Skip to main content

Decision Tree Ensembles in Biomedical Time-Series Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7476))

Abstract

There are numerous classification methods developed in the field of machine learning. Some of these methods, such as artificial neural networks and support vector machines, are used extensively in biomedical time-series classification. Other methods have been used less often for no apparent reason. The aim of this work is to examine the applicability of decision tree ensembles as strong and practical classification algorithms in biomedical domain. We consider four common decision tree ensembles: AdaBoost.M1+C4.5, Multi- Boost+C4.5, random forest, and rotation forest. The decision tree ensembles are compared with SMO-based support vector machines classifiers (linear, squared polynomial, and radial kernel) on three distinct biomedical time-series datasets. For evaluation purposes, 10x10-fold cross-validation is used and the classifiers are measured in terms of sensitivity, specificity, and speed of model construction. The classifiers are compared in terms of statistically significant winslosses-ties on the three datasets. We show that the overall results favor decision tree ensembles over SMO-based support vector machines. Preliminary results suggest that AdaBoost.M1 and MultiBoost are the best of the examined classifiers, with no statistically significant difference between them. These results should encourage the use of decision tree ensembles in biomedical time-series datasets where optimal model accuracy is sought.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410, 277–284 (2001)

    Article  Google Scholar 

  2. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology: Heart rate variability guidelines: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)

    Google Scholar 

  3. Acharya, R.U., Kumar, A., Bhat, P.S., Lim, C.M., Lyengar, S.S., Kannathal, N., Krishnan, S.M.: Classification of cardiac abnormalities using heart rate signals. Med. Biol. Eng. Comput. 42, 288–293 (2004)

    Article  Google Scholar 

  4. Manis, G., Nikolopoulos, S., Alexandridi, A., Davos, C.: Assessment of the classification capability of prediction and approximation methods for HRV analysis. Comp. Biol. Med. 37, 642–654 (2007)

    Article  Google Scholar 

  5. Osowski, S., Hoai, L.T., Markiewicz, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51, 582–589 (2004)

    Article  Google Scholar 

  6. Asl, B.M., Setarehdan, S.K., Mohebbi, M.: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44(1), 51–64 (2008)

    Article  Google Scholar 

  7. Soman, T., Bobbie, P.O.: Classification of Arrhythmia Using Machine Learning Techniques. WSEAS Trans. Comp. 4(6), 548–552 (2005)

    Google Scholar 

  8. Pecchia, L., Melillo, P., Sansone, M., Bracale, M.: Discrimination power of short-term heart rate variability measures for CHF assessment. IEEE Trans. Inf. Technol. Biomed. 15(1), 40–46 (2011)

    Article  Google Scholar 

  9. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. In: 14th Int. Conf. Mach. Learn., pp. 322–330. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  10. Jović, A., Bogunović, N.: Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification. Biomed. Signal Process. Control (in press), doi:10.1016/j.bspc.2011.10.001

    Google Scholar 

  11. Lisboa, P.J., Vellido, A., Wong, H.: Bias reduction in skewed binary classification with Bayesian neural networks. Neural Networks 13, 407–410 (2000)

    Article  Google Scholar 

  12. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

  13. PhysioNet: Physiologic signal archives for biomedical research, http://www.physionet.org

  14. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  15. Pramanik, S., Chowdhury, U.N., Pramanik, B.K., Huda, N.: A Comparative Study of Bagging, Boosting and C4.5: The Recent Improvements in Decision Tree Learning Algorithm. Asian J. Inf. Tech. 9(6), 300–306 (2010)

    Article  Google Scholar 

  16. Webb, G.I.: MultiBoosting: A Technique for Combining Boosting and Wagging. Mach. Learn. 40, 159–239 (2000)

    Article  Google Scholar 

  17. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  18. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation Forest: A New Ensemble Method. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  19. Kuncheva, L.I., Rodríguez, J.J.: An Experimental Study on Rotation Forest Ensembles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 459–468. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  21. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  22. Witten, I.H., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

    Google Scholar 

  23. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training SVM. J. Mach. Learn. Res. 6, 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Tech. 2(27), 1–27 (2011)

    Article  Google Scholar 

  25. Guvenir, H.A., Acar, B., Demiroz, G., Cekin, A.: A supervised machine learning algorithm for arrhythmia analysis. In: Computers in Cardiology Conference CINC 1997, pp. 433–436. IEEE Press, New York (1997)

    Chapter  Google Scholar 

  26. Jovic, A., Bogunovic, N.: HRVFrame: Java-Based Framework for Feature Extraction from Cardiac Rhythm. In: Peleg, M., Lavrač, N., Combi, C. (eds.) AIME 2011. LNCS, vol. 6747, pp. 96–100. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Jovic, A., Bogunovic, N.: Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features. In: Bamidis, P.D., Pallikarakis, N. (eds.) MEDICON 2010. IFMBE, vol. 29, pp. 29–32. Springer, Berlin (2010)

    Google Scholar 

  28. Garcia, T.B., Holtz, N.E.: 12-Lead ECG: The Art of Interpretation. Jones and Bartlett Publishers, Sudbury (2001)

    Google Scholar 

  29. Criminisi, A., Shotton, J., Konukoglu, E.: Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning. Microsoft Research Technical Report TR-2011-114 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jović, A., Brkić, K., Bogunović, N. (2012). Decision Tree Ensembles in Biomedical Time-Series Classification. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds) Pattern Recognition. DAGM/OAGM 2012. Lecture Notes in Computer Science, vol 7476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32717-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32717-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32716-2

  • Online ISBN: 978-3-642-32717-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics