required, the flexibility of our scene representation fits almost any surface ex-
traction method as an additional step to create a triangle mesh or introduce
regularization. We show this in Fig. 8 for a basic scheme of running Poisson
surface reconstruction [8] on all points with #I > tcs.

The reconstruction of the bunny appears slightly smoothed compared to the
ground-truth. This is due to the regular grid and its limited resolution which
prevent a faithful reconstruction of the high-frequency details. In future work,
this could be addressed by an adaptive sampling since the measure itself does
not rely on the uniform grid structure. For the chalk dataset, the regularization
removes some of the sharp edges that were recognizable in the voxel-based re-
construction, see Fig. 7(d). Again the single pieces of chalk are easily discernible.

4 Discussion and Future Work

Abandoning almost all possible assumptions, e.g., baseline sizes, surface smooth-
ness, visibility data, or object segmentation leads to a very challenging recon-
struction problem. We have shown that reconstructions for narrow- and wide-
baseline settings are possible even for scenes with multiple, discontinuous sur-
faces, but the lack of a per-voxel normalization limits the current approach. If we
knew IGT(p), it would make sense to rather consider #(I ∩ IGT). Currently, if
#IGT(p1)� #IGT(p2) for two surface points, then usually #I(p1)� #I(p2).
That means that p1 will get a much lower score than p2 even if all non-occluded
views are consistent. For example, the back of the bunny in Fig. 2 shows large
consensus sizes while the paws are only seen in few views and have lower con-
sistency values. Thus, we observe a certain dependency on the view distribution
that we would like to investigate further. Another issue is, that the quality of the
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real world results is not as good as we expected after experiencing the robust-
ness on synthetic data. While the normals can be recovered quite accurately, the
depth reconstruction merits further inspection. Finally, we would like to remark
that the approach we presented will not outperform more specialized solutions
if their respective prerequisites are met. But it is more flexible and we believe
that this aspect will become even more important in the future.
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